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Sparse approximation of nonlinear functions is a challenging task that arises in many different
areas of modern computing. A key element to find sparse representations is the concept of m-term
approximation [7, 28], which basically is a measure of how well a function from a given function space
can be approximated by linearly combining m functions out of a given set from the same space. This
set can either be a basis of the considered space or a redundant (dense) system of functions, where the
latter is also called a dictionary and is considered in our work. However, direct computation of the best
m-term approximation is not possible in practice, as the computation has combinatorical complexity
dependent on the number of dictionary elements. Hence, the challenge is to find methods and algorithms
that provide near-best m-term approximations. In this work, we will consider a type of approximation
method that belongs to the family of greedy algorithms, which have already been proven to yield near-
best m-term approximations under various conditions, see e.g. [6, 7, 33, 34]. Their “greedy” nature
has its foundation in a greedy step, which determines the next dictionary element to be added to an
existing m-term approximant according to certain maximizing criteria, mostly involving residuals. Well
known criteria so far roughly distinguish between pure and weak greedy algorithms, where the true or
almost true maximum approximation “gain” is considered, respectively. An extensive survey of greedy
algorithms can be found in [33], however, greedy approximation methods appear in the literature in
different facets like matching pursuit [4, 15, 19] or greedy pursuit [36]. So far, approximation and
convergence results have been established for quite general spaces, e.g. Hilbert [7, 33] or Banach spaces
[11, 13].

Here, we will consider a special kind of approximation Hilbert space, namely reproducing kernel
Hilbert spaces (RKHS) induced by kernels, which we introduce in detail in Section 1. RKHS and kernel
methods have been applied in many different contexts like pattern recognition [30], machine learning
[29] or scattered data approximation [38]. We refer to [8] for a current review of approximation methods
with positive definite kernels and [26] for a practical guide on kernel methods and their applications.
RKHS have hence been successfully used in various contexts, and, seen as Hilbert spaces of functions,
readily allow to apply the greedy approximation theory described above. It is also evident that the
selection criteria for subsequent new dictionary elements depends on the way the m-term approximant
in any current linear subspace is computed. The most natural approach is to use orthogonal projection
with respect to the native RKHS scalar product, which guarantees the best possible approximation in
each subspace. We shall regard this approach in our work, however, note that there are more choices
e.g. using least squares [37] or orthogonal least squares [1, 3].

However, greedy algorithms in the context of RKHS have been already formulated [18, 25] and
some results on convergence have been established. In this work, we will focus on a vectorial variant of
orthogonal kernel greedy algorithms, more precisely an extension of the so-called f/P -Greedy algorithm
from [18, 3.1.1] in the spirit of [13]. We will investigate the selection criteria more closely and show
that an improved error bound and a-posteriori bounds can be obtained for the considered vectorial
greedy algorithm. For related work on vectorial greedy algorithms see [12, 14]. A vectorial regression
approach can be found in [31] or multioutput orthogonal least squares approximations are discussed
in [2].

In our field of research we apply kernel approximation methods in the context of model reduction.
Potential applications of this algorithm are projection-based model order reduction of nonlinear dy-
namical systems [21, 39] and model reduction of multiscale models, where the micro-scale model can
often be replaced by approximation of the intput-output relation between the involved scales [40].

After establishing the necessary background regarding kernels and the induced Hilbert spaces in
Section 1, Section 2 introduces our vectorial greedy algorithm. We shortly discuss computational as-
pects in Section 3 and present numerical illustrations in Section 4. We conclude with a summarizing
discussion in Section 5.

1 Preliminaries

1.1 Kernels and Reproducing Kernel Hilbert Spaces

We start with introducing the basic definitions and concepts used throughout our article. We will
indicate matrix- and vector-valued variables by bold upper- and lower-case latin letters and scalar
values by normal typesetting. Let Ω ⊂ Rd, d ∈ N be a closed domain for the rest of this work.
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Definition 1 (Kernels) A function K : Ω × Ω → R is called positive definite kernel if ∀ N ∈ N,
X = {x1, . . . ,xN} ⊂ Ω and α ∈ RN\{0} we have

N∑
i,j=1

αiαjK(xi,xj) ≥ 0.

Definition 2 (RKHS) Let Ω ⊂ Rd, K : Ω × Ω → R be a symmetric, positive definite kernel and
X ⊂ Ω.
Then we denote by

HX := 〈{K(x, ·) | x ∈ X}〉

the R-vector space spanned by all functions K(x, ·), where 〈·〉 is a shorthand for the span operation.
We equip HX with the scalar product

〈K(x, ·),K(y, ·)〉HX := K(x,y), x,y ∈ X,

which naturally extends to functions from HX . If X = {x1, . . . ,xm} for m ∈ N, HX is an at most
m-dimensional R-Hilbert space spanned by K over X.

We further denote by

H = HΩ = 〈{K(x, ·) | x ∈ Ω}〉

the Hilbert space induced by K over Ω. In fact, for each symmetric, positive definite K there is a
unique such space with the reproducing property

〈f,K(x, ·)〉H = f(x) ∀ f ∈ H,x ∈ Ω, (1)

which is why those spaces are also known as reproducing kernel Hilbert spaces (RKHS).

For a more complete characterization of RKHS we refer to [38, §10], for example. For the remainder
of this work, let K be a symmetric, positive definite and normalized (K(x,x) = 1 ∀ x ∈ Ω) kernel on
Ω with induced Hilbert space H unless explicitly defined otherwise.

Definition 3 (Kernel matrix and vector) For X = {x1, . . . ,xm} ⊂ Ω we denote by

KX :=
(
K(xi,xj)

)
ij
, i, j = 1 . . .m,

the kernel matrix of K with respect to X. The positive definiteness of a kernel K is equivalent to
positive semi-definiteness of the corresponding kernel matrix KX . Further we denote for x ∈ Ω by

kX(x) :=
(
K(x1,x), . . . ,K(xN ,x)

)T ∈ Rm

the kernel vector of K at x with respect to X. For ease of reading, we will omit the subindices KX ,kX
whenever it is clear from context.

The following Lemma shows how smoothness of a kernel inherits to the RKHS functions. The proof
is along the lines of [38, §10.6] and/or [32, Lemma 4.34].

Lemma 1 (Derivatives of RKHS functions) If K ∈ C2(Ω ×Ω), then ∂K
∂xi

(x, ·) ∈ H ∀ x ∈ Ω, i =
1 . . . d and we have

∂f

∂xi
(x) =

〈
f,
∂K

∂xi
(x, ·)

〉
H

∀ x ∈ Ω, i = 1 . . . d
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1.2 Projection and orthogonal remainders

As mentioned at the beginning, we will focus on projection of functions into subspaces to obtain the
approximants. Therefore we first introduce the projection operator for linear subspaces.

Definition 4 (Orthogonal projection operator) Let S ⊆ H be a linear subspace of H. Then the
orthogonal projection operator is denoted by

PS : H → S

f 7→ PS [f ],

such that

〈f − PS [f ], g〉H = 0 ∀ g ∈ S. (2)

Next we will show some frequently used properties of projections.

Lemma 2 Let S ⊆ H be a linear subspace of H. Then

||PS [f ]||2H = 〈f,PS [f ]〉H ∀ f ∈ H.

If further S = HX for some X = {x1, . . . ,xN} so that K is non-singular, we have

PS [f ] =

N∑
i=1

ciK(xi, ·), c = K−1f , fi = f(xi), i = 1 . . . N. (3)

Proof.

||PS [f ]||2H = 〈PS [f ],PS [f ]〉H = 〈f − (f − PS [f ]),PS [f ]〉H
= 〈f,PS [f ]〉H − 〈(f − PS [f ]),PS [f ]〉H︸ ︷︷ ︸

=0

= 〈f,PS [f ]〉H .

Equation (3) follows directly from the projection conditions (2) and the fact that PS [f ] ∈ HX . �

Remark 1 In this analytically focused work, we consider direct kernel translates as dictionary elements.
Lemma 2 shows that, under certain conditions, the projection actually means interpolation at specific
function values. It is well known that the condition of the kernel matrix can get arbitrarily bad,
even though the interpolation task itself is not unstable. Several approaches, e.g. [18, 20, 24], have
been developed since to alleviate those problems by choosing a stable basis. Proper inclusion of those
methods to formulate a stable basis of HX is future work and outside the scope of this article.

Unfortunately, due to a different scope, there have been developing two different but closely related
ways of notation in the context of greedy algorithms. Whilst the classical greedy theory [33] considers
scalar products of function residuals and dictionary elements in the greedy step selection criteria, kernel
greedy algorithms [18, 25] usually consider pointwise maxima maxx |f(x)−sf,X(x)| in the greedy step,
where sf,X is the interpolant of f on the current m − th point set X. However, this connection will
become clear using the concept of orthogonal remainders, which we will investigate in the following.

Definition 5 (Orthogonal/orthonormal remainders) Let X = {x1, . . . ,xm} ⊆ Ω, x ∈ Ω and

define ΩX := {x ∈ Ω | K(x, ·) ∈ HX}. Then we define the HX -orthogonal remainder φ̃x of K(x, ·) as

φ̃x := K(x, ·)− PHX [K(x, ·)],

and for x ∈ Ω\ΩX the HX -orthonormal remainder

φx := φ̃x

/∣∣∣∣∣∣φ̃x∣∣∣∣∣∣
H
.

The next Lemma shows some interesting properties of orthogonal/normal remainders.
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Lemma 3 (Properties for remainders) Let the conditions of Definition 5 hold and let f ∈ H.
Then

PHX⊕〈φx〉H [f ] = PHX [f ] + P〈φx〉H [f ] ∀ f ∈ H. (4)〈
f, φ̃x

〉
H

= 〈f − PHX [f ],K(x, ·)〉H = f(x)− PHX [f ](x) ∀ f ∈ H (5)

Furthermore, φ̃x is the Riesz-representant of the linear Functional δx − PHX [·](x) : H → R.

Proof. At first, if K(x, ·) ∈ HX then condition (4) holds trivially. So, assume K(x, ·) /∈ HX and
{ϕ1, . . . , ϕl} to be an orthonormal basis (ONB) ofHX . From this and the condition

〈
f − P〈φx〉[f ], φx

〉
H =

0 we get

PHX [f ] =

l∑
i=1

〈f, ϕi〉H ϕi,

P〈φx〉H [f ] = 〈f, φx〉H φx.

As φx is orthogonal to HX by definition we know that {ϕ1, . . . , ϕl, φx} is ONB of HX ⊕ 〈φx〉H and
directly obtain

PHX⊕〈φx〉H [f ] =

l∑
i=1

〈f, ϕi〉H ϕi + 〈f, φx〉H φx = PHX [f ] + P〈φx〉H [f ].

Next, equality (5) follows straightforwardly as both 〈PHX [f ], φx〉H = 0 = 〈f − PHX [f ],PHX [K(x, ·)]〉H
by projection properties:〈

f, φ̃x

〉
H

=
〈
f − PHX [f ], φ̃x

〉
H

= 〈f − PHX [f ],K(x, ·)− PHX [K(x, ·)]〉H
= 〈f − PHX [f ],K(x, ·)〉H = f(x)− PHX [f ](x).

Finally, the Riesz representation directly follows from (5). �

So, Lemma 3 allows to show the connection between both ways of notation, which is established
mainly via the reproducing property of the RKHS. In equation (5) we see the scalar product of f
with a dictionary element K(x, ·) in the spirit of general greedy algorithms, but also the pointwise
difference f(x)−PHX [f ](x), which is the same as f(x)− sf,X(x) by Lemma 2 for nonsingular kernel

matrices. The expression 〈f, φ̃x〉H is equivalent to both, but isolates the f -dependency nicely by using
a modified dictionary element, i.e. the orthogonal remainder of K(x, ·).

Remark 2 For any X ⊂ Ω and x ∈ Ω\ΩX the orthogonal remainder φ̃x actually corresponds to the
direct translate KP (x, ·) of the Power-Kernel KP , see [16, 17].

1.3 The f/P -Greedy algorithm

In order to establish the link to the formalism of the f/P -Greedy algorithm [18], we show the relation
of orthogonal remainders to the concept of power functions.

Proposition 1 (Power function and orthogonal remainders) If for X = {x1, . . . ,xN} ⊂ Ω the
kernel matrix K is nonsingular, then ∣∣∣∣∣∣φ̃x∣∣∣∣∣∣

H
= PK,X(x), (6)

where PK,X(x) denotes the power function defined by (see [38, 11.2] or [18, 2.2.11])

PK,X(x)2 := K(x,x)− 2

N∑
i=1

ui(x)K(x,xi) +

N∑
i,j

ui(x)uj(x)K(xi,xj),

where ui, i = 1 . . . N denotes the Lagrange-Basis of HX satisfying ui(xj) = δij.
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Proof. The Lagrange-Basis is given by

uj(x) =

N∑
i=1

βjiK(xi,x),

where the condition ui(xj) = δij is satisfied when Kβj = ej , i.e. βj = (K−1)j . Next, using the kernel

column vector shorthand k(x) =
(
K(x,x1), . . . ,K(x,xN )

)T ∈ RN and Lemma 2 we see that

PHX [K(x, ·)] =

N∑
j=1

(K−1)Tj k(x)K(xj , ·) =

N∑
j=1

N∑
i=1

K−1ij K(x,xi)K(xj , ·)

=

N∑
i=1

K(x,xi)

N∑
j=1

K−1ij K(xj , ·) =

N∑
i=1

K(x,xi)uj .

By definition of φ̃x this yields∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2
H

=
〈
φ̃x, φ̃x

〉
H

= 〈K(x, ·)− PHX [K(x, ·)],K(x, ·)− PHX [K(x, ·)]〉H

=

〈
K(x, ·)−

N∑
i=1

ujK(x,xi),K(x, ·)−
N∑
i=1

ujK(x,xi)

〉
H

= PK,X(x)2,

showing (6). �

For more background on power functions see e.g. [4, 18, 23, 38]. Even though both concepts are
closely related, we will use the notion of orthogonal remainders as it will prove useful in our algorithm
analysis.

With the necessary background established, we now state the scalar f/P -Greedy algorithm [18,
3.1.1] using the adopted notation in Algorithm 1. The equivalency in (7) the can be easily verified

Algorithm 1 f/P -Greedy algorithm

Let f ∈ H and define X0 := ∅, f0 := 0 and for m > 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

|f(x)− fm(x)|
PK,Xm(x)

= arg max
x∈Ω\ΩXm−1

∣∣∣〈f, φm−1
x

〉
H

∣∣∣ , (7)

Xm := Xm−1 ∪ {xm},
fm := PHXm [f ],

where φmx denotes the orthonormal remainder of K(x, ·) with respect to Xm for any m,x.

using Proposition 1 and Lemma 3.

2 Vectorial kernel orthogonal greedy algorithm

As mentioned in the introduction, we want to consider approximations of functions from vectorial
RKHS. Before we can state our vectorial greedy algorithm, we introduce the vectorial kernel spaces
we will be dealing with.

Definition 6 (Vectorial Hilbert Spaces) Let q ∈ N. Then we denote by

Hq := {f : Ω → Rq | fj ∈ H, j = 1 . . . q}
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the function space of vectorial functions from H which we equip with the canonical scalar product and
norm

〈f, g〉Hq :=

q∑
j=1

〈fj , gj〉H , ||f ||Hq =
√
〈f, f〉Hq =

√√√√ q∑
j=1

||fj ||2H

For this type of vectorial spaces, it is clear that any scalar greedy approximation strategy can be
straightforwardly applied to each component function fj for some f ∈ Hq. But if one does not somehow
connect the extension choices over the different component functions, the algorithms will most likely
produce different subspaces HXj for each component fj , leading to q disjoint kernel expansions in the
worst case. This will be computationally infeasible, so the first and most obvious choice is to force all
component approximations to stem from one global approximation subspace, i.e. fj ∈ HX ∀ j for some
base space HX . This restriction is given if we use the following vectorial projection operator on Hq.

Definition 7 (Vectorial component-wise projection operator) Let S ⊆ H be a linear subspace
and q ∈ N. Then we define the vectorial orthogonal projection operator

PqS : Hq → Sq

f 7→ (PS [fj ])j , j = 1 . . . q.

It is easily verifiable that for this definition we have 〈f − PqS [f ], g〉Hq = 0 ∀ g ∈ Sq as

Sq = 〈{eig | i = 1 . . . q, g ∈ S}〉 ,

with ei denoting the i-th unit vector in Rq.

Consequently, Algorithm 1 can be formulated straightforwardly also in the vectorial context, which
is done in Algorithm 2.

Algorithm 2 Vectorial f/P -Greedy

Let q ∈ N and f ∈ Hq, define X0 := ∅,f0 := 0 and for m > 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

∣∣∣〈f , φ̃m−1
x

〉
Hq

∣∣∣ , (8)

Xm := Xm−1 ∪ {xm}, (9)

fm := PqHXm [f ], (10)

where φ̃m−1
x ∈ Hq denotes the vectorial repetition of φ̃m−1

x , i.e. (φ̃m−1
x )i = φ̃m−1

x , i = 1 . . . q.

An important feature of the scalar f/P -Greedy algorithm is that each extension step maximizes
the H-norm of PHX [f ] (the interpolant in [18, 3.1.4], see also [27, Thm 6.], [5]), which is equiva-
lent to achieving the largest possible “gain” in approximation due to the orthogonality conditions
||PHX [f ]||2H = ||f ||2H − ||f − PHX [f ]||2H. This aspect is not taken into account by the vectorial greedy
algorithms proposed in [12, 13], which pursue a vectorial greedy search in the fashion of the standard
scalar f -Greedy variant. However, it remains to verify that the canonical vectorial selection criteria of
Algorithm 2 inherits this property. The concept of a gain function will prove useful in this context.

Definition 8 (Gain function) Let X = {x1, . . . ,xm} ⊆ Ω and f ∈ Hq. Then we denote the vectorial
gain function with respect to X and f by

GX,f : Ω\ΩX → R, (11)

x 7→
q∑
j=1

〈fj , φx〉2H ,

where φx denotes the orthonormal remainder of K(x, ·) with respect to X.
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For our choice of vectorial RKHS, the following Lemma characterizes the Hq-norm maximizing
aspect of the f/P -Greedy algorithm using the gain function.

Lemma 4 (Locally optimal vectorial subspace extension) Let f ∈ Hq, X = {x1, . . . , xm} ⊆ Ω,
q ∈ N and x ∈ Ω\ΩX . Then∣∣∣∣∣∣f − PqHX⊕〈K(x,·)〉[f ]

∣∣∣∣∣∣2
Hq

=
∣∣∣∣f − PqHX [f ]

∣∣∣∣2
Hq −GX,f (x), (12)

where fj ∈ H denotes the j − th component function of f ∈ Hq.

Proof. At first we note that in fact HX ⊕ 〈K(x, ·)〉 = HX ⊕ 〈φx〉, which follows directly from the
definition of φx as PHX [K(x, ·)] ∈ HX . Moreover, for an f ∈ H we have P〈φx〉[f ] = 〈f, φx〉H φx by
(2). Then using Lemma 2 and 3 we deduce∣∣∣∣f − PHX⊕〈K(x,·)〉[f ]

∣∣∣∣2
H =

∣∣∣∣f − PHX⊕〈φx〉[f ]
∣∣∣∣2
H

=
∣∣∣∣f − PHX [f ]− P〈φx〉[f ]

∣∣∣∣2
H

= ||f − PHX [f ]||2H − 2
〈
f − PHX [f ],P〈φx〉[f ]

〉
H +

∣∣∣∣P〈φx〉[f ]
∣∣∣∣2
H

= ||f − PHX [f ]||2H − 2
〈
f,P〈φx〉[f ]

〉
H

− 2
〈
PHX [f ],P〈φx〉[f ]

〉
H︸ ︷︷ ︸

=0

+
〈
f,P〈φx〉[f ]

〉
H

= ||f − PHX [f ]||2H − 〈f, φx〉
2
H

Using the definition of Pq and GX,f we obtain∣∣∣∣∣∣f − PqHX⊕〈K(x,·)〉[f ]
∣∣∣∣∣∣2
Hq

=

q∑
j=1

∣∣∣∣fj − PHX⊕〈K(x,·)〉[fj ]
∣∣∣∣2
H

=

q∑
j=1

||fj − PHX [fj ]||2H − 〈fj , φx〉
2
H

= ||f − PHX [f ]||2Hq −GX,f (x).

�

Since the projection into a linear subspace always gives the best possible approximation in that
space, a direct consequence is the following Corollary.

Corollary 1 Let the conditions from Lemma 4 hold. Then

inf
x∈Ω\ΩX

min
g∈(HX⊕〈K(x,·)〉)q

||f − g||2Hq = C − sup
x∈Ω\ΩX

GX,f (x)

with C := ||f − PHX [f ]||2Hq .

So, in fact, any x ∈ Ω\ΩX that yields the best approximation in HX∪{x} (or largest possible gain
with respect to the Hq-norm) also maximizes GX,f . Consequently, we state in Algorithm 3 a modified
variant of Algorithm 2, which we will consider for the rest of this work. We note here that in Algorithm
3 is closely related to the vectorial vector greedy algorithm “WSOGA2” introduced in [13, §3, (3.4)],
with the difference of having a gain-maximizing extension selection instead of maximizing element
selection. We will compare those algorithms in Section 4.

A recursive application of Lemma 4 yields the following result on the error decay and a Parseval-type
identity.

Corollary 2 Then the Hq-approximation error is monotoneously decreasing and we have the identity

||f − fm||2Hq = ||f ||2Hq −
m∑
i=1

q∑
j=1

〈
fj , φ

i−1
xi

〉2
H = ||f ||2Hq −

m∑
i=1

GXi−1,f (xi), ∀ m > 0.
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Algorithm 3 Vectorial kernel orthogonal greedy algorithm (VKOGA)

Let q ∈ N and f ∈ Hq, define X0 := ∅,f0 := 0 and for m > 0 the sequences

xm := arg max
x∈Ω\ΩXm−1

GXm−1,f (x) = arg max
x∈Ω\ΩXm−1

q∑
j=1

〈
fj , φ

m−1
x

〉2
H
, (13)

Xm := Xm−1 ∪ {xm}, (14)

fm := PqHXm [f ]. (15)

2.1 Algorithm analysis

Until now we have only considered points x ∈ Ω\ΩX for possible extension of HX via the induced
kernel translate K(x, ·). So far in literature, it remains unanswered what happens in the vicinity of
points x ∈ ΩX . In numerical applications, one always works on discrete sets of points and hence this
issue if of less importance. However, it is of general analytical interest to determine the behaviour of
the selection criteria (13) for cases where x → y ∈ ΩX . More precise, in this work we want to put
some effort into analyzing the behaviour of GX,f in the neighborhood of ΩX .

The following Theorem yields an explicit expression for the limit functions φx when x→ y ∈ ΩX .
Assuming at least C2-smoothness of K (C1 w.r.t. each argument), it turns out that the limits in these
cases can be described by orthonormal remainders of directional derivatives of K(x, ·).

Theorem 1 (Directional limit of orthonormal remainders) Let K ∈ C2(Ω × Ω) and X =
{x1, . . . ,xN} ⊂ Ω so that the kernel matrix K is nonsingular. Further choose x ∈ ΩX . Then ∀ v ∈ Rd
we have

lim
h→0

φx+hv = φ∇vx ∈ H (16)

with

φ∇vx :=

{
φ̃∇vx

/∣∣∣∣∣∣φ̃∇vx

∣∣∣∣∣∣
H

, φ̃∇vx 6= 0

0 , else
, φ̃∇vx := vT∇1K(x, ·)− PHX [vT∇1K(x, ·)],

where ∇1 denotes the gradient operator w.r.t. the first argument.

Proof. Fix v. By Lemma 1 we know that vT∇1K(x, ·) ∈ H. Further, as K(x, ·) ∈ HX , Lemma 2 /
(3) with f = K(x, ·) gives

K(x, ·) =

N∑
j=1

(K−1)Tj k(x)K(xj , ·), (17)

where Kj denotes the j-th column of K. Note that for x = xk, k ∈ {1 . . . N}, equation (17) simplifies
to (K−1)Tj k(xk) = δjk as k(xk) = Kk. Now, for h > 0, the first order multivariate Taylor series of K
at x gives

K(x+ hv, ·) = K(x, ·) + hvT∇1K(x, ·) +O
(
h2C(x, ·)

)
, (18)

where C(x, ·) is independent of h, which we will thus omit in the following. Next, with the shorthand

∇K(x) =
(
∇1K(x,x1) . . .∇1K(x,xN )

)
∈ Rd×N ,

equation (18) directly gives the representation

k(x+ hv) = k(x) + h∇K(x)Tv +O
(
h2
)
,
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and together with (3) and (17) we see that

PHX [K(x+ hv, ·)] =

N∑
j=1

(K−1)Tj k(x+ hv)K(xj , ·)

=

N∑
j=1

(K−1)Tj
(
k(x) + h∇K(x)Tv

)
K(xj , ·) +O

(
h2
)

= K(x, ·) + h

N∑
j=1

(K−1)Tj ∇K(x)TvK(xj , ·) +O
(
h2
)

= K(x, ·) + h

N∑
j=1

(K−1)Tj

v
T∇1K(x,x1)

...
vT∇1K(x,xN )

K(xj , ·) +O
(
h2
)

= K(x, ·) + hPHX [vT∇1K(x, ·)] +O
(
h2
)

Using (18) again we obtain the representation

φ̃x+hv = K(x+ hv, ·)− PHX [K(x+ hv, ·)] (19)

= hvT∇1K(x, ·)− PHX [vT∇1K(x, ·)] +O
(
h2
)

= hφ̃∇vx +O
(
h2
)

Now if φ̃∇vx 6= 0 we see (16) by

lim
h→0

φx+hv = lim
h→0

φ̃x+hv∣∣∣∣∣∣φ̃x+hv∣∣∣∣∣∣
H

= lim
h→0

φ̃∇vx +O (h)∣∣∣∣∣∣φ̃∇vx

∣∣∣∣∣∣
H

+O (h)
= φ∇vx .

�

Now, Theorem 1 allows to draw interesting conclusions with regard to the situations where x ∈ ΩX ,
i.e. K(x, ·) ∈ HX . At first we see that for any X = {x1, . . . ,xN},x ∈ ΩX ,v ∈ Rd and f ∈ Hq we have

lim
h→0

GX,f (x+ hv) =

q∑
j=1

〈
fj , φ

∇v
x

〉2
H .

The resulting limit value depends on the direction v from which the limit is taken, which implies that
GX,f cannot be continuously extended on Ω in general. To illustrate the occuring discontinuities, Fig-
ure 1 shows the values of 〈f, φx〉H (which corresponds to GX,f in q = 1 dimensions without the squared
scalar product) for the test settings q = 1, Ω = [−4, 4]2, X = {(0, 1), (−0.5, 0), (2,−1), (−1, 3), (−1.5,−3)}
and a suitable f ∈ H. The discontinuities are clearly recognizable around any point x ∈ X, which are
marked by red dots. Furthermore, for each v ∈ Rd equation (12) now reads as

lim
h→0

∣∣∣∣∣∣f − PqHX⊕〈K(x+hv,·)〉[f ]
∣∣∣∣∣∣2
Hq

=
∣∣∣∣f − PqHX [f ]

∣∣∣∣2
Hq −

q∑
j=1

〈
fj , φ

∇v
x

〉2
H , ∀ f ∈ Hq.

Hence, the possible different φ∇vx at any x ∈ ΩX imply that the limit of the left hand side also differs
with changing v. This raises the question about the projection limit as h → 0, which is answered
satisfactory by the following corollary.

Corollary 3 Let the conditions from Theorem 1 hold and let f ∈ Hq. Then we have

lim
h→0
PqHX⊕〈K(x+hv,·)〉[f ] = PqHX⊕〈vT∇1K(x,·)〉[f ].
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Fig. 1 Example of 〈f, φx〉H on Ω\ΩX . Red dots: X

Proof. Using the relation (19) we obtain for each component function fj , j = 1 . . . q that

PHX⊕〈K(x+hv,·)〉[fj ] = PHX [fj ] + P〈φ̃x+hv〉[fj ] = PHX [fj ] +

〈
fj , φ̃x+hv

〉
H∣∣∣∣∣∣φ̃x+hv∣∣∣∣∣∣2
H

φ̃x+hv

= PHX [fj ] +

〈
fj , φ̃

∇v
x

〉
H∣∣∣∣∣∣φ̃∇vx

∣∣∣∣∣∣2
H

φ̃∇vx +O
(
h2
)

= PHX [fj ] + P〈φ̃∇vx 〉
[fj ] +O

(
h2
)

= PHX⊕〈vT∇1K(x,·)〉[fj ] +O
(
h2
)
.

Taking the limit h→ 0 and recalling the component-wise action of Pq finishes the proof. �

Remark 3 The expression PqHX⊕〈vT∇1K(x,·)〉[f ] actually corresponds to a simultaneous, component-

wise directional Hermite interpolation in Hq since〈
fj ,v

T∇1K(x, ·)
〉
H = vT∇1fj(x), j = 1 . . . N,

which can be easily verified using Lemma 1. Interestingly enough, this means that the closer a con-
sidered point approaches an already included one from the direction v, the “direct extension” gain is
converging towards the gain that would be achieved adding the directional derivative vT∇1K(x, ·) to
HX .

We conclude our analysis of GX,f with the following Theorem.

Theorem 2 (Gain function characterization) Let X = {x1, . . . ,xm} ⊆ Ω and f ∈ Hq. Then
GX,f is continuous on Ω\ΩX and ∀ x ∈ ΩX exists a neighborhood of x on which GX,f is bounded.

Proof. Let x ∈ Ω\ΩX . Then for any v ∈ Rd a similar argumentation with Taylor series as in the proof
of Theorem 1 shows that

lim
h→0
||φx − φx+hv||H = 0,

from which we obtain continuity as limy→xGX,f (y) = GX,f (x). Next, for x ∈ ΩX and an ε with
Bε (x) ⊂ Ω we see that

sup
v∈Bε(0)

lim
h→0

GX,f (x+ hv) = sup
v∈Bε(0)

q∑
j=1

〈
fj , φ

∇v
x

〉2
H ≤ sup

v∈Bε(0)

q∑
j=1

||fj ||2H
∣∣∣∣φ∇vx

∣∣∣∣2
H = ||f ||2Hq <∞,

which shows the boundedness. �
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The most important conclusion from the above analysis for applications is, that the gain function
GX,f does not have any poles. This boundedness allows to actually obtain an analytic maxima in
(13), presuming a suitable extension of GX,f onto Ω. Furthermore, should it occur that the maximum
of GX,f is achieved at some x ∈ ΩX for suitable v ∈ Rd, this means that the extension of HX
with vT∇1K(x, ·) yields a better improvement than inclusion of any direkt kernel translate K(x, ·).
However, in practical applications of this algorithm we yet consider only direct kernel translates for
inclusion. This is why we will assume for the remainder of this work to extend GX,f onto Ω by setting
GX,f (x) := 0 ∀ x ∈ ΩX .
Remark 4 If in the context of Theorem 1 K is actually induced by a radial basis function φ via
K(x,y) = φ(||x− y||), we directly obtain

gx := φ′(||x− ·||)
〈
v,

x− ·
||x− ·||

〉
−

N∑
j=1

K(xj , ·)
N∑
i=1

K−1ij φ
′(||x− xi||)

〈
v,

x− xi
||x− xi||

〉
,

with K−1ij denoting the ij-th entry of K−1. It is interesting to see that, for all directions that are free

of any part towards the other centers (i.e. v ⊥ x − xi for all i), the contribution of the projection
vanishes completely.

Remark 5 If we assume d = 1 in the context of Proposition 2, then the limit of φx for x→ x̃ ∈ ΩX is
unique and GX,f is continuous on Ω ∀ f ∈ H.

2.2 Convergence analysis

In this Section we want to investigate the convergence behaviour of Algorithm 3, where we will prove a
slightly improved convergence bound similar to the one established in [13] with a yet simplified proof.
Note that this type of convergence rate stems from the more general theory of greedy algorithms
in vectorial Hilbert/Banach spaces [13, 14]. On the other hand, there are various results for greedy
algorithm convergence/approximation error bounds in the scalar setting for RKHS, which usually
involve the concept of a fill distance, see [18, 22, 38] to name a few. Due to their generality, the
foremost mentioned Temlyakov-style error bounds are often too conservative, while the fill distance-
related bounds provide excellent convergence rates in many situations. However, the latter also suffer
from the condition that a sufficiently small fill distance is hard to achieve in practice. Hence, it remains
an open question if this “gap” can be closed in the future, as the practical convergence rates of kernel
greedy algorithms are mostly much faster than the Temlyakov-bounds.

We will need some auxiliary lemmata before we can state our convergence results. The following
Lemma was stated first in [35, 3.1] with proof in [6, Lemma 3.4], however as the referred proof is only
similar we state it here for completeness.

Lemma 5 (Lemma 3.1 from [35]) Let M > 0, tm, am ≥ 0 be non-negative sequences satisfying
a0 ≤M, am+1 ≤ am(1− tm+1

am
M ). Then

am ≤M

(
1 +

m∑
k=1

tk

)−1
∀ m ≥ 0 (20)

Proof. If we have am0
= 0 for an m0 ≥ 0 we have am = 0 ∀ m ≥ m0 and thus (20) holds trivially. So

assume am 6= 0 for all m ≥ 0 and we continue by induction. Then for m = 0 equation (20) is given by
prerequisite. The induction step m→ m+ 1 can then be performed using the third binomial formula
(1− b)(1 + b) = 1− b2 ≤ 1 and the prerequisites:

a−1m+1 ≥ a−1m
(

1− tm+1
am
M

)−1
≥ a−1m (1 + tm+1

am
M

)

= a−1m +
tm+1

M
≥ 1

M

(
1 +

m∑
k=1

tk

)
+
tm+1

M

=
1

M

(
1 +

m+1∑
k=1

tk

)
.
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�

Lemma 6 (Vectorial young’s inequality) Let an ∈ R, n ∈ N be an arbitrary sequence. Then(
n∑
i=1

ai

)2

≤ n
n∑
i=1

a2i ∀ n ∈ N. (21)

Proof. Case n = 1 holds trivially. So (21) hold for n ∈ N arbitrary but fixed. By the third binomial
formula or young’s inequality for products and exponent 2 we have 2ab ≤ a2 + b2 ∀ a, b ∈ R. Applying
this n times gives (

n+1∑
i=1

ai

)2

=

n+1∑
i,j

aiaj =

n∑
i,j

aiaj + 2

n∑
i=1

aian+1 + a2n+1

=

(
n∑
i=1

ai

)2

+ 2

n∑
i=1

aian+1 + a2n+1

≤ n
n∑
i=1

a2i +

n∑
i=1

(a2i + a2n+1) + a2n+1

= n

n∑
i=1

a2i +

n∑
i=1

a2i + (n+ 1)a2n+1

= (n+ 1)

(
n∑
i=1

a2i + a2n+1

)
= (n+ 1)

n+1∑
i=1

a2i

�

A key aspect of the Temlyakov-type estimations is to consider a certain subclass of functions

HqM :=

{
f ∈ Hq

∣∣∣∣∣ fj =

∞∑
k=0

αjkK(xk, ·),
∞∑
k=0

|αjk| ≤M, j = 1 . . . q

}

for M > 0. It is easy to see that especially ||f ||Hq ≤ M ∀ f ∈ HqM . For more background on this
methodology we refer to [6, §3].

Theorem 3 (Convergence rates of the VKOGA algorithm) Let the conditions of Algorithm 3
hold and let M > 0. Then for any f ∈ HqM , fm converges to f no slower than

||f − fm||Hq ≤
√
qM

(
1 +

m

q

)− 1
2

, m ≥ 0 (22)

Further, with the definition

cm := max
x∈Ω

φ̃m−1x (x) = max
x∈Ω

∣∣∣∣∣∣φ̃m−1x

∣∣∣∣∣∣2
H
, m > 0

we obtain the a-posteriori convergence bound

||f − fm||Hq ≤
√
qM

(
1 +

1

q

m∑
k=1

1

ck

)− 1
2

, m ≥ 0 (23)
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Proof. Since cm ≤ 1 ∀ m > 0 by Lemma 3 we obtain the a-priori bound (22) from (23) by setting
cm := 1 ∀ m > 0, which leaves us to prove (23). First, using Lemma 3 we see for j = 1 . . . q that∣∣∣∣fj − fm−1j

∣∣∣∣2
H =

〈
fj − fm−1j , fj − fm−1j

〉
H =

〈
fj , fj − fm−1j

〉
H

=

∞∑
k=1

αjk
〈
K(xk, ·), fj − fm−1j

〉
H

≤
∞∑
k=1

|αjk|
∣∣∣〈fj , φ̃m−1xk

〉
H

∣∣∣
≤
∞∑
k=1

|αjk|max
x∈Ω

∣∣∣〈fj , φ̃m−1x

〉
H

∣∣∣
≤M max

x∈Ω

∣∣∣〈fj , φ̃m−1x

〉
H

∣∣∣ .
Now, Lemma 2 gives∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2

H
= ||K(x, ·)− PHX [K(x, ·)]||2H = 1− 〈K(x, ·),PHX [K(x, ·)]〉H ≤ 1,

and together with Lemma 6 (twice) we estimate the vectorial gain term as

GXm−1,f (xm) = max
x∈Ω

GXm−1,f (x) = max
x∈Ω\ΩXm−1

GXm−1,f (x)

= max
x∈Ω\ΩXm−1

q∑
j=1

1∣∣∣∣∣∣φ̃m−1x

∣∣∣∣∣∣2
H

〈
fj , φ̃

m−1
x

〉2
H
≥ max

x∈Ω\ΩXm−1

1

cm

q∑
j=1

〈
fj , φ̃

m−1
x

〉2
H

≥ 1

cm
max

x∈Ω\ΩXm−1

max
j=1...q

〈
fj , φ̃

m−1
x

〉2
H

=
1

cm
max
j=1...q

max
x∈Ω\ΩXm−1

〈
fj , φ̃

m−1
x

〉2
H

=
1

√
qcm

(
q max
j=1...q

max
x∈Ω\ΩXm−1

〈
fj , φ̃

m−1
x

〉4
H

) 1
2

≥ 1
√
qcm

(
q∑
j=1

max
x∈Ω\ΩXm−1

〈
fj , φ̃

m−1
x

〉4
H

) 1
2

≥ 1
√
qcm

1

q

(
q∑
j=1

max
x∈Ω\ΩXm−1

〈
fj , φ̃

m−1
x

〉2
H

)2
 1

2

=
1

qcm

q∑
j=1

max
x∈Ω\ΩXm−1

〈
fj , φ̃

m−1
x

〉2
H
≥ 1

qcm

q∑
j=1

∣∣∣∣fj − fm−1j

∣∣∣∣4
H

M2

≥ 1

qM2cm

1

q

(
q∑
j=1

∣∣∣∣fj − fm−1j

∣∣∣∣2
H

)2

=
1

q2M2cm

∣∣∣∣f − fm−1∣∣∣∣4Hq .
Using Lemma 4, we see that

||f − fm||2Hq =
∣∣∣∣f − fm−1∣∣∣∣2Hq −GXm−1,f (xm)

≤
∣∣∣∣f − fm−1∣∣∣∣2Hq − 1

q2M2cm

∣∣∣∣f − fm−1∣∣∣∣4Hq
=
∣∣∣∣f − fm−1∣∣∣∣2Hq

(
1−

1
qcm

∣∣∣∣f − fm−1∣∣∣∣2Hq
qM2

)
.
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Further, with fj ∈ HM we have

∣∣∣∣f − f0∣∣∣∣2Hq = ||f ||2Hq =

q∑
j=1

||fj ||2H ≤
q∑
j=1

M2 = qM2.

Finally, applying Lemma 5 with am = ||f − fm||2Hq , a0 ≤ qM2 and tm := 1
qcm

gives

||f − fm||2Hq ≤ qM
2

(
1 +

m∑
k=1

1

qck

)−1
∀ m ∈ N,

and hence (23). �

3 Computational aspects

Before we present some numerical experiments we make some remarks on computational aspects of the
VKOGA algorithm. The straightforward approach is, for any given set of points X, to use the standard
basis of translates {K(x1, ·), . . . ,K(xN , ·)} of HX to obtain the projection via solving the system
Kc = f|X . However, it is well known that this “RBF-Direct” method suffers from ill conditioned kernel
matrices K, especially for point distributions with small distances. In order to alleviate those problems
several approaches like preconditioning techniques [24] or RBF-QR [9, 10] have been developed, to name
a few. However, in this work we will use the Newton basis formulated recently in [20].

Definition 9 (Newton-Basis of HX) Let X = {x1, . . . ,xm} ⊆ Ω so that HX is m-dimensional.
Then the Newton basis N1, . . . , Nm of HX is given by the recursion

N1 :=
K(x1, ·)√
K(x1,x1)

, Ñj = K(xj , ·)−
j−1∑
i=1

Ni(xi)Ni, Nj =
Ñj∣∣∣∣Ñj∣∣∣∣H , j = 2 . . .m. (24)

and satisfies

〈Ni, Nj〉H = δij . (25)

Condition (25) is easily verified by induction. With this basis a stable computation of the projection
at each greedy step is possible, without having to touch any previously computed coefficients again.
Next we state the representations of the involved quantities with respect to the Newton basis and refer
to [20] for more details on this approach.

Lemma 7 (Newton basis representations) Let N1, . . . , Nm be the Newton-Basis of HX and f ∈
H. Then

PHX [f ] =

m∑
i=1

〈f,Ni〉HNi, (26)

PHX [K(x, ·)] =

m∑
i=1

Ni(x)Ni, (27)

∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2
H

= K(x,x)−
m∑
i=1

N2
i (x) (28)

Proof. From the projection conditions (2) and (25) we immediately obtain (26). Equation (27) is a
special case of (26) for f = K(x, ·).
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Using (27) and Lemma 2 gives (28) via∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2
H

= 〈K(x, ·)− PHX [K(x, ·)],K(x, ·)− PHX [K(x, ·)]〉H

= K(x,x)− 2PHX [K(x, ·)](x) + ||PHX [K(x, ·)]||2H

= K(x,x)− PHX [K(x, ·)](x) = K(x,x)−
m∑
i=1

N2
i (x).

�

Finally the following Proposition states how the VKOGA Algorithm can be computed efficiently using
the Newton basis.

Proposition 2 (Computation of VKOGA with Newton-Basis) For m = 1 set

x1 := arg max
x∈Ω

G∅,f (x) = arg max
x∈Ω

q∑
j=1

fj(x)2,

c1 := (〈f1, N1〉H , . . . , 〈fq, N1〉H)T =
√
K(x1,x1)

−1
(f1(x), . . . , fq(x))T ∈ Rq.

Then, at the m > 1-th iteration with given x1, . . . ,xm−1, c1, . . . , cm−1 we define

xm := arg max
x∈Ω\ΩXm−1

∣∣∣∣∣
∣∣∣∣∣f(x)−

m−1∑
i=1

ciNi(x)

∣∣∣∣∣
∣∣∣∣∣
2

2

(
K(x,x)−

m−1∑
i=1

N2
i (x)

)−1
, (29)

cm :=

〈f1, Nm〉H...
〈fq, Nm〉H

 =
f(xm)−

∑m−1
i=1 ciNi(xm)(

K(xm,xm)−
m−1∑
i=1

N2
i (xm)

) 1
2

∈ Rq. (30)

Proof. With Lemma 7 we see (29) by

GXm−1,f (x) =

q∑
j=1

〈
fj , φ̃x

〉2
H∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2

H

=

∣∣∣∣f(x)− fm−1(x)
∣∣∣∣2
2∣∣∣∣∣∣φ̃x∣∣∣∣∣∣2

H

=

∣∣∣∣∣∣f(x)−
∑m−1

i=1 ciNi(x)
∣∣∣∣∣∣2
2

K(x,x)−
m∑
i=1

N2
i (x)

In order to see (30) we note that

∣∣∣∣Ñm∣∣∣∣2H = K(xm,xm)−
m−1∑
i=1

N2
i (xm),

〈fj , Nm〉H =

〈
fj , Ñm

〉
H∣∣∣∣Ñm∣∣∣∣H =

fj(xm)−
∑m−1

i=1 〈fj , Ni〉HNi(xm)(
K(xm,xm)−

m−1∑
i=1

N2
i (xm)

) 1
2

.

�

Note that the final approximant fm will have the structure (26). In order to evaluate the expansion
using the direct translate basis, the triangular matrix with values of the computed m Newton basis
functions at the selected points Xm can be used to obtain the corresponding coefficients [20].

Remark 6 (Connection to remainders) In the context of Proposition 2 we actually have φ̃xm = Ñm
and consequently φxm = Nm. This means that the orthonormal remainders in each step directly state
all possible candidates of new Newton basis functions.
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Algorithm 4 WSOGA2

Let K be a symmetric, positive definite and normalized kernel spanning the RKHS H on a closed Ω ⊂ Rd.
Further let f ∈ Hq, define X0 := ∅,f0 := 0 and for m > 0 the sequences

xm = arg max
x∈Ω

q∑
j=1

〈
fj − fm−1

j ,K(x, ·)
〉2
H

(31)

Xm := Xm−1 ∪ {xm},
fm := PqHXm [f ].

4 Numerical illustrations

As mentioned earlier, Algorithm 3 describes an algorithm similar to the vectorial algorithms presented
in [13, §3], especially the variant “WSOGA2” at (3.4). We state it here fitted to our RKHS setting.

Remark 7 In the context of Algorithm 4 we have monotonicity of Hq error decay and the same a-priori
convergence rate as for Algorithm 3 can be shown to apply. Note here that the proof of convergence
rates of the WSOGA2-Algorithm has already been performed (in a more general setting) in [13],
albeit using a different technique and obtaining a convergence rate which is a factor of

√
q slower.

Furthermore, xm is chosen using the maximum local L2 pointwise approximation error in the sense of

xm = arg max
x∈Ω
||f(x)− fm(x)||22 . (32)

4.1 Analytical comparison of VKOGA and WSOGA2

Before we present some illustrating experimental results, we perform an analytical comparison and
show how this can be interpreted. Let X ⊂ Ω be given and denote by xo,xc the subspace extension
choices the Algorithms 3 and 4, respectively. Then we see that

q∑
j=1

〈
fj − fm−1j ,K(xc, ·)

〉2
H =

q∑
j=1

〈
fj , φ̃xc

〉2
H
≤

q∑
j=1

〈fj , φxc〉2H

≤ max
x∈Ω

q∑
j=1

〈fj , φx〉2H = GX,f (xo)

by the selection criteria definitions. This means the VKOGA algorithm will locally always make as
good a choice as the WSOGA2 algorithm. Unfortunately, as the successive spaces constructed by both
algorithms will in general be different, it remains an open question to us if we can and how to compare
the performance of both variants directly at some given subspace size m > 0. However, with the help
of Lemma 3, the VKOGA extension choice criteria can also be written as

max
x∈Ω

q∑
j=1

〈
fj , φ

m−1
x

〉2
H = max

x∈Ω\ΩXm−1

||f(x)− fm(x)||22∣∣∣∣K(x, ·)− PHXm−1 [K(x, ·)]
∣∣∣∣2
H

Since the numerator equals the WSOGA2 choice (32), which basically consideres any maximizing point
x to be equally good for extension, the VKOGA choice scales inversely with how well the associated
dictionary elementK(x, ·) is already approximated byHX . This way, identical pointwise approximation
errors closer to the points whose dictionary elements span HX are considered to be worse than others.
Moreover, as the norm of any orthogonal remainder is independent of the considered f ∈ Hq, this can
be interpreted as how well all functions involving the dictionary element K(x, ·) in general are already
approximated in Hq. This concept is pursued directly by the P -Greedy algorithm mentioned e.g. in
[18], which aims to create data-independent approximations of the function space and leads to a very
uniform distribution of the selected xm. Figure 2 illustrates this issue using two simple scalar examples,
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fj(x)

fm−1
j (x)

〈fj − fm−1
j ,Φ(x, ·)〉H

〈fj , φ
m−1
x 〉H

||φ̃m−1
x || − 3
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Fig. 2 Example for different selections of points using VKOGA/WSOGA for a scalar setting

which shows the different extension choices at m = 6 already given points along with the respective gain
functions. The red and blue crosses mark the VKOGA and WSOGA2 selection and the dashed/solid
green line the gain functions of the VKOGA/WSOGA2 algorithms, respectively. As test setting X =
{−7.1,−5.6,−2.1, 1.9, 5.9, 8.4} and a Gaussian with γ2 = 2.1715 has been used, whose induced RKHS
serves as native space for both dictionary and test function f . The expansion coefficients of f1 on
the left, f2 on the right hand side are α1 = (−2.0465, 2.3066,−0.2428, 0.6805,−2.1213,−1.4411) and
α2 = (1.1702,−0.2113,−0.7158,−0.5346,−1.1990,−1.1459) Note that it is clear to see that the gain
function of the VKOGA algorithm is indeed continuous as mentioned earlier in Remark 5.

For both cases we see that the VKOGA choice selects spatially very different extension points, even
though the gain of both algorithms is not very different. While in the case of f1 (left) the extension
points are selected “well away” from any existing point, the VKOGA extension selects x7 very close
to the existing center at −7.1. There it is evident that, even though the absolute approximation error
is bigger elsewhere, the error weighted by the orthogonal remainder norm causes this location to be
considered most worth improving. One the downside, especially because this choice involves a function-
independent but RKHS-specific part, the choice of VKOGA can be ill-suited if the considered function
does not stem from the same RKHS as the dictionary elements. In this situation, adding more points
near the same location does not yield an excellent local convergence rate of the nominator as predicted
by any fill-distance based approaches. However, as this is the case for the denominator, the rapid
decay of the denominator causes even more points to be added in the same area. This effect can also
be seen in e.g. [18, 6.1]. In our opinion, instead of considering the VKOGA algorithm a bad choice
when the origin of the target function is unknown, we think this effect might be actively used to
formulate an indicator for the foremost mentioned situation. If a considered function is “detected” not
to belong to the currently chosen RKHS, one can proceed with another choice of RKHS, e.g. a different
hyperparameter for the RKHS inducing kernel.

Remark 8 We would like to note that both algorithms can be continuously transferred over to each
other by thresholding the orthogonal remainder norms at a certain value. This opens up a large variety
of algorithms and the version most suitable for the current situation can be selected.

4.2 Experimental comparison of VKOGA and WSOGA2

Finally we want to pursue some numerical experiments for the truly vectorial case. We use d = q = 5,
the test domain Ω = [−5, 5]d and a Gaussian kernel with γ = 9.8935, which is chosen so that K(x,y) <
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0.6 ∀ ||x− y|| ≥
√
d · diam(Ω) =

√
50, i.e. a certain locality of the kernel expansions is ensured. The

test functions to approximate are of the structure

f(x) :=

N∑
k=1

ckK(xk,x) ∈ Hq

with N = 20 random centers within Ω and random expansion coefficients c ∈ [0, 15]q. Experiments
showed that it does not make a considerable difference in performance if we used f ∈ Hq (i.e. indepen-

dent expansions for each dimension) or f ∈
(
HX
)q

(a common center set X ⊆ Ω for each component
function), as either way the actual centers are generally not detected/chosen as centers by the greedy
algorithms.

For training we use 2500 training points in Ω and we use a validation set of size 1000. The algorithm
terminates if the L∞(L2(Rd);R2500) relative error on training set is ≤ 10−4 or the expansion size
exceeds N = 200. In order to avoid numerical issues we used

√
eps = 2.2× 10−8 as minimum allowed

value for any ‖φ̃mx ‖H. Figures 3 compares the results for the VKOGA and WSOGA2 algorithms.
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Fig. 3 Left: Relative errors on training set against expansion size. Right: Decay of ||f − fm||Hq over iterations.
Dashed lines: Upper bounds on convergence rates, WSOGA2 (22)/ VKOGA a-posteriori (23)

Now we run 50 tests for random test functions f ∈ Hq and extracted some features of the results,
which are displayed in Figures 4 and 4.2. Figure 4 shows that in average the VKOGA alrogithm
outperforms the WSOGA2 variant on both the training and validation sets. Also, the maximum relative
error on the validation set is smaller than one for each run of the VKOGA, while this is rarely the case
for WSOGA2. Figure 4.2 shows the expansion sizes on the left and the H-norm errors incl. bounds on
the right at a reached relative L2-error of 10−3 on the training data.

Remark 9 For higher dimensions the a-priori estimation assumptions can cause some problems. Run-
ning a test with d = 20, Figure 6 shows that even though we have an exponential convergence with N ,
the H-norm convergence rate is worse than predicted. This is due to the following estimation in the
first step of the convergence rate proof in Theorem 3:

∞∑
k=1

|αjk|
∣∣∣〈fj , φ̃m−1xk

〉
H

∣∣∣ ≤ ∞∑
k=1

|αjk|max
x∈Ω

∣∣∣〈fj , φ̃m−1x

〉
H

∣∣∣
This estimation holds in theory, but since Ω is replaced by a discrete training set Ξ ⊆ Ω we might
not have ∣∣∣〈fj , φ̃m−1xk

〉
H

∣∣∣ ≤ max
x∈Ξ

∣∣∣〈fj , φ̃m−1x

〉
H

∣∣∣ ∀ xk.
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5 10 15 20 25 30 35 40 45 50

135

140

145

150

155

160

165

170

175

180

185

Expansion sizes at MaxRelErr=1.000000e−003
VKOGA better than WSOGA2: 100.00%

test run

e
x
p

a
n

s
io

n
 s

iz
e

s

 

 

VKOGA

WSOGA2

5 10 15 20 25 30 35 40 45 50

10
0

10
1

10
2

10
3

H−errors and bounds at MaxRelErr=1.000000e−003
VKOGA better than WSOGA2: 100.00%

test run

H
−

e
rr

o
rs

 

 

VOGA bound (a−pri)

VKOGA bound (a−post)

H−err WSOGA2

H−err VKOGA

Fig. 5 L: Expansion sizes after termination, R: ||f − fm||Hq -errors and bounds

Fig. 6 Plots for d = 20 and 25000 training points



A Vectorial Kernel Orthogonal Greedy Algorithm 21

5 Conclusion & Perspectives

In this work we considered a extension of the f/P -Greedy algorithm [18] to the vectorial case in the
spirit of [13]. The question about the behaviour of the gain function close to already included points
has been answered satisfactory and it turned out to be directly related to Hermite interpolation at
the repetitively considered points. Moreover, the established Temlyakov-type convergence rates for
vectorial greedy algorithms from e.g. [6, 14] could be verified and improved. However, as mentioned
already in the convergence analysis, it remains an open question if the discrepancy between the observed
and predicted convergence rates can be reduced in future work. The obtained convergence rates for
RKHS using fill distances [18, 38] promise room for improvement, standing against some results on
lower bounds for the convergence rates [14]. We pursued a comparison of the proposed algorithm to a
related existing one and discussed both advantages and disadvantages and their possible remedies.

Future work comprises formulations of the considered algorithms for stable bases, e.g. RBF-QR [9? ]
or other [20]. Even though our conducted experiments have been of a synthetic nature, we are currently
also investigating applications of the proposed algorithm and related ones in practical applications [40].
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