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AN ITERATIVE DOMAIN DECOMPOSITION PROCEDURE FOR
THE REDUCED BASIS METHOD

I. MAIER† AND B. HAASDONK†

Abstract. Reduced basis methods allow efficient model reduction of parametrized partial differ-
ential equations. In the current paper, we consider a reduced basis scheme for homogeneous domain
decomposition problems. The method is based on iterative Dirichlet-Neumann coupling. We prove
convergence of the iterative reduced scheme, derive rigorous a-posteriori error bounds and provide a
full offline/online decomposition. Different methods for basis generation are investigated, in partic-
ular a variant of the POD-Greedy procedure. Experiments confirm the rigor of the error estimators
and identify beneficial basis construction procedures.
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Dirichlet-Neumann coupling

1. Introduction. The reduced basis (RB) method has become a powerful ap-
proach for a fast and reliable treatment of parametrized partial differential equations
(PDEs) in the last decades. Whenever solutions of such PDEs have to be approxi-
mated for plenty of parameters — the so called multi-query context — or simulations
have to be done in real-time, the runtime demands of precise approximation methods
like Finite Elements or Finite Volumes is a big drawback. The RB method dissolves
this problem by precomputing some snapshots of the solution manifold to generate a
low dimensional approximation space. Subsequently, a reduced solution can be found
rapidly in this low-dimensional space. The resulting reduced models can then be used
in various settings, e.g. optimization with PDE-constraints [15], parameter studies or
smartphone applications.

RB methods, which already emerged in the last century [1], have been studied
for both time independent, e.g. [16, 18], and time dependent problems such as [5, 7].
When computing a basis for the low dimensional reduced space, one has to choose
sample parameters. This is mostly done in an adaptive manner with the Greedy-
algorithm [20]. For this procedure the a-posteriori error estimation is an essential
tool, which can be very effective and often completely relies on known and computable
quantites. A counterpart for time dependent problems is the so called POD-Greedy
method [7] and recently there has been much investigation in theoretical convergence
analysis for the Greedy-algorithms [3, 2, 6].

The idea to combine RB methods with domain decomposition techniques led to
the RB element method [10, 11, 12]. In a new approach [8] the RB element method
deals with reference components, which are connected via suitable ports. Especially,
seperate constructions for basis functions on interfaces and the domain interior are
proposed. Domain decomposition techniques in general [17, 19] are motivated by
different purposes, such as parallelization of numerical simulations by assigning sub-
domains to different cores, or multiphysics, where different PDEs have to be solved
on neighbouring domains. The resulting schemes are mostly of iterative nature.

In the current paper we develop an iterative RB method based on initial results
of [13]. We will use the Dirichlet-Neumann method, which is well known for Finite
Elements [14]. In contrast to [8] our RB scheme is exactly following the iterative nature
of the detailed scheme, allowing new analytical statements as a basis for solutions to
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2 An iterative domain decomposition method for the reduced basis method

more complex problems. We propose suitable assumptions on the RB construction,
which naturally arise from this context. In investigating different methods for basis
generation, it is shown that these assumptions are realistic. To obtain computational
efficiency we state a full offline/online decomposition of our procedure. The offline
stage is parameter independent and involves all computations of high complexity.
This allows for a very fast, parameter dependent online stage and is based on the
affine parameter dependency of the data.

The structure of the paper is as follows: In Section 2 the neccessary notation
and the problem formulation are specified. In Section 3 a full approximation scheme
consisting of a detailed and a reduced procedure is presented. Results of analytical
investigations follow in Section 4 and detailed considerations on computational aspects
in Section 5. To complete the picture we present our numerical experiments in Section
6 and finally conclude with some closing remarks. In order to maintain readability of
the main text, some proofs of analytical statements have been shifted to an appendix.

2. Notation. Let Ω ⊂ R
2 be a domain with Lipschitz–boundary ∂Ω and x ∈ Ω

the space variable. Let P ⊂ R
P , P ∈ N be the domain of the parameter µ ∈ P.

We introduce a Hilbert space X ⊂ H1
0 (Ω) with the norm ‖v‖X := ‖v‖H1(Ω) which

can be either finite or infinite dimensional. We now consider a decomposition of Ω
into 2 subdomains, i.e. Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The interface Γ is defined
as Γ := ∂Ω1 ∩ ∂Ω2. We assume that Ω1 and Ω2 have Lipschitz–boundaries and that
Γ, ∂Ω1 \ Γ and ∂Ω2 \ Γ have a nonvanishing (n − 1)-dimensional measure. Several
function spaces are defined according to the domain decomposition.

Xk :=
{

v|Ωk
|v ∈ X

}

,

X0
k := {v ∈ Xk|γv = 0} ,

XΓ := γ(X1) = γ(X2),

X̂ :=
{

v ∈ L2(Ω)|v|Ω1
∈ X1, v|Ω2

∈ X2

}

,

where k = 1, 2. The operator γ denotes the trace operator on Γ, where we do not
notationally discriminate between the spaces X1 or X2, as it will always be clear

from the context. It holds X1 ⊂ H1(Ω1), X2 ⊂ H1(Ω2) and XΓ ⊂ H
1/2
00 (Γ). We

equip the Hilbert spaces Xk, k = 1, 2 with the norms ‖v‖Xk
:= ‖v‖H1(Ωk), XΓ with

‖g‖XΓ
:= ‖g‖L2(Γ) and X̂ with the norm ‖v‖X̂ := (‖v|Ω1

‖2X1
+ ‖v|Ω2

‖2X2
)1/2. On

X ⊂ X̂ the X̂-norm coincides with the X-norm. We introduce the parametric elliptic
variational problem

given µ ∈ P find u(µ) ∈ X : a(u(µ), v;µ) = f(v;µ), ∀v ∈ X,(2.1)

with a parametric bilinear form a : X̂ × X̂ × P → R and a parametric linear form
f : X̂ × P → R. The function u(µ) is called exact solution. We assume that a is
continuous for all µ ∈ P with continuity constant

M(µ) := sup
v∈X̂\{0}

sup
w∈X̂\{0}

a(v, w;µ)

‖v‖X̂‖w‖X̂
<∞

and coercive for all µ ∈ P with coercivity constant

α(µ) := inf
v∈X̂\{0}

a(v, v;µ)

‖v‖2
X̂

> 0.
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We also assume that f is continuous and that a and f are affinely parameter depen-
dent, i.e. there exist decompositions

a(v, w;µ) =

Qa
∑

q=1

Θq
a(µ)a

q(v, w), ∀v, w ∈ X̂, µ ∈ P,

f(v;µ) =

Qf
∑

q=1

Θq
f (µ)f

q(v), ∀v ∈ X̂, µ ∈ P,

with preferably small integers Qa, Qf and µ–independent continuous bilinear forms
aq and continuous linear forms fq, respectively.

Coercivity and continuity of a on X̂ is inherited to the subspace X, hence the
Lemma of Lax–Milgram states that (2.1) has a unique solution for all µ ∈ P. We
assume that this exact solution is approximated with an iterative domain decomposi-
tion procedure. According to the domain decomposition bilinear and linear forms on
the subdomains can be defined.

ak(v, w;µ) := a (v̂, ŵ;µ) , ∀v, w ∈ Xk, µ ∈ P,

fk(v;µ) := f (v̂;µ) , ∀v ∈ Xk, µ ∈ P,

for k = 1, 2 with the zero-extension v̂ ∈ X̂ defined through v̂|Ωk
= v, v̂|Ω\Ωk

=
0. It follows that ak, k = 1, 2 is continuous and coercive on Xk and fk, k = 1, 2
is continuous. Let Mk(µ) be the continuity constant and αk(µ) be the coercivity
constant of ak, k = 1, 2. It holds αk(µ) ≥ α(µ) and Mk(µ) ≤ M(µ). The affine
parameter dependency also transfers from above;

ak(v, w;µ) =

Qa
∑

q=1

Θq
a(µ)a

q
k(v, w), ∀v, w ∈ Xk, µ ∈ P,

fk(v;µ) =

Qf
∑

q=1

Θq
f (µ)f

q
k (v), ∀v ∈ Xk, µ ∈ P,

with bilinear forms aqk(v, w) := aq(v̂, ŵ) and linear forms fq
k (v) := fq(v̂). The iterative

procedure stated below involves the variational formulation of transmission conditions.
To simplify notations we define a linear functional, which arises from this context and
represents the conormal flux on the interface Γ [4]. With R1 : XΓ → X1 a linear,
continuous extension operator, i.e. γ(R1g) = g for g ∈ XΓ, we define for an arbitrary
v ∈ X1:

bv(w;µ) := f1 (R1γw;µ)− a1 (v,R1γw;µ) , ∀w ∈ X2, µ ∈ P.(2.2)

The interpretation as a conormal flux can easily be illustrated: For example, if (2.1) is
the weak form of the boundary value problem −∆ubvp(µ) = h(µ) in Ω, ubvp(µ) = 0 on
∂Ω for some h(µ) ∈ L2(Ω), an integration by parts in (2.2) with v = u1(µ) := u(µ)|Ω1

(u(µ) is the weak solution) yields

bu1(µ)(w;µ) =

∫

Γ

w∇u1(µ) · n ds,

where n is the outer normal on ∂Ω1. We lastly introduce the energy norms for µ ∈ P

‖v‖µ :=
√

a(v, v;µ), v ∈ X̂,

‖v‖k,µ :=
√

ak(v, v;µ), v ∈ Xk,
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for k = 1, 2.

3. Reduced basis scheme. In this section a full scheme for reduced basis ap-
proximation of the exact solution is presented. The domain decomposition is preserved
in all parts of the scheme. Further computational aspects are given in Section 5.

The idea of the reduced basis method is to approximate the set of solutions
{u(µ)|µ ∈ P} through a low dimensional linear space. The linear space is spanned
by a few snapshots u(µl) for selected µl. Once this is established, mostly a Galerkin
projection of the solution is computed. We do this not directly but compute snapshots
on the subdomains for the usage in an iterative procedure. It will turn out that in
the limit we regain a standard reduced basis approximation as described above.

3.1. Detailed procedure. Firstly, we describe a common iterative domain de-
composition procedure for approximating the exact solution u(µ) of (2.1). This is the
so called Dirichlet-Neumann scheme and serves as a snapshot supplier.

Definition 3.1 (detailed procedure). Given µ ∈ P, let g0(µ) = 0 ∈ XΓ, nstop ∈
N, ǫtol > 0 and θn(µ) ∈ [0, 1] for n ≥ 1 be given. We now construct sequences
un
1 (µ) ∈ X1, u

n
2 (µ) ∈ X2 and gn(µ) ∈ XΓ for n ≥ 1 satisfying

a1(u
n
1 (µ), v;µ) = f1(v;µ), ∀v ∈ X0

1 ,

γun
1 (µ) = gn−1(µ),

a2(u
n
2 (µ), v;µ) = f2(v;µ) + bun

1
(µ)(v;µ), ∀v ∈ X2,

gn(µ) = (1− θn(µ)) gn−1(µ) + θn(µ)γun
2 (µ).

The iteration is terminated if

‖un
1 (µ)− un−1

1 (µ)‖21,µ + ‖un
2 (µ)− un−1

2 (µ)‖22,µ ≤ ǫtol,

or if n = nstop. The number of actually accomplished iterations is denoted by n(µ).
Here, θn(µ) is a relaxation parameter. If it is chosen properly, the constructed

sequences converge to the exact solution. The proof of convergence can be found in
[14] for X = H1

0 (Ω) and X = Vh, where Vh is a space of Finite Elements. As stated
in Section 2, we do not decide on finite or infinite dimensional spaces. For analytical
results, we can work with the proper infinite dimensional spaces. In practice the space
X will be a Finite Element space.

3.2. Reduced procedure. To define appropriate RB spaces we consider a finite
sample set S = {µ1, . . . , µNS

} ⊂ P of parameters. One can think of several ways to
generate bases for the RB spaces by the snapshots un

k (µl), k = 1, 2, n = 1, . . . , n(µl),
l = 1, . . . , NS . This topic will be discussed in detail in Section 5. For the moment we
assume the reduced bases to be given. To be more precise, for k = 1, 2 let now N0

k

and NΓ
k be natural numbers and Nk := N0

k +NΓ
k . We assume that we are given bases

Φ0
k =

{

ϕ
(i)
N,k

∣

∣

∣
i = 1, . . . , N0

k

}

⊂ X0
k ,

ΦΓ
k =

{

ϕ
(i)
N,k

∣

∣

∣ i = N0
k + 1, . . . , Nk

}

⊂ Xk,

Φk = Φ0
k ∪ ΦΓ

k ,

where γ(ΦΓ
k ) := {γϕ

(i)
N,k|i = N0

k + 1, . . . , Nk}, k = 1, 2 are linearly independent and
span the same linear space on Γ. We define appropriate RB spaces for k = 1, 2:

XN,k := span (Φk) ,
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X0
N,k := span

(

Φ0
k

)

,

XΓ
N,k := span

(

ΦΓ
k

)

,

XN,Γ := span
(

γ
(

ΦΓ
1

))

= span
(

γ
(

ΦΓ
2

))

,

XN :=
{

v ∈ X
∣

∣v|Ω1
∈ XN,1, v|Ω2

∈ XN,2

}

.

It obviously holds XN,k ⊂ Xk, X
0
N,k ⊂ X0

k , XN,Γ ⊂ XΓ and XN ⊂ X. Note that

X0
N,k = XN,k ∩ H1

0 (Ω1) and XN,Γ = γ(XΓ
N,k) = γ(XN,k) for k = 1, 2. As XN,k

∼=

X0
N,k ⊕ XΓ

N,k, a function v ∈ XN,k can uniquely be written as v = v0 + vΓ with

v0 ∈ X0
N,k and vΓ ∈ XΓ

N,k.
For a reduced iterative procedure we replace all steps of the detailed procedure

with reduced basis approximations. Since R1(XN,Γ) ⊂ XN,1 does not hold in general,
let RN,1 : XN,Γ → XN,1 be a linear, continuous extension operator on the RB spaces,
i.e. γ(RN,1g) = g for all g ∈ XN,Γ. The counterpart to the linear form bv then is
defined as

bN,v(w;µ) := f1 (RN,1γw;µ)− a1 (v,RN,1γw;µ) , ∀v ∈ XN,1, w ∈ XN,2, µ ∈ P.

Now, the reduced procedure can be stated.
Definition 3.2 (reduced procedure). Given µ ∈ P, let g0N (µ) = 0 ∈ XN,Γ,

nN,stop ∈ N, ǫN,tol > 0 and θnN (µ) ∈ [0, 1] for n ≥ 1 be given. We now construct
sequences un

N,1(µ) ∈ XN,1, u
n
N,2(µ) ∈ XN,2 and gnN (µ) ∈ XN,Γ for n ≥ 1 satisfying

a1(u
n
N,1(µ), v;µ) = f1(v;µ), ∀v ∈ X0

N,1,(3.1)

γun
N,1(µ) = gn−1

N (µ),(3.2)

a2(u
n
N,2(µ), v;µ) = f2(v;µ) + bN,un

N,1
(µ)(v;µ), ∀v ∈ XN,2,(3.3)

gnN (µ) = (1− θnN (µ)) gn−1
N (µ) + θnN (µ)γun

N,2(µ).(3.4)

The iteration is terminated if

‖un
N,1(µ)− un−1

N,1 (µ)‖
2
1,µ + ‖un

N,2(µ)− un−1
N,2 (µ)‖

2
2,µ ≤ ǫN,tol,

or if n = nN,stop. The number of actually accomplished iterations is denoted by
nN (µ).

By the carefully selected assumptions on the reduced bases the reduced and de-
tailed procedure are perfectly corresponding, the only difference being the underlying
Hilbert spaces.

3.3. Matrix formulation. In this subsection a matrix formulation of the re-
duced procedure is given. The elements of vectors and matrices will be denoted by
superscripts ∗(i) and ∗(i,j). With the coefficient vectors un

N,k(µ) ∈ R
Nk , k = 1, 2,

n ∈ N and gn−1
N

(µ) ∈ R
NΓ

1 , n ∈ N the functions un
N,k(µ), k = 1, 2, n ∈ N and gn−1

N (µ),
n ∈ N are given through

un
N,k(µ) =

Nk
∑

i=1

un
N,k(µ)

(i)ϕ
(i)
N,k, gn−1

N (µ) =

NΓ

1
∑

i=1

gn−1
N

(µ)(i)γϕ
(N0

1
+i)

N,1 .

We introduce the matrix GN ∈ R
NΓ

1
×N2 for the computation of the basis coefficients

in XN,Γ, i.e.

NΓ

1
∑

i=1

G
(i,j)
N γϕ

(N0

1
+i)

N,1 = γϕ
(j)
N,2, ∀j ∈ {1, . . . , N2}.
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It holds G
(i,j)
N = 0 for j = 1, . . . , N0

2 . If there is a one-to-one correspondence of the
bases on Γ the lower block is a diagonal matrix, else it can be computed via the
orthogonal L2(Γ)-projection. Let RN,1 ∈ R

N1×(N1−N0

1
) be the matrix of the linear

map RN,1, i.e.

N1
∑

i=1

R
(i,j)
N,1 ϕ

(i)
N,1 = RN,1γϕ

(N0

1
+j)

N,1 , ∀j ∈ {1, . . . , N1 −N0
1 }.

We further introduce the matrices AN,k(µ) and FN,k(µ), k = 1, 2:

AN,k(µ) :=
(

ak

(

ϕ
(j)
N,k, ϕ

(i)
N,k

))Nk

i,j=1
∈ R

Nk×Nk ,

FN,k(µ) :=
(

fk

(

ϕ
(i)
N,k

))Nk

i=1
∈ R

Nk .

For a matrix v ∈ R
N1×m, where m ∈ {1, N1} we introduce the notations

v0 :=
(

v(i,j)
)N0

1
,m

i=1,j=1
∈ R

N0

1
×m,

vΓ :=
(

v(N
0

1
+i,j)

)NΓ

1
,m

i=1,j=1
∈ R

NΓ

1
×m

and for the case m = N1

v00 :=
(

v(i,j)
)N0

1

i,j=1
∈ R

N0

1
×N0

1 ,

v0Γ :=
(

v(i,N
0

1
+j)
)N0

1
,NΓ

1

i=1,j=1
∈ R

N0

1
×NΓ

1 .

We now can rewrite the reduced procedure of Definition 3.2 in terms of matrices and
vectors.

AN,1(µ)
00un

N,1(µ)
0 = FN,1(µ)

0 −AN,1(µ)
0Γgn−1

N
(µ),

un
N,1(µ)

Γ = gn−1
N

(µ),

Bn
N,2(µ) = GT

NRT
N,1

(

FN,1(µ)
Γ −AN,1(µ)

Γun
N,1(µ)

)

,

AN,2(µ)u
n
N,2(µ) = FN,2(µ) +Bn

N,2(µ),

gn
N
(µ) = (1− θnN (µ)) gn−1

N
(µ) + θnN (µ)GNun

N,2(µ).

The stopping criterion then reads

2
∑

k=1

(

un
N,k(µ)− un−1

N,k (µ)
)T

AN,k(µ)
(

un
N,k(µ)− un−1

N,k (µ)
)

≤ ǫN,tol.

4. Analytical results. There are three aspects, in which we are interested in
this section. The well-posedness of the reduced procedure, the convergence of the
iterative scheme and the error quantification of the gained approximative solution.
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4.1. Well-posedness. We shortly explain the well-posedness of the reduced pro-
cedure. We adopt the notation for matrices to functions:

un
N,1(µ)

0 :=

N0

1
∑

i=1

un
N,1(µ)

(i)ϕ
(i)
N,1,

un
N,1(µ)

Γ :=

NΓ

1
∑

i=1

un
N,1(µ)

(N0

1
+i)ϕ

(N0

1
+i)

N,1 .

Since γ|XΓ

N,1
is bijective, un

N,1(µ)
Γ is given through Equation (3.2) in a unique way.

Then we can rewrite Equation (3.1) as a1(u
n
N,1(µ)

0, v;µ) = f1(v;µ)−a1(u
n
N,1(µ)

Γ, v;µ)

and therefore have existence and uniqueness of un
N,1(µ)

0 due to the Lemma of Lax-
Milgram. Again in Equation (3.3) we can apply Lax-Milgram because bN,v(·;µ) is
linear and continuous for all v ∈ XN,1 and µ ∈ P. The well-posedness of Equation
(3.4) requires the coincidence γ(XN,1) = γ(XN,2), which was an assumption on the
RB spaces. To gain good conditions of the system matrices AN,1(µ)

00 and AN,2(µ)

the bases Φ0
1 and Φ2 should be orthonormalized. As will be seen later, this is always

possible for Φ0
1, in contrast to Φ2.

4.2. Convergence. Similar as for the detailed procedure, the convergence of
the reduced procedure is determined by the choice of the corresponding relaxation
parameter. The following theorem describes this more precisely.

Theorem 4.1. Provided θnN (µ) ≥ θN,min(µ) for all n ≥ 1 and an arbitrary
θN,min(µ) > 0 there exists θ∗N (µ) > 0 such that the sequences {un

N,1(µ)}n∈N and
{un

N,2(µ)}n∈N of the reduced procedure converge in XN,1 and XN,2, respectively, if
θnN (µ) < θ∗N (µ) for all n ≥ 1. Then especially holds limn→∞ un

N,1(µ) = uN (µ)|Ω1
and

limn→∞ un
N,2(µ) = uN (µ)|Ω2

where uN (µ) is the solution of the following problem.

find uN (µ) ∈ XN : a(uN (µ), v;µ) = f(v;µ), ∀v ∈ XN .(4.1)

For the sake of completeness we give the proof of Theorem 4.1 in the appendix. The
solution uN (µ) of problem (4.1) is the standard RB approximation of the exact solu-
tion u(µ) from (2.1). This already indicates that we obtain a good approximation in
the reduced procedure, because the iteration sequences converge to a function, which
is known to be a good approximation. But the performance of the procedure also relies
on the rate of convergence, which is influenced by the relaxation parameters θnN (µ).
The optimal relaxation parameter — the one with a fastest convergent iteration —
can be approximated by a routine which is reported in [14] for Finite Elements. We
note that an analogue routine can be applied in the RB scheme. Within this routine
we need a separate basis Φ0

2 of X0
N,2, which was not used in the RB scheme so far.

4.3. A-posteriori error estimation. In this subsection we consider the error
‖un

N (µ)−u(µ)‖X̂ of the iterative solution un
N (µ) which is the assembly of the iteration

functions of the reduced procedure, i.e. un
N (µ)|Ω1

= un
N,1(µ) and un

N (µ)|Ω2
= un

N,2(µ).
An a-posteriori error estimator, which is a strict upper bound for the error, is pre-
sented. This error estimator especially can be used later in an adaptive basis genera-
tion algorithm.

Definition 4.2 (residuals). For n ≥ 1 and µ ∈ P we define the residual rn(·;µ) :
X → R through

rn(v;µ) := a(un
N (µ), v;µ)− f(v;µ), ∀v ∈ X,
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Let νn(µ) ∈ X be the Riesz-representative of rn(·;µ).
Theorem 4.3 (a-posteriori error estimator). Let R̃1 : XΓ → X1 be an arbitrary

linear extension operator. For n ≥ 1 and µ ∈ P we can estimate the error un
N (µ)−u(µ)

in the X̂-Norm:

‖un
N (µ)− u(µ)‖X̂ ≤ ∆n

N (µ),

where

∆n
N (µ) :=

1

α(µ)
‖νn(µ)‖X +

(

1 +

√

M(µ)

α(µ)

)

∥

∥

∥R̃1

(

γun
N,1(µ)− γun

N,2(µ)
)

∥

∥

∥

X1

.(4.2)

From the definition of the estimator we get a criterion for the choice of the exten-
sion operator R̃1. It is convenient to choose R̃1 such that supv∈XΓ\{0} ‖R̃1v‖X1

/‖v‖XΓ

is small. In the experiments in Section 6 we will decide for the trivial Finite Element
extension.

Remark 1. Note that the first term in (4.2) is the standard elliptic RB estimator
[18]. Hence our error bound additionaly covers the discontinuity of un

N (µ) across the
interface Γ.

Proof of Theorem 4.3. We split up the function un
N (µ) in ûn

N (µ) ∈ X̂ defined
through

ûn
N (µ)|Ω1

:= R̃1

(

γun
N,1(µ)− γun

N,2(µ)
)

,

ûn
N (µ)|Ω2

:= 0

and ūn
N (µ) := un

N (µ)− ûn
N (µ) ∈ X. By application of the triangle inequality we get

‖un
N (µ)− u(µ)‖X̂ ≤ ‖ū

n
N (µ)− u(µ)‖X̂ + ‖ûn

N (µ)‖X̂ .(4.3)

For ûn
N (µ) holds

‖ûn
N (µ)‖X̂ =

∥

∥

∥
R̃1

(

γun
N,1(µ)− γun

N,2(µ)
)

∥

∥

∥

X1

.

We now consider the error ūn
N (µ)− u(µ) ∈ X in the energy norm:

‖ūn
N (µ)− u(µ)‖2µ = a (ūn

N (µ), ūn
N (µ)− u(µ);µ)− a (u(µ), ūn

N (µ)− u(µ);µ)

= a (un
N (µ), ūn

N (µ)− u(µ);µ)− a (ûn
N (µ), ūn

N (µ)− u(µ);µ)

−f (ūn
N (µ)− u(µ);µ)

= rn (ūn
N (µ)− u(µ);µ)− a (ûn

N (µ), ūn
N (µ)− u(µ);µ)

= (νn(µ), ūn
N (µ)− u(µ))X − a (ûn

N (µ), ūn
N (µ)− u(µ);µ) .

With the Cauchy-Schwarz inequality, coercivity and continuity of a(·, ·;µ) follows

‖ūn
N (µ)− u(µ)‖2µ ≤ ‖ν

n(µ)‖X ‖ū
n
N (µ)− u(µ)‖X + ‖ûn

N (µ)‖µ ‖ū
n
N (µ)− u(µ)‖µ

≤
1

√

α(µ)
‖νn(µ)‖X ‖ū

n
N (µ)− u(µ)‖µ

+
√

M(µ) ‖ûn
N (µ)‖X̂ ‖ū

n
N (µ)− u(µ)‖µ

⇒ ‖ūn
N (µ)− u(µ)‖µ ≤

1
√

α(µ)
‖νn(µ)‖X +

√

M(µ) ‖ûn
N (µ)‖X̂ .

The latter estimation is inserted into Equation (4.3) using the coercivity inequality
‖ūn

N (µ)− u(µ)‖X̂ ≤ α(µ)−1/2‖ūn
N (µ)− u(µ)‖µ to obtain the statement.
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5. Computational aspects. We now want to go into some computational as-
pects of the proposed method. The spaceX now is considered to be a high-dimensional
space, e.g. Finite Element space, with dimension dim(X) = N . This leads to high,
finite dimensions dim(Xk) = Nk, k = 1, 2 and dim(XΓ) = NΓ.

In Section 5.1 several possibilities of generating the reduced bases are presented.
The accuracy of the approximation can be strongly influenced by a proper basis
generation. It is shown how this can be achieved with a Greedy-algorithm while
meeting the special requirements of our method. We assume that this leads to RB
spaces with dimensions Nk ≪ Nk for k = 1, 2 and NΓ ≪ NΓ, where NΓ = NΓ

1 = NΓ
2 .

In Section 5.2 a full offline/online decomposition is provided. In the offline phase
all high-dimensional computings are managed, so that the computations in the online
phase do not depend on high dimensions. This garantuees the efficiency of the reduced
basis approach and is based on the affine parameter dependency of the involved data.

5.1. Basis generation. We concentrate now on the missing step of generating
the bases Φ0

k and ΦΓ
k , k = 1, 2 out of the snapshots un

k (µl), k = 1, 2, n = 1, . . . , n(µl),
l = 1, . . . , NS and on how to choose the sample parameters µl. The bases strongly
influence the approximation quality of the reduced procedure. Our goal is to generate
bases such that the error can be bounded by a given tolerance for all parameters
in P. This can be done approximately with the Greedy-algorithm [20]. Since P is
an infinite set, we have to weaken the goal by considering only a finite training set
Mtrain ⊂ P. It is sufficient to replace the error by the error estimator ∆n

N (µ) in this
context, since ∆n

N (µ) is an upper bound for the error. In the following variant of the
Greedy procedure a choice of a basis extension method is kept open and can be filled
by method A or B explained later.

Definition 5.1 (Greedy-algorithm). Given initial bases Φ0
k, Φ

Γ
k , k = 1, 2 with

the properties of Section 3.2, an error tolerance ǫgre and Nstop,k ∈ N, k = 1, 2, the
Greedy-algorithm is given by

- while maxµ∈Mtrain
∆

nN (µ)
N (µ) > ǫgre

(i) µ∗ := argmaxµ∈Mtrain
∆

nN (µ)
N (µ)

(ii) compute Ξk := {un
k (µ

∗)|n = 1, . . . , n(µ∗)}, k = 1, 2 by the

detailed procedure from Definition 3.1

(iii) extend the bases Φ0
k, Φ

Γ
k , k = 1, 2 by method A or B

as long as |Φ0
k|+ |Φ

Γ
k | ≤ Nstop,k, k = 1, 2.

It remains to specify how the bases are extended in step (iii). For a fixed µ̄ ∈ P
and k = 1, 2 we define extension operators Rk,µ̄ : XΓ → Xk through

ak (Rk,µ̄g, v; µ̄) = 0, ∀v ∈ X0
k ,(5.1)

Rk,µ̄g = g on Γ.

We also involve the orthogonal projection, which we denote by PY for an arbitrary
subspace Y and the first mode of the proper orthogonal decomposition (POD) [9, 21]
for an arbitrary set Ξ ⊂ Xk, k = 1 or 2, which is defined as

POD(Ξ) := arg min
v∈Xk,‖v‖Xk

=1

∑

w∈Ξ

‖w − Pspan(v)w‖
2
Xk

.

We now can propose our two methods, which get Ξk, k = 1, 2 as input and extend the
bases Φ0

k, Φ
Γ
k for k = 1, 2. Both methods are extended variants of the POD-Greedy
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procedure [7]. Method A is motivated by the idea that an arbitrary function v ∈ Xk,
k = 1, 2 is the sum of v − Rk,µ̄γv ∈ X0

k and Rk,µ̄γv in Xk. With the help of this
split-up both Φ0

k and ΦΓ
k are extended simultaneously. Furthermore the usage of the

POD yields orthonormal bases Φ0
k and {γϕ |ϕ ∈ ΦΓ

k}, if the initial bases already have
these properties.

5.1.1. Method A.

1. extension of Φ0
k, k = 1, 2:

(i) Ξ0
k := {ξ −Rk,µ̄γξ | ξ ∈ Ξk}

(ii) ξ0k := POD({ξ − PX0

N,k
ξ | ξ ∈ Ξ0

k})

(iii) Φ0
k ← Φ0

k ∪ {ξ
0
k}

2. extension of ΦΓ
k , k = 1, 2:

(i) ξΓ := POD({γξ − PXN,Γ
γξ | ξ ∈ Ξ1 ∪ Ξ2})

(ii) ΦΓ
k ← ΦΓ

k ∪ {Rk,µ̄ξ
Γ}

The POD is not defined when the input set is {0}. So it depends on steps 1.(ii)
and 2.(i) whether the bases are extended at all. With method A we do not take into
account, that for the reduced procedure (Definition 3.2) we do not necessarily have
to generate functions for Φ0

2. Method B consists in a different processing of Ξ2. In
each step of the Greedy-algorithm the basis Φ2 gains at most one vector, which is
assigned to ΦΓ

2 as long as γ(ΦΓ
2 ) is linearly independent, which was an assumption in

our bases framework for the reduced procedure. In the other case a new vector for
Φ0

2 is generated. Hence, potentially method B allows some savings in the overall final
basis size N .

5.1.2. Method B.

1. extension of Φ0
1:

(i) Ξ0
1 := {ξ −R1,µ̄γξ | ξ ∈ Ξ1}

(ii) ξ01 := POD({ξ − PX0

N,1
ξ | ξ ∈ Ξ0

1})

(iii) Φ0
1 ← Φ0

1 ∪ {ξ
0
1}

2. extension of ΦΓ
1 and ΦΓ

2 :

(i) ξ2 := POD({ξ − PXN,2
ξ | ξ ∈ Ξ2})

(ii) ξΓ := γξ2 − PXN,Γ
γξ2

(iii) if ξΓ 6= 0

ΦΓ
1 ← ΦΓ

1 ∪ {R1,µ̄γξ2}

ΦΓ
2 ← ΦΓ

2 ∪ {ξ2}

3. extension of Φ0
2:

(i) if ξΓ = 0

ξ02 := ξ2 − (γ|XΓ

N,2
)−1

PXN,Γ
γξ2

ξ02 ← ξ02 − PX0

N,2
ξ02

ξ02 ←
1

‖ξ0
2
‖X2

ξ02

Φ0
2 ← Φ0

2 ∪ {ξ
0
2}

By this procedure the bases Φ0
1, Φ

Γ
2 and Φ0

2 are orthonormalized. With method A
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all bases Φ0
k and ΦΓ

k , k = 1, 2 are orthonormalized. So the system matrix A00
N,1(µ) will

be well conditioned in both cases. However this is not ensured for AN,2(µ), because

Φ0
2 ⊥ ΦΓ

2 is not ensured.
Remark 2. The assumption span(γ(ΦΓ

1 )) = span(γ(ΦΓ
2 )) given in Subsection 3.2

is fullfilled by construction when using both method A or method B, if again the initial
bases have this property.

5.1.3. Initial bases. The computation of initial bases according to method A or
B can be done with the methods themselves and Ξk := {un

k (µinit) |n = 1, . . . , n(µinit)}
where µinit ∈ P is a random parameter and Φ0

k,Φ
Γ
k = ∅ for k = 1, 2.

5.1.4. The sequence mode. In step (ii) of the Greedy-algorithm the whole
sequences of approximates are included. In our numerical experiments we also consider

the option Ξk = {u
n(µ∗)
k (µ∗)}, k = 1, 2 where only the last approximates of the

iteration are included. The “POD-steps” in method A and B then degenerate to a
normalization of one vector. The numerical experiments in Section 6 will show that
this also is sufficient to build up bases that bring forward the approximation with the
reduced procedure. We append -SEQ, if using the whole sequences and -NSEQ, if
only using the final snapshot, to the method name A or B.

5.2. Offline/online decomposition. We assume that there is a need of com-
puting an approximation and an error estimate for plenty of parameters µ ∈ P, as
it is the case e.g. in an optimization problem. To perform the reduced procedure we
need to compute the matrices and vectors AN,k(µ), FN,k(µ) for k = 1, 2, GN and
RN,1. The last two do not depend on µ, so we have to compute them once only. But
the µ-dependent matrices have to be computed for every parameter and this has to
be done in an efficient way, otherwise the computation time for the RB scheme will
deteriorate. In the case of AN,1(µ) the assumed affine parameter dependency of a1
leads to the following decomposition.

AN,1(µ) :=

Qa
∑

q=1

Θq
a(µ)A

q
N,1,(5.2)

where the component-matrices Aq
N,1 are given by

Aq
N,1 :=

(

aqk

(

ϕ
(j)
N,1, ϕ

(i)
N,1

))N1

i,j=1
.

With precomputed matrices Aq
N,1 the computation of AN,1(µ) for an arbitrary pa-

rameter µ can be done in O(N2
1 ) via Equation (5.2). This is a huge acceleration,

since N1 ≪ N1. With this insight the offline/online decomposition for the reduced
procedure can be stated.

Offline stage (reduced procedure)
1. generate the bases Φk, k = 1, 2 with the method of your choice
2. compute the component-matrices

Aq
N,k = (aqk(ϕ

(j)
N,k, ϕ

(i)
N,k))

Nk

i,j=1, for q = 1, . . . , Qa, k = 1, 2

F q
N,k = (fq

k (ϕ
(i)
N,k))

Nk

i=1 for q = 1, . . . , Qf , k = 1, 2

3. compute the matrices GN and RN,1

Online stage (reduced procedure)
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Given µ ∈ P, ǫN,tol > 0 and an integer nN,stop ≥ 1
1. compute the matrices

AN,k(µ) =

Qa
∑

q=1

Θq
a(µ)A

q
N,k for k = 1, 2

FN,k(µ) =

Qf
∑

q=1

Θq
f (µ)F

q
N,k for k = 1, 2

2. perform the reduced procedure according to Definition 3.2.
Since the matrices in the reduced procedure are small-sized, we benefit by saving the
Cholesky factors of AN,1(µ)

00 and AN,2(µ) or even (AN,1(µ)
00)−1FN,1(µ)

0, etc. in
the first iteration.

For an efficient computing of the a-posteriori error estimator we derive the affine
parameter dependency of νn(µ). It holds for all v ∈ X

(νn(µ), v)X = f(v;µ)− a (un
N (µ), v;µ)

=
2
∑

k=1

(

fk(v;µ)− ak
(

un
N,k(µ), v;µ

))

=

2
∑

k=1





Qf
∑

q=1

Θq
f (µ)f

q
k (v)−

Qa
∑

q=1

Nk
∑

q̄=1

Θq
a(µ)u

n
N,k

(q̄)(µ)aqk

(

ϕ
(q̄)
N,k, v

)



 .

So, an affine decomposition νn(µ) =
∑Qν

q=1 Θ
q
νnνq is given with an n-independent

number Qν :=
∑2

k=1(Qf +NkQa) by the coefficient-vector

Θνn(µ) =
(

Θ1
νn(µ), . . . ,Θ

Qν

νn (µ)
)

=
(

Θp1
νn(µ),Θ

p2
νn(µ)

)

,

where for k = 1, 2

Θpk
νn(µ) =

(

Θ1
f (µ), . . . ,Θ

Qf

f (µ),

−Θ1
a(µ)u

n
N,k

(1)(µ), . . . ,−ΘQa
a (µ)un

N,k
(1)(µ),

...

−Θ1
a(µ)u

n
N,k

(Nk)(µ), . . . ,−ΘQa
a (µ)un

N,k
(Nk)(µ)

)

and the n-independent components (νn)q = νq, q = 1, . . . , Qν which are given by

((νn)
q
, v)X = fq

1 (v), ∀v ∈ X,

for q = 1, . . . , Qf1 ,

(νq, v)X = ai1

(

ϕ
(j)
N,1, v

)

, ∀v ∈ X,

for q = Qf +Qa(j − 1) + i, i = 1, . . . , Qa, j = 1, . . . , N1,

(νq, v)X = f i
2(v), ∀v ∈ X,
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for q = Qf +N1Qa + i, i = 1, . . . , Qf and

(νq, v)X = ai2

(

ϕ
(j)
N,2, v

)

, ∀v ∈ X,

for q = Qf +N1Qa +Qf +Qa(j − 1) + i, i = 1, . . . , Qa, j = 1, . . . , N2. With the help
of this decomposition we can decompose the computation of the error estimator as
follows.

Offline stage (error estimator)

Given bases Φk, k = 1, 2
1. compute the components νq for q = 1, . . . , Qν

2. compute the matrix

Gν =
((

νj , νi
)

X

)Qν

i,j=1
.

3. compute the matrices

R̃N,kk =

(

(

R̃1γϕ
(j)
N,k, R̃1γϕ

(i)
N,k

)

X1

)Nk

i,j=1

for k = 1, 2

R̃N,12 =

(

(

R̃1γϕ
(j)
N,1, R̃1γϕ

(i)
N,2

)

X1

)N2,N1

i,j=1

Online stage (error estimator)

Given un
N,k(µ), k = 1, 2 for some µ ∈ P, n ≥ 1

1. compute

‖νn(µ)‖2X = Θνn(µ)TGνΘνn(µ)

2. compute

∥

∥

∥
R̃1

(

γun
N,1(µ)− γun

N,2(µ)
)

∥

∥

∥

2

X1

=
2
∑

k=1

un
N,k(µ)

T R̃N,kku
n
N,k(µ)

−2un
N,1(µ)

T R̃N,12u
n
N,2(µ)

3. compute ∆n
N (µ) according to (4.2).

Obviously, the time complexities in the online stage for both the reduced procedure
and the error estimator do not depend on the high dimensions N1, N2 or NΓ any more.
To be more precise, if we assume Qa, Qf ≪ N1, N2 and NΓ

1 / N0
1 the online stage for

a single iteration in the reduced procedure can be performed in O((N0
1 )

3 +N3
2 ) and

the online stage for the error estimator in O(N2
1 +N2

2 ).

6. Experiments. The introduced methods were implemented in the environ-
ment of the MATLAB software package RBmatlab2, which provides a general frame-
work for reduced basis simulations. All computations are done on an Intel Core 2
Quad CPU (2.83 GHz).

2http://www.morepas.org/software/
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6.1. Model. We consider a “thermal block” example, i.e. the simple, static heat
equation on the unit square Ω = (0, 1)2 ⊂ R

2 with homogeneous Dirichlet boundary
conditions,

− div (κ(x;µ)∇u(x;µ)) = h(x;µ), x ∈ Ω,

u(x;µ) = 0, x ∈ ∂Ω.

The domain Ω is seperated into 4 blocks B1 = (0, 0.5)2, B2 = (0.5, 1)× (0, 0.5), B3 =
(0, 0.5)× (0.5, 1) and B4 = (0.5, 1)2 with corresponding heat coefficients contributing
to the function κ as follows.

κ(x;µ) =

3
∑

i=1

µiχBi
(x) + χB4

(x),

where µi ∈ [0.1, 10], i = 1, 2, 3 and χBi
the characteristic functions, χBi

(x) = 1 if
x ∈ Bi and 0 if x 6∈ Bi, i = 1, . . . , 4. The fourth entry of the parameter vector is a
weight in the source function h,

h(x;µ) = 2µ4 exp
(

−β1|x− z1|
2
)

+ 2(1− µ4) exp
(

−β2|x− z2|
2
)

,

and is restricted to µ4 ∈ [0, 1]. We further set β1 = β2 = 20, and the midpoints of the
exponential bubbles z1 = (0.5, 0.5)T , z2 = (0.875, 0.875)T . Two realizations of this
function are shown in Figure 6.1. A domain decomposition is set according to Figure
6.2. We note that z1 ∈ Ω1 and z2 ∈ Ω2.

Fig. 6.1. source function h(µ), left-hand side µ4 = 0.35, right-hand side µ4 = 1

Fig. 6.2. thermal blocks and domain decomposition of Ω = (0, 1)2
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We use a triangular grid with a Finite Element discretization of order 1 for the
detailed procedure. A uniform triangulation with mesh size h = 0.011 and a total
of 16641 degrees of freedom on Ω is used. The grid is consistent to the domain
decomposition in the sense that the intersection of a triangle with the interface Γ is
either an edge or a vertex of the grid.

6.2. Basis generation. With the Greedy-algorithm described in Section 5.1 a
reduced basis is generated. The Greedy-algorithm involves both the detailed and
reduced procedure. We set the stopping tolerances ǫtol = ǫN,tol = 1 · 10−12 and the
maximal number of iterations nstop = nN,stop = 10000. For the Greedy-algorithm we
set the error estimate tolerance ǫgre = 1 · 10−6 and the maximal basis sizes Nstop,k =
100, k = 1, 2. The training set of parameters Mtrain is given by 54 equidistantly
distributed points in the parameter domain. For the computation of the error estimate
∆n

N (µ) defined in (4.2) we have to specify which extension operator R̃1 we use. It is
the trivial Finite Element extension, where all degrees of freedom not lying on Γ are
set to zero. For the harmonic extensions in (5.1) we set µ̄ = (5.05, 5.05, 5.05, 0.5).

First tests showed that the reduced simulation may perform badly, if one of the
bases is empty. To achieve a reliable start of the Greedy-algorithm, initial bases are
computed with a random parameter and method A-*, *=SEQ, NSEQ, despite the fact
that we may use method B-* in the Greedy-algorithm. So all bases are non-empty in
the beginning.

Fig. 6.3. Progress of the maximal error estimate on Mtrain in the Greedy-algorithm on the left
hand side, sum of bases dimensions on the right hand side

Figure 6.3 shows that a bases extension with NSEQ is not only sufficient but
even better than one with SEQ regarding the error decay. Taking more POD-modes
from the sequences to better approximate the detailed iteration would result in even
larger bases. Method B-NSEQ yields slightly smaller dimensions than method A-
NSEQ, while the error decay shows no difference. In all cases convergence of the
Greedy-algorithm is achieved.

We mentioned before that the orthogonality of Φ2 and so the stability of the cor-
responding system is not ensured by construction. We have a look at the 2-condition
numbers of the corresponding matrix AN,2(µ) in Figure 6.4.

Still there is no advantage in performing SEQ. The difference between method A
and B is reasonable, since by definition method B — in contrast to method A — yields
an orthonormal basis extension of ΦΓ

2 , while Φ0
2 only is extended if the extension of

ΦΓ
2 is exhausted. Regarding method A-NSEQ, the condition of AN,2(µ) can effectivily

be improved by diagonal preconditioning. Figure 6.4 also indicates that the condition
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Fig. 6.4. Minimum (blue), mean (green) and maximum (red) 2-condition of AN,2(µ) out of
100 randomly chosen parameter with full bases on the left hand side, progress of the maximum in
the Greedy-algorithm on the right hand side

numbers of B-SEQ, A-NSEQ and B-NSEQ remain bounded, so we assume that the
stability in this context is given independent of the given basis dimensions.

Fig. 6.5. The solution un
N
(µ) in three steps of the reduced iteration for one sample parameter.

To the left n = 1, in the middle n = 5 and to the right n = nN (µ) = 96.

6.3. Reduced simulation. Figure 6.5 provides a nice insight into how the re-
duced procedure works. Here and in what follows the stopping tolerances ǫtol =
ǫN,tol = 1 · 10−10 are used. To investigate the procedure more precisely, we exemplar-
ily show in Figure 6.6 the approximating quality of the bases generated with method
B-NSEQ for one random parameter. One can see that the error decay in the reduced
procedure is similar to the error decay in the detailed procedure and that the exact
solution is approximated with an accuracy of approximately 10−6, as was intended
with the Greedy-algorithm. To measure the effectivity of the error estimate, which
already can be observed on the left hand side of Figure 6.6, we further compute

∆
nN (µ)
N (µ)/‖u

nN (µ)
N (µ)−u(µ)‖X̂ for 100 randomly chosen parameters and show a his-

togram of the values on the right hand side. The overestimation seems to be only one
order of magnitude, hence the effectivity is very satisfactory.

Last but not least the efficiency of the reduction technique, which mainly relies on
the affine parameter dependency, is verified by comparing the simulation times of the
detailed and the reduced procedure; again we randomly choose 100 test parameters.
While the simulation times of the detailed procedure range from 1.435s to 50.535s,
those of the reduced procedure range from 0.015s to 0.244s. The mean speed-up
factor is 141.700. It further increases if the Finite Element discretization is refined.
These results meet the expectations on the efficiency of the reduction method.
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Fig. 6.6. Progress of the error of the detailed and reduced simulation and error estimator in the
iterative procedures for one random parameter on the left hand side, spreading of the error estimate
effectivity for 100 random test parameters on the right hand side.

7. Conclusion. To summarize, an efficient model reduction method for homo-
geneous domain decomposition problems was developed. A specific selection of the
parameters for the bases was investigated and demonstrated by numerical experi-
ments. Further an a-posteriori estimation of the reduction error was realized in a
reliable fashion.

The formulation of an iterative procedure aims at parallelization of the compu-
tations. Future works will focus on parallelizable domain decomposition procedures.
An extension of the methology to more general settings like heterogeneous domain
decomposition problems is striven for.

Appendix. Proof of convergence. The proof of Theorem 4.1 follows the
same lines as the proof of convergence in [14]. To start, we have to define appropri-
ate extension operators. An explicit definition of the extension operator RN,1 was
not done because this has no impact on the reduced procedure. Considering an-
other arbitrary linear and continuous extension operator R̃N,1 : XΓ

N → XN,1 it holds

(RN,1g)
Γ = (R̃N,1g)

Γ for all g ∈ XΓ
N since γ is bijective on XΓ

N,1. Furthermore, for
n ≥ 1 and v ∈ XN,2, due to Equation (3.1):

bN,un
N,1

(µ)(v;µ) = f1 (RN,1γv;µ)− a1
(

un
N,1(µ), RN,1γv;µ

)

= f1

(

(RN,1γv)
Γ
;µ
)

− a1

(

un
N,1(µ), (RN,1γv)

Γ
;µ
)

= f1

(

(

R̃N,1γv
)Γ

;µ

)

− a1

(

un
N,1(µ),

(

R̃N,1γv
)Γ

;µ

)

= f1

(

R̃N,1γv;µ
)

− a1

(

un
N,1(µ), R̃N,1γv;µ

)

.

This justifies that we define now some specific extension operator to prove the con-
vergence of the reduced iteration.

Definition A.1. Let R̃N,k,µ : XN,Γ → XN,k be defined by

R̃N,k,µg : ak

(

R̃N,k,µg, v;µ
)

= 0, ∀v ∈ X0
N,k,

R̃N,k,µg = g, on Γ.

Additionally, a norm on XΓ
N is given through

g ∈ XΓ
N : ‖g‖Γ,µ := ‖R̃N,1,µg‖1,µ
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and induced by the following inner product.

(g, ĝ)Γ,µ = a1

(

R̃N,1,µg, R̃N,1,µĝ;µ
)

.

We replace RN,1 by R̃N,1,µ in the reduced procedure and state the following equiva-
lence.

Lemma A.2. uN (µ) ∈ XN solves the reduced problem (4.1) for a given µ ∈ P
if and only if uN,1(µ) = uN (µ)|Ω1

and uN,2(µ) = uN (µ)|Ω2
are the solutions of the

following equations.

a1 (uN,1(µ), v;µ) = f1(v;µ), ∀v ∈ X0
N,1,(A.1)

a2 (uN,2(µ), v;µ) = f2(v;µ) + f1
(

R̃N,1,µγv;µ
)

−a1
(

uN,1(µ), R̃N,1,µγv;µ
)

, ∀v ∈ XN,2.(A.2)

Proof. Let uN (µ) be the solution of problem (4.1). For v ∈ X0
N,1 let v̂ be the

extension of v on Ω2 by zero. It holds v̂ ∈ XN and

a1 (uN,1(µ), v;µ) = a (uN (µ), v̂;µ) = f(v̂, µ) = f1(v;µ).

For v ∈ XN,2 let v̂ ∈ XN be the extension of v on Ω1 by R̃N,1,µγv. It holds v̂ ∈ XN

and

a2 (uN,2(µ), v;µ) = a (uN (µ), v̂;µ)− a1

(

uN,1(µ), R̃N,1,µγv;µ
)

= f(v̂;µ)− a1

(

uN,1(µ), R̃N,1,µγv;µ
)

= f2(v;µ) + f1

(

R̃N,1,µγv;µ
)

− a1

(

uN,1(µ), R̃N,1,µγv;µ
)

.

Vice versa, let uN (µ) ∈ XN be given by (A.1) and (A.2) for uN,1(µ) and uN,2(µ). For
v ∈ XN set vk := v|Ωk

, k = 1, 2. It holds

a (uN (µ), v;µ) = a1 (uN,1(µ), v1;µ) + a2 (uN,2(µ), v2;µ)

= a1

(

uN,1(µ), v1 − R̃N,1,µγv2;µ
)

+ a1

(

uN,1(µ), R̃N,1,µγv2;µ
)

+a2 (uN,2(µ), v2;µ) .

We now can apply Equation (A.2) and since v1 − R̃N,1,µγv2 ∈ X0
N,1 also Equation

(A.1).

a (uN (µ), v;µ) = f1

(

v1 − R̃N,1,µγv2;µ
)

+ f2(v2;µ) + f1

(

R̃N,1,µγv2;µ
)

= f(v;µ).

Lemma A.3. We assume that for µ ∈ P there exists a θN,min(µ) > 0 with
θnN (µ) ≥ θN,min(µ) for all n ≥ 1. If the sequence {gnN (µ)}n≥1 converges in XΓ

N , the
sequences {un

N,1(µ)}n≥1 and {un
N,2(µ)}n≥1 converge in XN,1 and XN,2, respectively.

Proof. We assume that {gnN (µ)}n≥1 converges on above assumptions and so
is a Cauchy sequence. It is sufficient to show that {un

N,k(µ)}n≥1, k = 1, 2 are
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Cauchy sequences because they live in Hilbert spaces. Due to Equation (3.1) it holds
a1(u

m
N,1(µ)− un

N,1(µ), v) = 0, ∀v ∈ X0
N,1 and therefore

‖um
N,1(µ)− un

N,1(µ)‖1,µ = ‖R̃N,1(g
m−1
N (µ)− gn−1

N (µ))‖1,µ
def
= ‖gm−1

N (µ)− gn−1
N (µ)‖Γ,µ.

The latter expression converges to zero form,n→∞ and so {un
N,1(µ)}n≥1 is a Cauchy

sequence. Rewriting (3.4) for γun
N,2(µ) gives

γun
N,2(µ) =

1

θnN (µ)
(gnN (µ)− gn−1

N (µ)) + gn−1
N (µ).

Since {1/θnN (µ)}n≥1 is assumed to be bounded, we can determine the limits of both
sides and get

lim
n→∞

γun
N,2(µ) = lim

n→∞
gn−1
N (µ).(A.3)

Then, with (3.1), (3.3) and the Cauchy-Schwarz inequality we state

∥

∥um
N,2(µ)− un

N,2(µ)
∥

∥

2,µ
= −a1

(

um
N,1(µ)− un

N,1(µ), R̃N,1,µ

(

γum
N,2(µ)− γun

N,2(µ)
)

;µ
)

≤
∥

∥um
N,1(µ)− un

N,1(µ)
∥

∥

1,µ

∥

∥γum
N,2(µ)− γun

N,2(µ)
∥

∥

Γ,µ

Because {un
N,1(µ)}n≥1 and {γun

N,2(µ)}n≥1 are Cauchy sequences, the latter term tends
to zero for n→∞.

Lemma A.4. In the case of convergence in Lemma A.3, the limits of the sequences
{un

N,k(µ)}n∈N, k = 1, 2 are uN,k(µ), k = 1, 2 of Lemma A.2.
Proof. To derive (A.1) and (A.2) take the limit n → ∞ in (3.1) and (3.3),

respectively. With (3.2) and (A.3), it follows

γuN,1(µ) = lim
n→∞

γun
N,1(µ) = lim

n→∞
gn−1
N (µ) = lim

n→∞
γun

N,2(µ) = γuN,2.

So uN (µ) ∈ XN .
For the convergence of the reduced iteration it remains to show, that the sequence

{gnN (µ)}n≥1 is convergent in XΓ
N . We define an operator T : XΓ

N → XΓ
N as follows.

XΓ
N ∋ g 7→ Tg = γw2,

w2 ∈ XN,2 : a2(w2, v;µ) = −a1
(

w1, R̃N,1,µγv;µ
)

, ∀v ∈ XN,2,(A.4)

w1 ∈ XN,1 : a1(w1, v;µ) = 0, ∀v ∈ X0
N,1,

γw1 = g.

By definition, it holds

w1 = R̃N,1,µg,

w2 = R̃N,2,µγw2 = R̃N,2,µTg.(A.5)

We now define for a θ > 0

Tθ : XΓ
N → XΓ

N : Tθg = θTg + (1− θ)g.
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Then, let gN (µ) := γuN,1(µ). With Lemma A.2 it is easy to see that

gn+1
N (µ)− gN (µ) = Tθn

N
(µ)(g

n
N (µ)− gN (µ)).(A.6)

If Tθn
N
is a contraction, gnN converges towards gN . This is the last past of the proof of

Theorem 4.1.
Lemma A.5. There exists a θ∗N (µ) ∈ (0, 1], such that {gnN (µ)}n≥1 converges

towards gN (µ) in XΓ
N , if 0 < θnN (µ) < θ∗N (µ) for all n ≥ 1.

Proof. We show that Tθ is a contraction, if θ is chosen properly. For this we
consider

‖Tθg‖
2
Γ,µ = θ2‖Tg‖2Γ,µ + 2θ(1− θ)(g, Tg)Γ,µ + (1− θ)2‖g‖2Γ,µ.(A.7)

By setting v := R̃N,2,µTg in Equation (A.4), we get together with (A.5)

(g, Tg)Γ,µ = a1

(

R̃N,1,µg, R̃N,1,µTg;µ
)

(A.8)

= −a2
(

R̃N,2,µTg, R̃N,2,µTg;µ
)

= −‖R̃N,2,µTg‖
2
2,µ.(A.9)

Inserting this in (A.7), we get

‖Tθg‖
2
Γ,µ = θ2‖Tg‖2Γ,µ − 2θ(1− θ)

∥

∥

∥R̃N,2,µTg
∥

∥

∥

2

2,µ
+ (1− θ)2‖g‖2Γ,µ.(A.10)

The norms ‖R̃N,1,µ(·)‖1,µ and ‖R̃N,2,µ(·)‖2,µ on XΓ
N are equivalent, because XΓ

N is
finite dimensional. So there exist constants σN (µ) and τN (µ), such that

∥

∥

∥R̃N,1,µg
∥

∥

∥

2

1,µ
≤ σN (µ)

∥

∥

∥R̃N,2,µg
∥

∥

∥

2

2,µ
,

∥

∥

∥R̃N,2,µg
∥

∥

∥

2

2,µ
≤ τN (µ)

∥

∥

∥R̃N,1,µg
∥

∥

∥

2

1,µ
.

With Equation (A.9) and the Cauchy-Schwarz inequality we can estimate

‖Tg‖2Γ,µ =
∥

∥

∥R̃N,1,µTg
∥

∥

∥

2

1,µ
≤ σN (µ)

∥

∥

∥R̃N,2,µTg
∥

∥

∥

2

2,µ

= −σN (µ)a1

(

R̃N,1,µg, R̃N,1,µTg;µ
)

≤ σN (µ)
∥

∥

∥R̃N,1,µg
∥

∥

∥

1,µ

∥

∥

∥R̃N,1,µTg
∥

∥

∥

1,µ

= σN (µ)‖g‖Γ,µ‖Tg‖Γ,µ.

Dividing by ‖Tg‖Γ,µ yields

‖Tg‖Γ,µ ≤ σN (µ)‖g‖Γ,µ.

We still have to estimate the second term in (A.10). Equation (A.4) with v :=
R̃N,2,µg yields a1(R̃N,1,µg, R̃N,1,µg;µ) = −a2(R̃N,2,µTg, R̃N,2,µg;µ) and together with
the Cauchy-Schwarz inequality

∥

∥

∥
R̃N,1,µg

∥

∥

∥

2

1,µ
= a1

(

R̃N,1,µg, R̃N,1,µg;µ
)

= −a2
(

R̃N,2,µTg, R̃N,2,µg;µ
)

≤
∥

∥

∥R̃N,2,µTg
∥

∥

∥

2,µ

∥

∥

∥R̃N,2,µg
∥

∥

∥

2,µ

≤
√

τN (µ)
∥

∥

∥R̃N,2,µTg
∥

∥

∥

2,µ

∥

∥

∥R̃N,1,µg
∥

∥

∥

1,µ
.
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Dividing by ‖R̃N,1,µg‖1,µ yields

∥

∥

∥
R̃N,2,µTg

∥

∥

∥

2,µ
≥

1
√

τN (µ)

∥

∥

∥
R̃N,1,µg

∥

∥

∥

1,µ
=

1
√

τN (µ)
‖g‖Γ,µ.

We now insert the obtained estimates in (A.10) and get

‖Tθg‖Γ,µ ≤ κN (θ, µ)‖g‖Γ,µ,

with

κN (θ, µ) :=

(

θ2σN (µ)2 + (1− θ)2 −
2θ(1− θ)

τN (µ)

)1/2

.

A simple calculation shows that κN (θ, µ) < 1, if 0 < θ < θ∗N (µ) with

θ∗N (µ) := min

(

1,
2(τN (µ) + 1)

σN (µ)2τN (µ) + τN (µ) + 2

)

.
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