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Abstract

In this part we are concerned with a class of model reduction techniques for
parametric partial differential equations, the so-called Reduced Basis (RB) meth-
ods. These allow to obtain low-dimensional parametric models for various com-
plex applications, enabling accurate and rapid numerical simulations. Important
aspects are basis generation and certification of the simulation results by suit-
able a posteriori error control. The main terminology, ideas and assumptions
will be explained for the case of linear stationary elliptic, as well as parabolic or
hyperbolic instationary problems. Reproducible experiments will illustrate the
theoretical findings. We close with a discussion of further recent developments.

1 Introduction
Discretization techniques for partial differential equations (PDEs) frequently lead to
very high-dimensional numerical models with corresponding high demands concern-
ing hardware and computation times. This is the case for various discretization types,
such as Finite Elements (FE), Finite Volumes (FV), Discontinuous Galerkin (DG)
methods, etc. These high computational costs pose a serious problem in the context
of multi-query, real-time or slim computing scenarios: Multi-query scenarios com-
prise settings, where not one single simulation result is required, but the setting of
the problem is varying, and multiple simulation requests are requested. Such situa-
tions can be observed in the case in parameter studies, design, optimization, inverse
problems or statistical analysis. Real-time scenarios consist of problems, where the
simulation result is required very fast. This can be the case for simulation-based in-
teraction with real processes, e.g. control or prediction, or interaction with humans,
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e.g. a development engineer working with simulation software and requiring rapid
answers. Slim computing scenarios denote settings, where computational capabili-
ties are very limited with respect to speed or memory but still accurate simulation
answers are required. This can comprise simple technical controllers, smartphone
apps, etc.

In the above scenarios, the “varying” quantities which describe the problem, will
be denoted as parameters and are collected in a parameter vector µ ∈ P . Here we
assume that P ⊂ Rp is a set of possible/admitted parameters of low dimension p.
The parametric solution then will be denoted u(µ) and typically stems from a solu-
tion space X that can be infinite or at least very high-dimensional. Frequently, not
the solution itself, but rather a quantity of interest s(µ) depending on the solution is
desired. So, the standard computational procedure is to start with a low-dimensional
parameter, compute a typically high-dimensional solution u(µ) and then derive a
low-dimensional output quantity. Clearly, the computationally intensive part in this
chain is the computation of the solution u(µ). Therefore, the aim of model reduction
is to develop techniques that provide low-dimensional and hence rapidly computable
approximations for the solution u(µ) and possible outputs. Reduced Basis (RB) meth-
ods focus on a certain problem class, namely parametric PDEs. The crucial insight
enabling simplification of parametric problems is the fact that the solution mani-
fold M , i.e. the set of parametric solutions, often can be well approximated by a
low-dimensional subspace XN ⊂ X . In RB-methods one popular way is the con-
struction of this subspace by snapshots, i.e. XN is spanned by solutions u(µ(i)) for
suitable parameters µ(i), i = 1, . . . ,N . A crucial requirement for constructing a good
approximating space is a careful choice of these parameters. After construction of
the space, the reduced model is obtained, e.g. by Galerkin projection, and provides
an approximation uN (µ) ∈ XN of the solution and an approximation sN (µ) of the
output quantity of interest. See Fig. 1 for an illustration of the RB-approximation
scenario. In addition to the pure reduction, also error control is desired, i.e. avail-

Figure 1: Illustration of the solution manifold and the RB-approximation.

ability of computable and rigorous, that means provable, upper bounds for the state
or output error. Additionally, these error bounds should be effective, i.e. not arbi-
trarily overestimate the error. The computational procedure is ideally decomposed

2



in an offline and online phase: During the offline phase, performed once, a reduced
basis is generated and further auxiliary quantities are precomputed. Then, in the
online phase, for varying parameters µ, the approximate solution, output and error
bounds can be provided rapidly. The computational complexity of the online phase
will usually not depend on the dimension of the full space X , hence, the space X can
be assumed to be arbitrarily accurate. Instead, the computational complexity of the
online phase will typically be only polynomial in N , the dimension of the reduced
space. The runtime advantage of an RB-model in the context of a multi-query sce-
nario is illustrated in Fig. 2: The offline phase is typically much more expensive than

Figure 2: Runtime advantage of RB-model in multi-query scenarios.

several full simulations. However, if a sufficient number of reduced solutions are re-
quired in the online phase, the overall computation time will be decreased in contrast
to many full simulations. We collect some of the motivating questions that will be
addressed in this tutorial:

• How can we construct good spaces XN ? Can such procedures be provably
“good”?

• How can we obtain a good approximation uN (µ) ∈XN ?

• How can uN (µ) be determined rapidly, i.e. computationally efficient?

• Can stability or convergence with growing N be obtained?

• Can the RB-error be rigorously bounded? Are the error bounds fully com-
putable?

• Are the error bounds largely overestimating the error, or can the “effectivity”
be quantified?

• For which problem classes can low-dimensional approximation expected to be
successful?

RB-methods can be traced back to the last century [21, 55, 58, 60] but received
plenty of attention in the last decade in terms of certification, i.e. providing error and
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accuracy control, leading to applicable and efficient procedures for various problem
types. Problems such as stationary linear elliptic, stationary non-coercive, saddle
point problems in particular Stokes flow, instationary parabolic and hyperbolic and
nonlinear problems have been treated, geometry parametrizations can be handled,
etc. Various papers and PhD theses have meanwhile been devoted to the topic. For
the moment, we refer to the electronic book [57], the overview article [63] and ref-
erences therein. Also, we want to refer to the excellent collection of papers and the-
ses at http://augustine.mit.edu. Concerning software, also different packages
have been developed, which address RB-methods. Apart from our package RBmat-
lab, available for download at the website www.morepas.org/software, we mention
the packages rbMIT and rbAPPmit, available at augustine.mit.edu/methodology
and pymor, publically accessible at the website github.com/pymor. Further refer-
ences to papers and other electronic resources can be found at www.morepas.org and
www.modelreduction.org. We postpone giving individual further references to the
concluding Sec. 4. The purpose of the present chapter is to provide a tutorial intro-
duction to RB-methods. It may serve as material for an introductory course on the
topic. The suggested audience are students or researchers that have a background in
numerical analysis for PDEs and elementary discretization techniques. We aim at a
self-contained document, collecting the central statements and providing elementary
proofs or explicit references to corresponding literature. We include experiments that
can be reproduced with the software package RBmatlab. We also provide plenty of
exercises that are recommended for deepening the theoretical understanding of the
present methodology.

The document is structured into two main parts. The first part consists of Sec.
2, where we consider elliptic coercive problems. This material is largely based on
existing work, in particular [57] and lecture notes [27]. We devote the second part,
Sec. 3, to the time-dependent case and give corresponding RB-formulations. We close
this chapter by providing an outlook and references on further topics and recent
developments in Sec. 4. A selection of accompanying exercises is given in Appendix
5.

2 Stationary Problems
We start with stationary problems and focus on symmetric or nonsymmetric elliptic
partial differential equations. Overall, the collection of results in this chapter serves
as a general RB-pattern for new problem classes. This means that the current sequence
of results/procedures can be used as a schedule for other problems. One can try to
sequentially obtain analogous results for a new problem along the lines of this section.

Note, that the results and procedures of this section are mostly well known and
can be considered to be standard. Hence, we do not claim any (major) novelty in the
current section, but rather see it as a collection and reformulation of existing results
and methodology. We introduce slight extensions or intermediate results at some
points. Some references that must be attributed are [57, 63] and references therein,
but similar formulations also can be found in further publications.
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a)

b) c)

Figure 3: Thermal block: a) geometry and notation, b) solution sample for B1 = B2 =
2 and µ= (1,1,1,1)T , c) solution sample for B1 = B2 = 6 and random parameter µ.

2.1 Model Problem
A very elegant model problem has been given in [57], which we also want to adopt
(with minor modification) as a driving model example for the methodology in this
section. It is an example of a parametrized partial differential equation modelling
the heat transport through a block of solid material that is assembled by subblocks of
different heat conductivities. The values of the piecewise constant heat conductivities
are considered as parameters in the problem. Consequently, the example is called a
thermal block. The block is heated on a part of its boundary, insulated on other
parts and cooled to a reference temperature on the remaining boundary part. We are
interested in the average temperature on the heating boundary part.

Fig. 3a) explains the geometry and the notation: Let Ω= (0,1)2 be the unit square
and B1,B2 ∈ N the number of subblocks per dimension. The subblocks are denoted
Ωi , i = 1, . . . , p for p := B1B2 counted rowwise starting from the left bottom. The
bottom boundary is denoted ΓN ,1 with unit outward normal n(x), where we will
prescribe a unit flux into the domain. The left and right boundary are insulated
no-flux boundaries denoted by ΓN ,0. The upper boundary ΓD is a homogeneous
Dirichlet boundary, where we assign 0 as temperature. The heat conductivities are
defined as parameters µi , i = 1, . . . , p. We prescribe a suitable parameter domain for
the parameter vector µ = (µ1, . . . ,µp )

T ∈ P := [µmin,µmax]
p , namely logarithmi-

cally symmetric around 1, i.e. µmin = 1/µmax for µmax > 1. Note, that the model
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in [57] further assumes the first parameter to be normalized to 1, hence that formu-
lation essentially has one parameter less than the current formulation. The space-
and parameter-dependent heat-conductivity function then is expressed as piecewise
constant function via indicator functions χΩq

c(x;µ) :=
p
∑

q=1

µqχΩq
(x).

The parametrized PDE that needs to be solved for the parametric solution u(x;µ) is
the elliptic problem

−∇ · (c(x;µ)∇u(x;µ)) = 0, x ∈Ω
u(x;µ) = 0, x ∈ ΓD

(c(x;µ)∇u(x;µ)) · n(x) = i , x ∈ ΓN ,i , i = 0,1.

The weak form is based on the solution space H 1
ΓD
(Ω) := {u ∈ H 1(Ω)| u|ΓD

= 0}
of functions vanishing on ΓD (in the trace sense). Here H 1(Ω) denotes the standard
Sobolev space of square integrable functions, which have square integrable deriva-
tives. Then, for given µ ∈P we are interested in the solution u(·;µ) ∈ H 1

ΓD
(Ω) such

that
p
∑

q=1

∫

Ωq

µq∇u(x;µ) · ∇v(x)d x =
∫

ΓN ,1

v(x)d x

for all test functions v ∈ H 1
ΓD
(Ω). Then, we evaluate a scalar output value, e.g. the

average temperature at the bottom

s(µ) :=
∫

ΓN ,1

u(x;µ)d x.

This model allows some simple but interesting insights into the structure of the solu-
tion manifold for varying µ.

• Simple solution structure: In the case of B1 = 1 (or B1 > 1 but identical pa-
rameters in each row), the solution exhibits horizontal symmetry, cf. Fig. 3b).
One can easily show that the solution for all µ ∈ P is piecewise linear and
contained in a B2-dimensional linear subspace of the infinite-dimensional space
H 1
ΓD
(Ω), cf. Exercise 5.1.

• Complex solution structure: Plot c) indicates a more complex example, where
the solution manifold for B1 > 1 with independent parameters cannot be ex-
actly approximated by a finite-dimensional solution space.

• Parameter redundancy: The solution manifold is invariant with respect to scal-
ing of the parameter vector, i.e. if u(µ) is a given solution, then u(cµ) = 1

c u(µ)
for c > 0 is the solution for the parameter cµ. This is an important insight for
parametric models: More parameters do not necessarily increase the paramet-
ric complexity of the solution manifold.
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The thermal block is an excellent motivation and opportunity for RB-methods: So-
lution manifolds may possess structural simplicity or redundancy although the so-
lution space is very high- or even infinite-dimensional. Identifying such structures
in the solution manifold may offer chances for low-dimensional accurate approxima-
tion. Based on this example of a parametrized partial differential equation, we can
formulate the abstract setting.

2.2 Full Problem
An abstract formulation for a large class of linear stationary problems will be given.
This will be the basis for the exposition in the subsequent sections. We assume X to
be a real, separable Hilbert space with inner product 〈·, ·〉, norm ‖·‖ and dual space
X ′ with norm ‖·‖X ′ . We assume to have a parameter domain P ⊂ Rp , a parameter-
dependent bilinear form a(·, ·;µ) and linear forms l (·;µ), f (·;µ) ∈ X ′ for all µ ∈ P .
We do not require symmetry for a(·, ·;µ). We assume the bilinear form and the linear
forms to be uniformly continuous and the bilinear form to be uniformly coercive in
the following sense:

Definition 2.1 (Uniform Continuity and Coercivity). The parametric bilinear form
a(·, ·;µ) is assumed to be continuous, i.e. there exists γ (µ) ∈R with

γ (µ) := sup
u,v∈X \{0}

a(u, v;µ)
‖u‖‖v‖

<∞

and the continuity is uniform with respect to µ in the sense that for some γ̄ <∞ holds
γ (µ)≤ γ̄ for all µ ∈P . Further, a(·, ·;µ) is assumed to be coercive, i.e. there exists α(µ)
with

α(µ) := inf
u∈X \{0}

a(u, u;µ)

‖u‖2
> 0

and the coercivity is uniform with respect to µ in the sense that for some ᾱ > 0 holds
α(µ)≥ ᾱ for allµ ∈P . Similarly, we assume the parametric linear forms f (·;µ), l (·;µ)
to be uniformly continuous, i.e. there exist constants γ̄ f , γ̄l <∞ such that for all µ ∈P

‖l (·;µ)‖X ′ ≤ γ̄l , ‖ f (·;µ)‖X ′ ≤ γ̄ f .

Example 1 (Possible discontinuity with respect to µ). Note, that continuity of a,
f , and l with respect to u, v does not imply continuity with respect to µ. A simple
counterexample can be formulated by X = R, P := [0,2], l : X ×P → R defined as
l (x;µ) := xχ[1,2](µ) with χ[1,2] denoting the indicator function of the specified interval.
Obviously, l is continuous with respect to x for all µ, but discontinous with respect to µ.

With these assumptions, we can define the full problem that is to be approximated
by the subsequent RB-scheme. The full problem can both comprise a continuous
PDE in infinite-dimensional function spaces, but as well a finite element discretiza-
tion of a PDE. The former view is interesting from a theoretical point (how well can
solution manifolds in function spaces be approximated), the latter is important from
a practical view, as highly resolved discretized PDEs will serve as snapshot suppliers
for the reduced basis generation and as the reference solution to compare with.
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Definition 2.2 (Full Problem (P (µ))). For µ ∈ P find a solution u(µ) ∈ X and
output s(µ) ∈R satisfying

a(u(µ), v;µ) = f (v;µ), v ∈X ,
s(µ) = l (u(µ);µ).

Under the above conditions, one obtains well-posedness and stability of (P (µ)):

Proposition 2.3 (Well-posedness and Stability of (P (µ))). The problem (P (µ)) admits
a unique solution satisfying

‖u(µ)‖ ≤
‖ f (·;µ)‖X ′

α(µ)
≤
γ̄ f

ᾱ
, |s(µ)| ≤ ‖l (·;µ)‖X ′ ‖u(µ)‖ ≤

γ̄l γ̄ f

ᾱ
.

Proof. The existence, uniqueness and bound for u(µ) follow from the Lax-Milgram
theorem, see for instance [8]. Uniform continuity and coercivity then give the
parameter-independent bound for u(µ). The definition of the output functional
gives uniqueness for s(µ) and uniform continuity of l yields the second bound for
s(µ).

After having ensured solvability, it makes sense to introduce the solution mani-
fold:

Definition 2.4 (Solution Manifold). We introduce the solution manifold M of the
full problem (P (µ)) as

M := {u(µ)|u(µ) solves (P (µ)) for µ ∈P }⊂X .

We use the notion “manifold”, although strictly speaking, it may not be a mani-
fold in the differential geometrical sense, as we do not assume continuity/differentiability
ofM .

A crucial property for efficient implementation of RB-methods is a parameter-
separability of all (bi)linear forms.

Definition 2.5 (Parameter-Separability). We assume the forms a, f , l to be parameter-
separable, i.e. there exist coefficient functions θa

q (µ) : P → R for q = 1, . . . ,Qa with
Qa ∈N and parameter-independent continuous bilinear forms aq (·, ·) : X ×X →R such
that

a(u, v;µ) =
Qa
∑

q=1

θa
q (µ)aq (u, v), µ ∈P , u, v ∈X

and similar definitions for l and f with corresponding continuous linear forms lq , fq ,
coefficient functions θl

q ,θ f
q and numbers of components Ql ,Q f .

Note, that in the literature this property is commonly called affine parameter de-
pendence. However, this notion is slightly misleading, as the decomposition can be
arbitrarily nonlinear (and hence non-affine) with respect to the parameter µ. There-
fore, we rather denote it parameter-separability.
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In the above definition, the constants Qa ,Q f ,Ql are assumed to be preferably
small (e.g. 1–100), as the complexity of the RB-model will explicitly depend on these.
We further assume that the coefficient functions θa

q ,θ f
q ,θl

q can be evaluated rapidly.
If such a representation does not exist for a given linear or bilinear form, a pa-

rameter separable approximation can be constructed by the Empirical Interpolation
Method, we comment on this in Sec. 2.7.

Obviously, boundedness of the coefficient functions θq
a and continuity of the

components aq implies uniform continuity of a(·, ·;µ), and similarly for f , l . How-
ever, coercivity of components aq only transfers to coercivity of a under additional
assumptions, cf. Exercise 5.3.

Example 2 (Thermal block as instantiation of (P (µ))). It can easily be verified that
the thermal block model satisfies the above assumptions, cf. Exercise 5.4.

Example 3 ((P (µ)) for matrix equations). The problem (P (µ)) can also be applied to
model order reduction for parametric matrix equations, i.e. solving and reducing systems

A(µ)u = b(µ)

for A(µ) ∈RN ×N , b(µ) ∈RN forN ∈N. This can simply be obtained by considering
X = RN , a(u, v;µ) := uT A(µ)v and f (v;µ) := vT b(µ) (and ignoring or choosing
arbitrary l ).

Example 4 ((P (µ))with given solution). One can prescribe any arbitrarily complicated
parametric function u :P →X , which defines a corresponding manifoldM := {u(µ)}.
Then one can construct an instantiation of (P (µ)) which has this solution. For this we
only need to set a(u, v) := 〈u, v〉 and f (v;µ) := 〈u(µ), v〉 and immediately verify
that u(µ) solves the corresponding (P (µ)). This means that the class (P (µ)) may have
arbitrarily complex, nonsmooth or even discontinuous solution manifolds.

Example 5 ((P (µ)) for Qa = 1). If a(·, ·;µ) consists of a single component, one can show
thatM is contained in an (at most) Q f -dimensional linear space, cf. Exercise 5.5. Hence,
a finite-dimensional RB-space will provide exact approximation.

We state the following remark on a general misunderstanding of complexity in
parametric problems.

Remark 2.6 (Parameter Number and Complexity). Frequently, problems with many
parameters are concluded to have high solution manifold complexity. This is in general
wrong: First, as already seen in the parameter redundancy of the thermal block, having
many parameters does not necessarily imply a complex solution structure. In the extreme
case, one can devise models with arbitrary number of parameters but 1-dimensional solu-
tion set, cf. Exercise 5.2. On the other extreme, one can devise models, where 1 parameter
induces arbitrary complex solution behavior: In view of Example 4 one can choose an
arbitrary connected irregular manifold, and assign a 1-parameter “space-filling-curve” as
solution trajectory on this manifold. The misconception that the number of parameters is
directly related to the manifold complexity, is very common, even in the model order re-
duction community. Nevertheless, certainly, in specific examples, the parameter number
may influence the solution complexity, such as exemplified for the thermal block later on.
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It is of interest to state properties ofM that may give information on its com-
plexity/approximability. The first insight is that Prop. 2.3 obviously implies the
boundedness of the manifold.

It is possible to show a certain regularity of the manifold. First, one can prove
Lipschitz-continuity of the manifold, along the lines of [20], cf. Exercise 5.6.

Proposition 2.7 (Lipschitz-Continuity). If the coefficient functions θa
q ,θ f

q ,θl
q are Lip-

schitz-continuous with respect to µ, then the forms a, f , l , the solution u(µ) and s(µ) are
Lipschitz-continuous with respect to µ.

Further, if the data functions are differentiable, one can even conclude differen-
tiability of the solution manifold by “formally” differentiating (P (µ)). We leave the
proof of the following as Exercise 5.7.

Proposition 2.8 (Differentiability, Sensitivity Problem). If the coefficient functions
θa

q ,θ f
q are differentiable with respect to µ, then the solution u :P →X is differentiable

with respect to µ and the partial derivative (sensitivity derivative) ∂µi
u(µ) ∈ X for

i = 1, . . . , p satisfies the sensitivity problem

a(∂µi
u(µ), v;µ) = f̃i (v; u(µ),µ)

for right-hand side f̃i (·; u(µ),µ) ∈X ′,

f̃i (·; u(µ),µ) :=
Q f
∑

q=1

(∂µi
θ f

q (µ)) fq (·)−
Qa
∑

q=1

(∂µi
θa

q (µ))aq (u(µ), ·;µ).

Similar statements hold for higher order differentiability. So, the partial deriva-
tives of u(µ) satisfy a similar problem as (P (µ)), in particular involving the identi-
cal bilinear form, but a right hand side that depends on the lower order derivatives.
So we conclude that smoothness of coefficient functions transfers to corresponding
smoothness of the solution manifold. Then, the smoother the manifold the better
approximability by low-dimensional spaces may be expected.

2.3 Primal RB-Approach
We now formulate two RB-approaches for the above problem class, which have been
similarly introduced in [59]. For the moment, we assume to have a low-dimensional
space

XN := span(ΦN ) = span{u(µ(1)), . . . , u(µ(N ))} ⊂X (1)

with a basis ΦN = {ϕ1, . . . ,ϕN } available, which will be called the reduced basis space
in the following. The functions u(µ(i)) are suitably chosen snapshots of the full prob-
lem at parameter samples µ(i) ∈ P . We will give details on procedures for their
choice in Sec. 2.6. At the moment we only assume that the {u(µ(i))}Ni=1 are linearly
independent. The first RB-formulation is a straightforward Galerkin projection. It is
denoted “primal”, as we will later add a “dual” problem.
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Definition 2.9 (Primal RB-problem (PN (µ))). Forµ ∈P find a solution uN (µ) ∈XN
and output sN (µ) ∈R satisfying

a(uN (µ), v;µ) = f (v;µ), v ∈XN ,
sN (µ) = l (uN (µ)). (2)

Again, well-posedness and stability of the reduced solution follow by Lax-Milgram,
even using the same constants as for the full problem, as continuity and coercivity
are inherited to subspaces.

Proposition 2.10 (Well-posedness and Stability of (PN (µ))). The problem (PN (µ))
admits a unique solution satisfying

‖uN (µ)‖ ≤
‖ f (µ)‖X ′

α(µ)
≤
γ̄ f

ᾱ
, |sN (µ)| ≤ ‖l (·;µ)‖X ′ ‖uN (µ)‖ ≤

γ̄l γ̄ f

ᾱ
.

Proof. We verify the applicability of the Lax-Milgram Theorem with the same con-
stants as the full problem using XN ⊂X :

sup
u,v∈XN \{0}

a(u, v;µ)
‖u‖‖v‖

≤ supu,v∈X \{0}
a(u,v;µ)
‖u‖‖v‖ = γ (µ),

inf
u∈XN \{0}

a(u, u;µ)

‖u‖2
≥ infu∈X \{0}

a(u,u;µ)
‖u‖2 = α(µ).

Then the argumentation as in Prop. 2.3 applies.

From a computational view, the problem (PN (µ)) is solved by a simple linear
equation system.

Proposition 2.11 (Discrete RB-Problem). For µ ∈P and a given reduced basis ΦN =
{ϕ1, . . . ,ϕN } define the matrix, right hand side and output vector as

AN (µ) := (a(ϕ j ,ϕi ;µ))
N
i , j=1 ∈R

N×N ,

fN (µ) := ( f (ϕi ;µ))
N
i=1 ∈R

N , lN (µ) := (l (ϕi ;µ))
N
i=1 ∈R

N .

Solve the following linear system for uN (µ) = (uN ,i )
N
i=1 ∈R

N :

AN (µ)uN (µ) = fN (µ).

Then, the solution of (PN (µ)) is obtained by

uN (µ) =
N
∑

j=1

uN , jϕ j , sN (µ) = lT
N (µ)uN (µ). (3)

Proof. Using linearity, it directly follows that uN (µ) and sN (µ) from (3) satisfy (PN (µ)).

11



Interestingly, in addition to analytical stability from Prop. 2.10 we can also guar-
antee algebraic stability by using an orthonormal reduced basis. This means we do
not have to use snapshots directly as reduced basis vectors, but ΦN can be a post-
processed set of snapshots, as long as (1) holds. For example, a standard Gram-
Schmidt orthonormalization can be performed to obtain an orthonormal reduced
basis ΦN .

Proposition 2.12 (Algebraic Stability for Orthonormal Basis). If a(·, ·;µ) is symmet-
ric and ΦN is orthonormal, then the condition number of AN (µ) is bounded (indepen-
dently of N ) by

cond2(AN (µ)) = ‖AN (µ)‖




AN (µ)
−1




≤
γ (µ)

α(µ)
.

Proof. As AN is symmetric and positive definite we have cond2(AN ) = λmax/λmin
with largest/smallest magnitude eigenvalue of AN . Let u = (ui )

N
i=1 ∈ R

N be an
eigenvector of AN for eigenvalue λmax and set u :=

∑N
i=1 uiϕi ∈ X . Then due to

orthonormality we obtain

‖u‖2 =

*

N
∑

i=1

uiϕi ,
N
∑

j=1

u jϕ j

+

=
N
∑

i , j=1

ui u j

¬

ϕi ,ϕ j

¶

=
N
∑

i=1

u2
i = ‖u‖

2 ,

by definition of AN and continuity we get

λmax ‖u‖
2 = uT AN u= a







N
∑

i=1

uiϕi ,
N
∑

j=1

u jϕ j






= a(u, u)≤ γ ‖u‖2

and we conclude that λmax ≤ γ . Similarly, one can show that λmin ≥ α, which then
gives the desired statement.

This uniform stability bound is a relevant advantage over a non-orthonormal
snapshot basis. In particular one can easily realize that snapshots of “close” parame-
ters will result in almost colinear snapshots leading to similar columns and therefore
ill-conditioning of the reduced system matrix. But still, for small reduced bases (e.g.
1–10), the orthonormalization can be omitted in order to prevent additional numer-
ical errors of the orthonormalization procedure.

Remark 2.13 (Difference of FEM to RB). At this point we can note a few distinct
differences between the reduced problem and a discretized full problem. For this denote
A ∈ RN ×N for some largeN ∈ N the Finite Element (or Finite Volume, Discontinous
Galerkin, etc.) matrix of the linear system for (P (µ)). Then,

• the RB-matrix AN ∈ RN×N is small, but typically dense in contrast to A which is
large but typically sparse,

• the condition of the matrix AN does not deteriorate with growing N if an or-
thonormal basis is used, in contrast to the high-dimensional A, whose condition
number typically grows polynomially inN .
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The RB-approximation will always be as good as the best-approximation, up to a
constant. This is a simple version of the Lemma of Céa.

Proposition 2.14 (Céa, Relation to Best-Approximation). For all µ ∈P holds

‖u(µ)− uN (µ)‖ ≤
γ (µ)

α(µ)
inf

v∈XN

‖u(µ)− v‖ . (4)

If additionally a(·, ·;µ) is symmetric, we have the sharpened bound

‖u(µ)− uN (µ)‖ ≤

s

γ (µ)

α(µ)
inf

v∈XN

‖u(µ)− v‖ . (5)

Proof. For all v ∈XN continuity and coercivity result in

α‖u − uN‖
2 ≤ a(u − uN , u − uN ) = a(u − uN , u − v)+ a(u − uN , v − uN )
= a(u − uN , u − v)≤ γ ‖u − uN‖‖u − v‖ ,

where we used Galerkin orthogonality a(u − uN , v − uN ) = 0 which follows from
(P (µ)) and (PN (µ)) as v − uN ∈ XN . For the sharpened bound 5 we refer to [57] or
Exercise 5.8.

Similar best-approximation statements are known for interpolation techniques,
but the corresponding constants mostly diverge to ∞ as the dimension of the ap-
proximating space N grows. For the RB-approximation, the constant does not grow
with N . This is the conceptional advantage of RB-approximation by Galerkin pro-
jection rather than some other interpolation techniques.

For error analysis the following error-residual relation is important, which states
that the error satisfies a variational problem with the same bilinear form, but the
residual as right hand side.

Proposition 2.15 (Error-Residual Relation). Forµ ∈P we define the residual r (·;µ) ∈
X ′ via

r (v;µ) := f (v;µ)− a(uN (µ), v;µ), v ∈X . (6)

Then, the error e(µ) := u(µ)− uN (µ) ∈X satisfies

a(e , v;µ) = r (v;µ), v ∈X . (7)

Proof. a(e , v;µ) = a(u, v;µ)− a(uN , v;µ) = f (v)− a(uN , v;µ) = r (v;µ).

Hence, the residual in particular vanishes on XN as XN ⊂ ker(r (·;µ)).
A basic consistency property for an RB-scheme is reproduction of solutions. The

following statement follows trivially from the error estimators which will be intro-
duced soon. But in case of absence of error estimators for an RB-scheme, this repro-
duction property still can be investigated. It states that if a full solution happens to
be in the reduced space, then the RB-scheme will identify this full solution as the
reduced solution, hence give zero error.
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Proposition 2.16 (Reproduction of Solutions). If u(µ) ∈ XN for some µ ∈ P , then
uN (µ) = u(µ).

Proof. If u(µ) ∈ XN , then e = u(µ)− uN (µ) ∈ XN and we obtain by coercivity and
(P (µ)) and (PN (µ))

α(µ)‖e‖2 ≤ a(e , e ;µ) = a(u(µ), e ;µ)− a(uN (µ), e ;µ) = f (e ;µ)− f (e ;µ) = 0,

hence e = 0.

This is a trivial, but useful statement for at least two reasons which we state as
remarks.

Remark 2.17 (Validation of RB-scheme). On the practical side, the reproduction prop-
erty is useful to validate the implementation of an RB-scheme: Choose ΦN directly as
snapshot basis, i.e. ϕi = u(µ(i)) without orthonormalization and set µ = µ(i), then the
RB-scheme must return uN (µ) = ei , the i -th unit vector, as uN (µ) =

∑N
n=1δniϕn (with

δni denoting the Kronecker δ ) obviously is the solution expansion.

Remark 2.18 (Uniform convergence of RB-approximation). From a theoretical view-
point we can conclude convergence of the RB-approximation to the full continuous prob-
lem: We see that the RB-solution uN : P → X is interpolating the manifoldM at the
snapshot parameters µ(i). Assume thatP is compact and snapshot parameter samples are
chosen, such that the sets SN := {µ(1), . . . ,µ(N )} ⊂P get dense inP for N →∞, i.e. the
so called fill-distance hN tends to zero:

hN := sup
µ∈P

dist(µ, SN ), lim
N→∞

hN = 0.

Here, dist(µ, SN ) :=minµ′∈SN



µ−µ′


 denotes the distance of the point µ from the set
SN . If the data functions are Lipschitz continuous, one can show as in Prop. 2.7 that
uN : P → XN is Lipschitz continuous with Lipschitz-constant Lu independent of N .
Then, obviously, for all N ,µ and “closest” µ∗ = argminµ′∈SN



µ−µ′




‖u(µ)− uN (µ)‖ ≤ ‖u(µ)− u(µ∗)‖+ ‖u(µ∗)− uN (µ
∗)‖+ ‖uN (µ)− uN (µ

∗)‖
≤ Lu ‖µ−µ

∗‖+ 0+ Lu ‖µ−µ
∗‖ ≤ 2hN Lu .

Therefore, we obtain uniform convergence

lim
N→∞

sup
µ∈P
‖u(µ)− uN (µ)‖= 0.

Note, however, that this convergence rate is linear in hN and thus is of no practical value,
as hN decays much too slow with N, and N must be very large to guarantee a small error.
In Sec. 2.6 we will see that a more clever choice of µ(i) can even result in exponential
convergence.

We now turn to an important topic in RB-methods, namely the certification by
a-posteriori error control. This is also based on the residual. We assume to have
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a rapidly computable lower bound αLB(µ) for the coercivity constant available and
that αLB is still large in the sense that it is bounded away from zero

0< ᾱ≤ αLB(µ).

This can be assumed without loss of generality, as in case of αLB(µ) < ᾱ we should
better choose αLB(µ) = ᾱ and obtain a larger lower bound constant (assuming ᾱ to
be computable).

Proposition 2.19 (A-posteriori Error Bounds). Let αLB(µ)> 0 be a computable lower
bound for α(µ). Then we have for all µ ∈P

‖u(µ)− uN (µ)‖ ≤ ∆u (µ) :=
‖r (·;µ)‖X ′

αLB(µ)
, (8)

|s(µ)− sN (µ)| ≤ ∆s (µ) := ‖l (·;µ)‖X ′∆u (µ). (9)

Proof. The case e = 0 is trivial, hence we assume nonzero error. Testing the error-
residual equation with e yields

α(µ)‖e‖2 ≤ a(e , e ;µ) = r (e ;µ)≤ ‖r (·;µ)‖X ′ ‖e‖ .

Division by ‖e‖ and α yields the bound for ‖e‖. The bound for the output error
follows by continuity from

|s(µ)− sN (µ)|= |l (u(µ);µ)− l (uN (µ);µ)| ≤ ‖l (·;µ)‖X ′ ‖u(µ)− uN (µ)‖ ,

which concludes the proof.

Note, that bounding the error by the residual is a well known technique in FEM
analysis for comparing a FEM-solution to the analytical solution. However, in that
case X is infinite-dimensional, and the norm ‖r‖X ′ is not available analytically. In
our case, by using X to be a fine discrete FEM space, the residual norm becomes
a computable quantity, which can be computed after the reduced solution uN (µ) is
available, hence it is an a-posteriori bound.

The above technique is an example of a general procedure for obtaining error
bounds for RB-methods: Show that the RB-error satisfies a problem similar to the
original problem, but with a residual as inhomogeneity. Then apply an a-priori stabil-
ity estimate, to get an error bound in terms of a residual norm, which is computable
in the RB-setting.

As the bounds are provable upper bounds to the error, they are denoted rigorous
error bounds. The availability of a-posteriori error bounds is the motivation to de-
note the approach a certified RB-method, as we not only obtain an RB-approximation
but simultaneously a certification by a guaranteed error bound.

Having a bound, the question arises, how tight this bound is. A first desirable
property of an error bound is that it should be zero if the error is zero, hence we can
a-posteriori identify exact approximation.

Corollary 2.20 (Vanishing Error Bound). If u(µ) = uN (µ) then∆u (µ) =∆s (µ) = 0.
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Proof. As 0= a(0, v;µ) = a(e , v) = r (v;µ), we see that

‖r (·;µ)‖X ′ := sup
u
‖r (u;µ)‖/‖u‖= 0.

This implies that∆u (µ) = 0 and∆s (µ) = 0.

This may give hope that the quotient of error bounds and true error behaves
well. In particular, the factor of overestimation can be investigated, and, ideally,
be bounded by a small constant. The error bounds are then called effective. This
is possible for ∆u (µ) in our scenario and the so called effectivity can be bounded
by the continuity and coercivity constant. Thanks to the uniform continuity and
coercivity, this is even parameter-independent.

Proposition 2.21 (Effectivity Bound). The effectivity ηu (µ) is defined and bounded
by

ηu (µ) :=
∆u (µ)

‖u(µ)− uN (µ)‖
≤

γ (µ)

αLB(µ)
≤
γ̄

ᾱ
. (10)

Proof. Let vr ∈X denote the Riesz-representative of r (·;µ), i.e. we have

〈vr , v〉= r (v;µ), v ∈X , ‖vr‖= ‖r (·;µ)‖X ′ .

Then, we obtain via the error-residual-equation (7) and continuity

‖vr‖
2 = 〈vr , vr 〉= r (vr ;µ) = a(e , vr ;µ)≤ γ (µ)‖e‖‖vr‖ .

Hence ‖vr ‖
‖e‖ ≤ γ (µ). We then conclude

ηu (µ) =
∆u (µ)
‖e‖

=
‖vr‖

αLB(µ)‖e‖
≤

γ (µ)

αLB(µ)

and obtain the parameter-independent bound via uniform continuity and coercivity.

Note, that in view of this statement, Cor. 2.20 is a trivial corollary. Still, the
property stated in Cor. 2.20 has a value of its own, and in more complex RB-scenarios
without effectivity bounds it may be all one can get. Due to the proven reliability
and effectivity of the error bounds, these are also denoted error estimators, as they
obviously are equivalent to the error up to suitable constants.

In addition to absolute error bounds, it is also possible to derive relative error
and effectivity bounds. We again refer to [57] for corresponding proofs and similar
statements for other error measures. See also [27] or Exercise 5.9.

Proposition 2.22 (Relative Error Bound and Effectivity). We have for all µ ∈P

‖u(µ)− uN (µ)‖
‖u(µ)‖

≤∆rel
u (µ) := 2 · ‖r (·;µ)‖X ′

αLB(µ)
· 1
‖uN (µ)‖

,

ηrel
u (µ) := ∆rel

u
‖e(µ)‖/‖u(µ)‖ ≤ 3 · γ (µ)

αLB(µ)
, (11)

if∆rel
u (µ)≤ 1.
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Hence, these relative bounds are valid, if the error estimator is sufficiently small.
One can put on different “glasses” when analyzing an error, i.e. use different

norms, and perhaps obtain sharper bounds. This is possible for the current case
by using the (parameter-dependent) energy norm. For this we assume that a is sym-
metric and define

〈u, v〉µ := a(u, v;µ).

This form is positive definite by coercivity of a. Hence, 〈·, ·〉µ is a scalar product and
induces the energy norm

‖u‖µ :=
q

〈u, u〉µ.

By coercivity and continuity of a one can easily see that the energy norm is equivalent
to the norm on X by

Æ

α(µ)‖u‖ ≤ ‖u‖µ ≤
Æ

γ (µ)‖u‖ , u ∈X . (12)

With respect to this norm, one can derive an improved error bound and effectiv-
ity. We omit the proof, and refer to [57] or [27] and Exercise 5.10.

Proposition 2.23 (Energy-norm Error Bound and Effectivity). For µ ∈P with sym-
metric a(·, ·;µ) we have

‖u(µ)− uN (µ)‖µ ≤ ∆en
u (µ) :=

‖r (·;µ)‖X ′
p

αLB(µ)
,

ηen
u (µ) :=

∆en
u

‖e‖µ
≤

s

γ (µ)

αLB(µ)
. (13)

As γ (µ)/αLB(µ)≥ 1 this is an improvement by a square root compared to (10).
The energy norm allows another improvement in the RB-methodology: By choos-

ing a specific µ̄ ∈ P one can choose ‖·‖ := ‖·‖µ̄ as norm on X . Then by definition,
one obtains γ (µ̄) = 1 = α(µ̄). This means that for the selected parameter the effec-
tivity is ηu (µ̄) = 1, hence the error bound exactly corresponds to the error norm.
In this sense, the error bound is optimal. Assuming continuity of α(µ),γ (µ), one
can therefore expect that choosing this norm on X will give highly effective RB-error
bounds also in an environment of µ̄.

We continue with further specialization. For the special case of a compliant prob-
lem, the above RB-scheme (PN (µ)) turns out to be very good; we obtain effectivities
and an output bound that is quadratic in ∆u (µ) instead of only linear. The proof of
this statement can be found in [57] or follows as a special instance from Prop. 2.27 in
the next section, cf. Remark 2.28. Still, as this bound is somehow a central statement,
we give the proof.

Proposition 2.24 (Output Error Bound and Effectivity For “Compliant” Case). If
a(·, ·;µ) is symmetric and l = f (the so called “compliant” case), we obtain the improved
output bound

0≤ s(µ)− sN (µ)≤∆
′
s (µ) :=

‖r (·;µ)‖2
X ′

αLB(µ)
= αLB(µ)∆u (µ)

2 (14)

17



and effectivity bound

η′s (µ) :=
∆′s (µ)

s(µ)− sN (µ)
≤

γ (µ)

αLB(µ)
≤
γ̄

ᾱ
. (15)

Proof. Using a(uN , e) = 0 due to Galerkin orthogonality we obtain (omitting µ for
brevity)

s − sN = l (u)− l (uN ) = l (e) = f (e) (16)
= f (e)− a(uN , e) = r (e) = a(e , e). (17)

Coercivity then implies the first inequality of (14). The second inequality and the
last equality of (14) follow from the error-residual relation and the bound for u:

a(e , e) = r (e)≤ ‖r‖‖e‖ ≤ ‖r‖∆u = ‖r‖
‖r‖
αLB
= αLB∆

2
u . (18)

For the effectivity bound (15) we first note that with Cauchy-Schwarz and norm-
equivalence (12) the Riesz-representative vr satisfies

‖vr‖
2 = 〈vr , vr 〉= r (vr ) = a(e , vr ) = 〈e , vr 〉µ ≤ ‖e‖µ ‖vr‖µ ≤ ‖e‖µ

p
γ ‖vr‖ .

Assuming vr 6= 0 division by ‖vr‖ yields

‖r‖X ′ = ‖vr‖ ≤ ‖e‖µ
p
γ .

For vr = 0 this inequality is trivially satisfied. This allows to conclude using the
definitions and (17)

η′s (µ) =
∆s

s − sN
=
‖r‖2

X ′ /α

a(e , e)
=
‖r‖2

X ′

α‖e‖2
µ

≤
γ ‖e‖2

µ

α‖e‖2
µ

≤
γ̄

ᾱ
.

Note, that the proposition gives a definite sign on the output error, i.e. we always
have sN (µ)≤ s(µ).

We will conclude this section with some experimental results which illustrate
the theoretical findings. These results can be reproduced via the package RBmat-
lab which is available for download at www.morepas.org. It is a package provid-
ing different grid types for spatial discretization, different discretization schemes
for PDEs, and various models and implementations of RB-schemes. One example
is the thermal block model, which is also realized in that package, in particular
the plots in Fig. 3 and the subsequent experiments can be reproduced by the pro-
gram rb_tutorial.m. In the following we recommend to inspect the source code
of that program and verify the following results by running different parts of the
script. If the reader does not want to install the complete package, a standalone

18



script rb_tutorial_standalone.m using some precomputed data files offers the
same functionality. These files are also accessible via www.morepas.org.

We consider the thermal block with B1 = B2 = 2,µmin = 1/µmax = 0.1, choose 5
sampling points µ( j ) = (0.1+0.5( j−1), c , c , c)T , j = 1, . . . , 5 with c = 0.1 and plot the
error estimator ∆u (µ) and true error ‖u(µ)− uN (µ)‖ for µ = (µ1, c , c , c) over µ1.
The results are depicted in Fig. 4a). We can see that the error estimator is finely re-
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Figure 4: Illustration of a) error and error bound and b) effectivity and effectivity
bound over parameter.

solved, as a parameter sweep is computationally cheap thanks to the reduced model.
The true error has been sampled more coarsely, as solving the full problem is more
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tedious. We see that the error bound indeed is an upper bound for the error, confirm-
ing the rigor. Further, we see that the true error indeed is (numerically) zero for the
chosen sampling points, due to the reproduction of solutions, Prop. 2.16. Also the
error bound is zero in these points, as is expected by the vanishing error bound prop-
erty, Cor. 2.20. Finally, the error between sampling points is growing for low-value
intervals. This reflects the requirement that for small diffusivity coefficients denser
sampling is necessary for uniform error distribution. This fact will be supported later
by some a-priori analysis.

If we look at the effectivities in Fig. 4b), we indeed see that ηu (µ) is only well de-
fined for parameters with nonzero error and it is bounded from above by γ (µ)/α(µ)
in accordance with Prop. 2.21. The values of the effectivities are only in the order of
10, which is considered as quite good.

2.4 Primal-Dual RB-Approach
As seen in the previous section, the output error bound∆s (µ) is scaling linearly with
∆u for the general case, Prop. 2.19, and quadratically for the compliant case, Prop.
2.24. By involving a goal-oriented strategy [3] via a corresponding dual problem,
one can improve the output and output error estimation in the sense that the output
error bounds will show this “quadratic” behavior also for non-compliant problems.
For an early reference on the presented RB-approach we refer to [59]. We first define
the full dual problem.

Definition 2.25 (Full Dual Problem (P ′(µ))). For µ ∈P find a solution udu(µ) ∈X
of

a(v, udu(µ);µ) =−l (v;µ), v ∈X .

Again, well-posedness and stability are guaranteed due to coercivity and continu-
ity.

We assume that an RB-space X du
N ⊂X with dimension N du, not necessarily equal

to N , is available, cf. Sec. 2.6 for comments on corresponding basis-generation strate-
gies. Then we can define the primal-dual RB-approach.

Definition 2.26 (Primal-Dual RB-problem (P ′N (µ))). For µ ∈ P let uN (µ) ∈ XN be
the solution of (PN (µ)). Then, find a solution ud u

N (µ) ∈ X du
N and output s ′N (µ) ∈ R

satisfying

a(v, udu
N (µ);µ) = −l (v;µ), v ∈X du

N ,

s ′N (µ) = l (uN (µ))− r (udu
N ;µ).

Again, well-posedness and stability follow by coercivity and continuity.
We observe that compared to the primal output sN (µ) from (2) we have an output

estimate s ′N (µ) using a “correction term” given by the primal residual evaluated at the
dual solution. This “correction” allows to derive sharper error bounds.
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For the primal solution uN (µ) the error bound (8) and effectivity (10) still are
valid. For the dual variable and the corrected output we obtain the following.

Proposition 2.27 (A-posteriori Error and Effectivity Bounds). For all µ ∈ P we
introduce the dual residual

r du(v;µ) :=−l (v;µ)− a(v, udu
N (µ);µ), v ∈X

and obtain a-posteriori error bounds





udu(µ)− udu
N (µ)





 ≤ ∆du
u (µ) :=





r du(·;µ)






X ′

αLB(µ)
,

|s(µ)− s ′N (µ)| ≤ ∆′s (µ) :=





r du(·;µ)






X ′
‖r (·;µ)‖X ′

αLB(µ)
(19)

= αLB(µ)∆u (µ)∆
du
u (µ), (20)

and the effectivity bound

ηdu
u (µ) := ∆du

u (µ)

‖udu(µ)−udu
N (µ)‖

≤ γ (µ)
αLB(µ)

≤ γ̄
ᾱ

.

Proof. The bound and effectivity for the dual solution udu
N (µ) follow with identical

arguments as for the primal solution. For the improved output bound we first note

s − s ′N = l (u)− l (uN )+ r (udu
N ) = l (u − uN )+ r (udu

N )

= −a(u − uN , udu)+ f (udu
N )− a(uN , udu

N )

= −a(u − uN , udu)+ a(u, udu
N )− a(uN , udu

N )

= −a(u − uN , udu− udu
N ). (21)

Therefore, with the dual error edu := udu− udu
N we obtain

|s − s ′N | ≤ |a(e , edu)|= |r (edu)| ≤ ‖r‖X ′





edu






≤ ‖r‖X ′ ·∆
du
u ≤ ‖r‖X ′





r du






X ′
/αLB = αLB∆u∆

du
u .

Assuming∆u (µ)≈∆du
u (µ)≈ h� 1 we see a quadratic dependence of∆′s on h in

contrast to the simple linear dependence in the output estimate and bound of Prop.
2.19. Hence, the primal-dual approach is expected to give much better output error
bounds.

Example 6 (Missing Effectivity Bounds for ∆s (µ),∆
′
s (µ)). Note, that in the general

non-compliant case, we cannot hope to obtain effectivity bounds for the output error es-
timators. The reason for this is that s(µ)− sN (µ) or s (µ)− s ′N (µ) may be zero, while
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∆s (µ),∆
′
s (µ) are not. Hence, the effectivity as quotient of these quantities is not well

defined: Choose vectors vl ⊥ v f ∈ X and a subspace X du
N = XN ⊥ {vl , v f }. For

a(u, v) := 〈u, v〉 , f (v) :=
¬

v f , v
¶

and l (v) := −〈vl , v〉 we obtain u = v f as primal,
udu = vl as dual solution and uN = 0, udu

N = 0 as RB-solutions. Hence e = v f , edu = vl .
This yields s = sN = 0, but r 6= 0 and r du 6= 0 hence ∆s (µ)> 0. Similarly, from (21) we
obtain s − s ′N = −a(e , edu) =

¬

v f , vl

¶

= 0. But r 6= 0 and r du 6= 0, hence ∆′s (µ) > 0.
So, further assumptions, such as in the compliant case, are required in order to derive
output error bound effectivities.

Remark 2.28 (Equivalence of (PN (µ)) and (P ′N (µ)) for Compliant Case). In Prop.
2.24 we have given a quadratic output bound statement for the compliant case. In fact,
that bound is a simple corollary of Prop. 2.27: We first note that (PN (µ)) and (P ′N (µ)) are
equivalent for the compliant case and assuming XN =X du

N : As f = l and a is symmetric,
udu

N (µ) = −uN (µ) solves the dual problem and ∆u (µ) = ∆
du
u (µ). The residual correc-

tion term vanishes, r (udu
N ) = 0 as XN ∈ ker(r ) and therefore s ′N (µ) = sN (µ). Similarly,

equivalence of (P (µ)) and (P ′(µ)) holds, hence edu = −e. Then, from (21) we conclude
that s− sN =−a(e , edu) = a(e , e)≥ 0 and the second inequality in (14) follows from (20).
Therefore, (PN (µ)) is fully sufficient in these cases, and the additional technical burden of
the primal-dual-approach can be circumvented.

2.5 Offline/Online Decomposition
We now address computational aspects of the RB-methodology. We will restrict our-
selves to the primal RB-problem, the primal-dual approach can be treated similarly.
As the computational procedure will assume that (P (µ)) is a high-dimensional dis-
crete problem, we will first introduce the corresponding notation. We assume that
X = span(ψi )

N
i=1 is spanned by a large number of basis functions ψi . We introduce

the system matrix, inner product matrix, and functional vectors as

A(µ) := (a(ψ j ,ψi ;µ))
N
i , j=1 ∈R

N ×N , K := (
¬

ψi ,ψ j

¶

)Ni , j=1 ∈R
N ×N , (22)

f(µ) := ( f (ψi ;µ))
N
i=1 ∈R

N , l(µ) := (l (ψi ;µ))
N
i=1 ∈R

N . (23)

Then, the full problem (P (µ)) can be solved by determining the coefficient vector
u= (ui )

N
i=1 ∈R

N for u(µ) =
∑N

j=1 u jψ j and output from

A(µ)u(µ) = f(µ), s(µ) = l(µ)T u(µ). (24)

We do not further limit the type of discretization. The system matrix may be ob-
tained from a Finite Element, Finite Volume or Discontinuous Galerkin discretiza-
tion. Typically, A(µ) is a sparse matrix, which is always obtained if local differential
operators of the PDE are discretized with basis functions of local support. However,
the RB-methodology can in principle also be applied to discretizations resulting in
full system matrices, e.g. integral equations or equations with non-local differential
terms.
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Let us first start with a rough complexity consideration for computing a full and
reduced solution. We assume that a single solution of (P (µ)) via (24) requires O (N 2)
operations (e.g. resulting fromN steps of an iterative solver based on O (N ) for each
sparse matrix-vector multiplication). In contrast, the dense reduced problem in Prop.
2.11 is solvable in O (N 3) (assuming direct inversion of AN or N steps of an iterative
solver based on O (N 2) for each matrix-vector multiplication). Hence, we clearly see
that the RB-approach requires N �N to realize a computational advantage.

Let us collect the relevant steps for the computation of an RB-solution, (and not
consider orthonormalization or the error estimators for the moment):

1. N snapshot computations via (P (µi )): O (NN 2)

2. N 2 evaluations of a(ϕ j ,ϕi ;µ): O (N 2N )

3. N evaluations of f (ϕi ;µ): O (NN )

4. Solution of the N ×N system (PN (µ)): O (N 3).

So, RB-procedures clearly do not pay off if a solution for a single parameter µ is re-
quired. But in case of multiple solution queries, the RB-approach will pay off due to
a so called offline/online decomposition, as already mentioned in the introduction.
During the offline phaseµ-independent, high-dimensional quantities are precomputed.
The operation count typically depends on N , hence this phase is expensive, but is
only performed once. During the online phase which is performed for many param-
eters µ ∈ P , the offline data is combined to give the small µ-dependent discretized
reduced system, and the reduced solution uN (µ) and sN (µ) are computed rapidly.
The operation count of the online phase is ideally completely independent of N ,
and typically scales polynomially in N .

In view of this desired computational splitting, we see that step 1 above clearly
belongs to the offline phase, while step 4 is part of the online phase. But step 2 and 3
can not clearly be assigned to either of the two phases as they require expensive but as
well parameter-dependent operations. This is where the parameter-separability Def.
2.5 comes into play by suitably dividing steps 2 and 3. The crucial insight is that due
to linearity of the problem, parameter-separability of a, f , l transfers to parameter-
separability of AN , fN , lN .

Corollary 2.29 (Offline/Online Decomposition of (PN (µ))).
(Offline Phase:) After computation of a reduced basis ΦN = {ϕ1, . . . ,ϕN } construct the
parameter-independent component matrices and vectors

AN ,q := (aq (ϕ j ,ϕi ))
N
i , j=1 ∈R

N×N , q = 1, . . . ,QA,

fN ,q := ( fq (ϕi ))
N
i=1 ∈R

N , q = 1, . . . ,Q f ,

lN ,q := (lq (ϕi ))
N
i=1 ∈R

N , q = 1, . . . ,Ql .

(Online Phase:) For a given µ ∈ P evaluate the coefficient functions θa
q (µ), θ

f
q (µ),
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θl
q (µ) for q in suitable ranges and assemble the matrix and vectors

AN (µ) =
Qa
∑

q=1

θa
q (µ)AN ,q , fN (µ) =

Q f
∑

q=1

θ f
q (µ)fN ,q , lN (µ) =

Ql
∑

q=1

θl
q (µ)lN ,q ,

which exactly results in the discrete system of Prop. 2.11, which then can be solved for
uN (µ) and sN (µ).

Note, that the computation of AN ,q can be realized in a very simple way: Let the
reduced basis vectors ϕ j be expanded in the basis {ψi}Ni=1 of the discrete full problem
by ϕ j =

∑N
i=1ϕi , jψi with coefficient matrix

ΦN := (ϕi , j )
N ,N
i , j=1 ∈R

N ×N . (25)

If the component matrices Aq := (aq (ψ j ,ψi ))
N
i , j=1 and the component vectors lq :=

(lq (ψi ))
N
i=1, fq := ( fq (ψi ))

N
i=1 from the full problem are available, the computations

for the reduced matrices and vectors reduce to matrix-vector operations:

AN ,q =Φ
T
N AqΦN , fN ,q =Φ

T
N fq , lN ,q =Φ

T
N lq .

Concerning complexities, we realize that the offline phase scales in the order of
O (NN 2+NN (Q f +Ql )+N 2N Qa), the dominating part being the snapshot com-
putation. We see from Cor. 2.29 that the online phase is computable in O (N 2 ·Qa +
N · (Q f +Ql ) +N 3), in particular completely independent of N . This is the rea-
son why we notationally do not discriminate between the analytical and finite ele-
ment solution: N can be chosen arbitrarily high, i.e. the discrete full solution can
be chosen arbitrarily accurate, without affecting the computational complexity of
the online phase. Certainly, in practice, a certain finiteN must be chosen and then
the reduced dimension N must be adapted. Here it is important to note, that the RB-
approximation and error estimation procedure only is informative as long as N is not
too large and the reduction error is dominating the finite element error. A too large
choice of N for a fixed given N does not make sense. In the limit case N = N we
would have RB-errors and estimators being zero, hence exactly reproduce the discrete
solution, but not the analytical (Sobolev space) solution.

The computational separation can also be illustrated by a runtime diagram, cf.
Fig. 5. Let tfull, toffline, tonline denote the computational time for the single computa-
tion of a solution of (P (µ)), the offline and the single computation of the online phase
of (PN (µ)). Assuming that these times are constant for all parameters, we obtain lin-
ear/affine relations of the overall computation time on the number of simulation
requests k: The overall time for k full solutions is t (k) := k · tfull, while the reduced
model (including offline phase) requires tN (k) := toffline + k · tonline. As noted ear-
lier, the reduced model pays off as soon as sufficiently many, i.e. k > k∗ := toffline

tfull−tonline

simulation requests are expected.
As noted earlier, the certification by a-posteriori error bounds is an important

topic. Hence, we will next address the offline/online decomposition of the a-posteriori
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Figure 5: Runtime behavior of the full and the reduced model with increasing num-
ber k of simulations.

error estimators. The crucial insight is that parameter-separability also holds for the
residuals and hence for the residual norms.

Proposition 2.30 (Parameter-Separability of the Residual). Set Qr :=Q f +NQa and
define rq ∈X ′, q = 1, . . . ,Qr via

(r1, . . . , rQr
) := ( f1, . . . , fQ f

,a1(ϕ1, ·), . . . ,aQa
(ϕ1, ·),

. . . ,a1(ϕN , ·), . . . ,aQa
(ϕN , ·)).

Let uN (µ) =
∑N

i=1 uN ,iϕi be the solution of (PN (µ)) and define θr
q (µ), q = 1, . . . ,Qr by

(θr
1 , . . . ,θr

Qr
) := (θ f

1 , . . . , θ f
Q f

,−θa
1 · uN ,1, . . . ,−θa

Qa
· uN ,1,

. . . ,−θa
1 · uN ,N , . . . ,−θa

Qa
· uN ,N ).

Let vr , vr,q ∈X denote the Riesz-representatives of r, rq , i.e. r (v) = 〈vr , v〉 and rq (v) =
¬

vq ,r , v
¶

, v ∈X . Then the residual and its Riesz-representatives are parameter-separable
via

r (v;µ) =
Qr
∑

q=1

θr
q (µ)rq (v), vr (µ) =

Qr
∑

q=1

θr
q (µ)vr,q , µ ∈P , v ∈X . (26)

Proof. Linearity of a(·, ·;µ) directly implies that the first equation in (26) is a refor-
mulation of r defined in (6). Linearity of the Riesz-map gives the second statement
in (26) for the Riesz-representative.

In the error estimation procedure, it is necessary to compute Riesz-representatives
of linear functionals. We briefly want to comment on how this can be realized.

Lemma 2.31 (Computation of Riesz-representatives). Let g ∈X ′ and X = span(ψi )
N
i=1

with basis functions ψi . We introduce the coefficient vector v = (vi )
N
i=1 ∈ R

N of the
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Riesz-representative vg =
∑N

i=1 viψi ∈ X . Then, v can simply be obtained by solving
the linear system

Kv= g

with vector g = (g (ψi ))
N
i=1 ∈ R

N and (typically sparse) inner product matrix K given
in (22).

Proof. We verify for any test function u =
∑N

i=1 uiψi with coefficient vector u =
(ui )

N
i=1 ∈R

N

g (u) =
N
∑

i=1

ui g (ψi ) = uT g= uT Kv=

*

N
∑

i=1

uiψi ,
N
∑

j=1

v jψ j

+

=
¬

vg , u
¶

.

The parameter-separability of the residual allows to compute the norm of the
residual in an offline/online decomposition.

Proposition 2.32 (Offline/Online Decomposition of the Residual Norm).
(Offline Phase:) After the offline phase of the RB-model according to Cor. 2.29 we define
the matrix

Gr := (rq (vr,q ′))
Qr

q ,q ′=1
∈RQr×Qr

via the residual components rq and their Riesz-representatives vr,q .
(Online Phase:) For given µ and RB-solution uN (µ), we compute the residual coefficient
vector θr (µ) := (θ

r
1 (µ), . . . ,θ

r
Qr
(µ))T ∈RQr and obtain

‖r (·;µ)‖X ′ =
Æ

θr (µ)
T Grθr (µ).

Proof. First we realize that Gr = (
¬

vr,q , vr,q ′
¶

)Qr

q ,q ′=1
due to definition of the Riesz-

representatives. Isometry of the Riesz-map and parameter-separability (26) yield

‖r (µ)‖2
X ′ = ‖vr (µ)‖

2 =

* Qr
∑

q=1

θr
q (µ)vr,q ,

Qe
∑

q ′=1

θr
q ′
(µ)vr,q ′

+

= θr (µ)
T Grθr (µ).

Again, the online phase is independent ofN as it has complexity O (Q2
r ). Com-

pletely analogous, we can compute the dual norm of the output functional used in
the output bound (9); we omit the proof:

Proposition 2.33 (Offline/Online Decomposition of ‖l (·;µ)‖X ′ ).
(Offline Phase:) We compute the Riesz-representatives vl ,q ∈ X of the output functional

components, i.e.
¬

vl ,q , v
¶

= lq (v), v ∈X and define the matrix

Gl := (lq (vl ,q ′))
Ql

q ,q ′=1
∈RQl×Ql .
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(Online Phase:) For given µ compute the functional coefficient vector

θl (µ) := (θ
l
1(µ), . . . ,θ

l
Ql
(µ))T ∈RQl

and obtain

‖l (·;µ)‖X ′ =
Æ

θl (µ)
T Glθl (µ).

A further quantity appearing in relative a-posteriori error estimates is the norm
of uN , which can be similarly decomposed.

Proposition 2.34 (Offline/Online Decomposition of ‖uN (µ)‖).
(Offline Phase:) After the offline phase of the RB-model according to Cor. 2.29 we define
the reduced inner product matrix

KN := (
¬

ϕi ,ϕ j

¶

)Ni , j=1 ∈R
N×N . (27)

(Online Phase:) For given µ and uN (µ) ∈RN computed in the online phase according to
Cor. 2.29 we compute

‖uN (µ)‖=
q

uT
N (µ)KN uN (µ).

Proof. We directly verify that

‖uN‖
2 =

*

∑

i

uN ,iϕi ,
∑

j

uN , jϕ j

+

=
N
∑

i , j=1

uN ,i uN , j

¬

ϕi ,ϕ j

¶

= uT
N KN uN .

Here, too, the online phase is independent of N as it has complexity O (N 2).
Again, KN can be easily obtained by matrix operations. With the full inner product
matrix K defined in (22) and the RB-coefficient matrix ΦN from (25) we compute

KN =Φ
T
N KΦN .

Analogously, for the relative energy norm bound in the symmetric case, the energy
norm can be computed as

‖uN‖
2
µ
= uT

N AN uN .

The remaining ingredient of the a-posteriori error estimators is the computation of
lower bounds αLB(µ) of the coercivity constant. We note that using the uniform
lower bound is a viable choice, i.e. αLB(µ) := ᾱ, if the latter is available/computable
a-priori. Further, for some model problems, α(µ) may be exactly and rapidly com-
putable, hence αLB(µ) := α(µ) may be a valid choice. For example, this is indeed
available for the thermal block model, cf. Exercise 5.11.

A more general approach, the so called min-theta procedure [57], can be applied
under certain assumptions. It makes use of the parameter-separability and the (expen-
sive, offline) computation of a single coercivity constant for the full problem. Then
this lower bound can be evaluated rapidly in the online phase.
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Proposition 2.35 (Min-Theta Approach for Computing αLB(µ)). We assume that the
components of a(·, ·;µ) satisfy aq (u, u) ≥ 0, q = 1, . . . ,Qa , u ∈ X and the coefficient
functions fulfill θa

q (µ) > 0,µ ∈ P . Let µ̄ ∈ P such that α(µ̄) is available. Then we
have

0<αLB(µ)≤ α(µ), µ ∈P

with the lower bound

αLB(µ) := α(µ̄) · min
q=1,...,Qa

θa
q (µ)

θa
q (µ̄)

.

Proof. As 0 < α(µ̄) and 0 < C (µ) := minq θ
a
q (µ)/θ

a
q (µ̄), we have 0 < α(µ̄)C (µ) =

αLB(µ). For all u ∈X holds

a(u, u;µ) =
Qa
∑

q=1

θa
q (µ)aq (u, u) =

Qa
∑

q=1

θa
q (µ)

θa
q (µ̄)

θa
q (µ̄)aq (u, u)

≥
Qa
∑

q=1






min

q ′=1,...Qa

θa
q ′
(µ)

θa
q ′
(µ̄)






θa

q (µ̄)aq (u, u)

= C (µ)a(u, u; µ̄)≥C (µ)α(µ̄)‖u‖2 = αLB(µ)‖u‖
2 .

In particular α(µ) = infu∈X \{0}(a(u, u;µ)/‖u‖2)≥ αLB(µ).

This lower bound is obviously computable in O (Qa), hence fast, if we assume a
small/decent number of components Qa .

For the min-theta approach, we require a single evaluation of α(µ) for µ = µ̄ in
the offline phase. This can be obtained via solving a high-dimensional, hence expen-
sive, eigenvalue problem, cf. [57] for the continuous formulation.

Proposition 2.36 (Computation of α(µ) of Discretized Full Problem). Let A(µ),K ∈
RN ×N denote the high-dimensional discrete system and inner product matrix as given
in (22). Define As (µ) :=

1
2 (A(µ)+AT (µ)) as the symmetric part of A(µ). Then

α(µ) = λmin(K
−1As (µ)), (28)

where λmin denotes the smallest eigenvalue.

Proof. We make use of a decomposition K = LLT , e.g. Cholesky or matrix square
root, a substition v := LT u, and omit the parameter for notational simplicity:

α =infu∈X
a(u,u)
‖u‖2 = infu∈RN

uT Au
uT Ku

= infu∈RN
uT As u
uT Ku

= infv∈RN
vT L−1As L

−T v
vT v

.

Thus α is a minimum of a Rayleigh-quotient, hence the smallest eigenvalue of the
symmetric matrix Ãs := L−1As L

−T . The matrices Ãs and K−1As are similar as

LT (K−1As )L
−T = LT L−T L−1As L

−T = Ãs ,

hence they have identical eigenvalues, which proves (28).
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Certainly, an inversion of K needs to be prevented, hence in practice one can
use an eigenvalue solver which only requires matrix-vector products: As soon as a
product y=K−1As x is required, one solves the system Ky=As x. Alternatively, one
can make use of solvers for generalized eigenvalue problems of the form As u= λKu
and determine the smallest generalized eigenvalue.

Concerning computational complexity for the a-posteriori error estimators∆u (µ)
and∆s (µ) we obtain as offline-complexity O (N 3+N 2(Q f +Ql +NQa)+N Q2

l
).

The dominating part corresponds to an eigenvalue problem in cubic complexity for
the computation of α(µ̄) for the min-theta-procedure. Then, the online phase merely
scales as O ((Q f +NQa)

2+Q2
l
+Qa), again fully independent of the high dimension

N .
There also exist techniques for computing upper bounds γUB(µ) of continuity

constants γ (µ), cf. Exercise 5.12 for a max-theta approach. This allows to evaluate
effectivity bounds according to (10), etc. online.

For problems where the min-theta approach cannot be applied, the so called Suc-
cessive Constraint Method (SCM) [40] is an option. Based on precomputation of
many α(µ(i)) in the offline phase, in the online phase a small linear optimization
problem is solved for any new µ ∈P , which gives a rigorous lower bound αLB(µ).

Definition 2.37 (Successive Constraint Method (SCM)). Let a(·, ·;µ) be uniformly
coercive with respect to µ and parameter separable with Q := Qa components. Let
C , D ⊂P be finite subsets and Mα, M+ ∈N. Define

Y :=
¦

y = (y1,. . ., yQ ) ∈R
Q |∃u ∈X with yq = aq (u, u)/‖u‖2, q = 1,. . .,Q

©

.

We define a target function J :P ×RQ →R by

J (µ, y) :=
Q
∑

q=1

θa
q (µ)yq

and a polytope BQ by

σ−q := inf
u∈X

aq (u, u)

‖u‖2
, σ+q := sup

u∈X

aq (u, u)

‖u‖2
, (29)

BQ :=
Q
∏

q=1

[σ−q ,σ+q ]⊂R
Q . (30)

For M ∈N,µ ∈P define PM (µ,C )⊂C by

PM (µ,C ) :=







M −nearest neighbours of µ in C if 1≤M ≤ |C |
C if |C | ≤M
; if M = 0.
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Then, we define for µ ∈P the sets

YLB(µ) := {y ∈ BQ |J (µ′, y)≥ α(µ′)∀µ′ ∈ PMα
(µ,C ) and

J (µ′, y)≥ 0∀µ′ ∈ PM+
(µ, D)}

YUB := {y∗(µ′)|µ′ ∈C } with y∗(µ′) := argminy∈Y J (µ′, y)

and herewith the quantities

αLB(µ) := min
y∈YLB(µ)

J (µ, y), αUB(µ) := min
y∈YUB

J (µ, y). (31)

With the above definitions, it is easy to show the bounding property:

Proposition 2.38 (Coercivity Constant Bounds by SCM). For all µ ∈P holds

αLB(µ)≤ α(µ)≤ αUB(µ). (32)

Proof. First we see that

α(µ) = inf
u∈X \{0}

∑Q
q=1θ

a
q (µ)aq (u, u)

‖u‖2
=min

y∈Y
J (µ, y). (33)

Further we see that YUB ⊂ Y ⊂ YLB(µ). For the first inclusion we verify for any
y ∈ YUB that there exists µ′ ∈C with

y = y∗(µ′) = argmin
ȳ∈Y

J (µ′, ȳ),

thus y ∈ Y . For the second inclusion we choose y ∈ Y , thus y ∈ BQ and see for any
µ′ ∈C

α(µ′) =min
ȳ∈Y

J (µ′, ȳ)≤ J (µ′, y).

Analogously, for any µ′ ∈D

0<α(µ′)≤ J (µ′, y).

Hence, y ∈ YLB(µ). The nestedness of the sets then yields

min
y∈YLB(µ)

J (µ, y)≤min
y∈Y

J (µ, y)≤ min
y∈YUB

J (µ, y)

which directly implies (32) with the definition of the bounds (31) and (33).

For a fixed µ the function J is obviously indeed linear in y, which implies the
necessity to solve of a small linear optimization problem in the online phase. For
further details on the SCM, we refer to [40, 63].

This concludes the section as we provided offline/online computational proce-
dures to evaluate all ingredients required for efficient computation of the reduced
solution, a-posteriori error estimates and effectivity bounds.
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2.6 Basis Generation
In this section, we address the topic of basis generation. While this point can be seen
as a part of the offline phase for generation of the reduced model, it is such a central
issue that we devote this separate section to it. One may ask why the basis generation
was not presented prior to the RB-methodology of the previous sections. The reason
is that the basis generation will make full use of the presented tools of Sec. 2.3 and 2.5
for constructively generating a problem-dependent reduced basis.

We already used the most simple reduced basis type earlier:

Definition 2.39 (Lagrangian Reduced Basis). Let SN := {µ(1), . . . ,µ(N )} ⊂ P be such
that the snapshots {u(µ(i))}Ni=1 ⊂X are linearly independent. We then call

ΦN := {u(µ(1)), . . . , u(µ(N ))}

a Lagrangian reduced basis.

An alternative to a Lagrangian Reduced basis may be seen in a Taylor reduced
basis [21] where one includes sensitivity derivatives of the solution around a certain
parameter, e.g. a first order Taylor reduced basis

ΦN := {u(µ(0)),∂µ1
u(µ(0)), . . . ,∂µp

u(µ(0))}.

While this basis is expected to give rather good approximation locally around µ(0),
a Lagrangian reduced basis has the ability to provide globally well-approximating
models if SN is suitably chosen, cf. the interpolation argument of Rem. 2.18.

As we are aiming at global approximation of the manifoldM we define a corre-
sponding error measure. We would be interested in finding a space XN of dimension
N minimizing

EN := sup
µ∈P
‖u(µ)− uN (µ)‖ . (34)

This optimization over all subspaces of a given dimension N is a very complex
optimization problem. Hence, a practical relaxation is an incremental procedure:
Construct an approximating subspace by iteratively adding new basis vectors. The
choice of each new basis vector is led by the aim of minimizing EN . This is the ratio-
nale behind the greedy procedure, which was first used in an RB-context in [71] and
meanwhile is standard for stationary problems. It incrementally constructs both the
sample set SN and the basis ΦN . We formulate the abstract algorithm and comment
on practical aspects and choices for its realization. As main ingredient we require an
error indicator ∆(Y,µ) ∈R+ that predicts the expected approximation error for the
parameter µ when using XN = Y as approximation space.

Definition 2.40 (Greedy Procedure). Let Strain ⊂P be a given training set of parame-
ters and εtol > 0 a given error tolerance. Set X0 := {0}, S0 = ;,Φ0 := ;, n := 0 and define
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iteratively

while εn := max
µ∈Strain

∆(Xn ,µ)> εtol (35)

µ(n+1) := arg max
µ∈Strain

∆(Xn ,µ)

Sn+1 := Sn ∪{µ
(n+1)}

ϕn+1 := u(µ(n+1))
Φn+1 := Φn ∪{ϕn+1}
Xn+1 := Xn ⊕ span(ϕn+1)

n ← n+ 1
end while.

The algorithm produces the desired RB-space XN and basis ΦN by setting N :=
n+1 as soon as (35) is false. We can state a simple termination criterion for the above
algorithm: If for all µ ∈P and subspaces Y ⊂X holds that

u(µ) ∈ Y ⇒∆(Y,µ) = 0, (36)

then the above algorithm terminates in at most N ≤ |Strain| steps, where | · | indicates
the cardinality of a given set. The reason is that with (36) no sample in Strain will be
selected twice. This criterion will be easily satisfied by reasonable indicators.

Alternatively, the first iteration, i.e. determination of µ(1) is frequently skipped
by choosing a random initial parameter vector.

The greedy procedure generates a Lagrangian reduced basis with a carefully se-
lected sample set. The basis is hierarchical in the sense that Φn ⊂ Φm for n ≤ m. This
allows to adjust the accuracy of the reduced model online by varying its dimension.

The training set Strain is mostly chosen as a (random or structured) finite subset.
The maximization then is a linear search. The training set must represent P well in
order to not “miss” relevant parts of the parameter domain. In practice it should be
taken as large as possible.

Remark 2.41 (Choice of Error Indicator ∆(Y,µ)). There are different options for
the choice of the error indicator ∆(Y,µ) in the greedy procedure, each with advantages,
disadvantages and requirements.

i) Projection error as indicator: In some cases, it can be recommended to use the above
algorithm with the best-approximation error (which is an orthogonal projection
error)

∆(Y,µ) := inf
v∈Y
‖u(µ)− v‖= ‖u(µ)− PY u(µ)‖ .

Here, PY denotes the orthogonal projection onto Y . In this version of the greedy
procedure, the error indicator is expensive to evaluate as high-dimensional opera-
tions are required, hence Strain must be of moderate size. Also, all snapshots u(µ)
must be available, which possibly limits the size of Strain due to memory constraints.
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Still the advantage of this approach is that the RB-model is decoupled from the ba-
sis generation: No RB-model or a-posteriori error estimators are required, the al-
gorithm purely constructs a good approximation space. By statements such as the
best-approximation relation, Prop. 2.14, one can then be sure that the correspond-
ing RB-model using the constructed XN will be good. This version of the greedy
algorithm will be denoted strong greedy procedure.

ii) True RB-error as indicator: If one has an RB-model available, but no a-posteriori
error bounds, one can use

∆(Y,µ) := ‖u(µ)− uN (µ)‖ .

Again, in this version of the greedy procedure, the error indicator is expensive to
evaluate, hence Strain must be of moderate size. And again, all snapshots u(µ)must
be available, limiting the size of Strain. The advantage of this approach is that the
error criterion which is minimized exactly is the measure used in EN in (34).

iii) A-posteriori error estimator as indicator: This is the recommended approach, if
one has both an RB-model and an a-posteriori error estimator available. Hence we
choose

∆(Y,µ) :=∆u (µ).

The evaluation of ∆(Y,µ) = ∆u (µ) (or a relative estimator) is very cheap, hence
the sample set Strain can be chosen much larger than when using a true RB- or
projection-error as indicator. By this, the training set Strain can be expected to be
much more representative for the complete parameter space in contrast to a smaller
training set. No snapshots need to be precomputed. In the complete greedy proce-
dure only N high-dimensional solves of (P (µ)) are required. Hence, the complete
greedy procedure is expected to be rather fast. This version of the greedy algorithm
is called a weak greedy, as will be explained more precisely in the subsequent con-
vergence analysis.

Note that all of these choices for ∆(Y,µ) satisfy (36): This statement is trivial for i) the
projection error. For the RB-error ii) it is a consequence of the reproduction of solutions,
Prop. 2.16, and for the a-posteriori error estimators, it is a consequence of the vanishing
error bound, Cor. 2.20. Hence the greedy algorithm is guaranteed to terminate.

Alternatively, one can also use goal-oriented indicators, i.e.∆(Y,µ) = |s(µ)− sN (µ)|
or ∆s (µ). One can expect to obtain a rather small basis which approximates s(µ) very
well, but u(µ) will possibly not be well approximated. In contrast, by using the above in-
dicators i), ii), iii), one can expect to obtain a larger basis, which accurately approximates
u(µ) as well as the output s(µ).

Note, that in general one cannot expect monotonical decay of εn for n = 1, . . . ,N.
Only in certain cases this can be proven, cf. Exercise 5.13.

Remark 2.42 (Overfitting, quality measurement). The error sequence {εn}Nn=0 gener-
ated by the greedy procedure in (35) is only a training error in statistical learning ter-
minology. The quality of a model, its generalization capabilities, can not necessarily be
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concluded from this due to possible overfitting. This means that possibly

max
µ∈P
∆(XN ,µ)� εN .

If εtol is sufficiently small, for example, we obtain N = |Strain| and we will have the train-
ing error εN = 0. But the model is very likely not exact on the complete parameter set.
Hence, it is always recommended to evaluate the quality of a model on an independent
test set Stest ⊂P , which is not related to Strain.

We give some hints on theoretical foundation of the above greedy procedure. Un-
til recently, this algorithm seemed to be a heuristic procedure that works very well
in practice in various cases. Rigorous analysis was not available. But then a use-
ful approximation-theoretic result has been formulated, first concerning exponential
convergence [9], then also for algebraic convergence [5]. It states that ifM can be
approximated well by some linear subspace, then the greedy algorithm will identify
approximation spaces which are only slightly worse than these optimal subspaces.
The optimal subspaces are defined via the Kolmogorov n-width defined as the maxi-
mum error of the best-approximating linear subspace

dn(M ) := inf
Y⊂X

dimY=n

sup
u∈M
‖u − PY u‖ . (37)

The convergence statement [5] adopted to our notation and assumptions then
can be formulated as follows; we omit the proof.

Proposition 2.43 (Greedy Convergence Rates). Let Strain = P be compact, and the
error indicator∆ chosen such that for suitable γ ∈ (0,1] holds





u(µ(n+1))− PXn
u(µ(n+1))





≥ γ sup
u∈M





u − PXn
u




 . (38)

i) (Algebraic convergence rate:) if dn(M )≤M n−α for some α, M > 0 and all n ∈N and
d0(M )≤M then

εn ≤C M n−α, n > 0

with a suitable (explicitly computable) constant C > 0.
ii) (Exponential convergence rate:) if dn(M )≤M e−anα for n ≥ 0, M ,a,α > 0 then

εn ≤C M e−cnβ , n ≥ 0

with β := α/(α+ 1) and suitable (explicitly computable) constants c ,C > 0.

Remark 2.44 (Strong versus Weak Greedy). If γ = 1 (e.g. obtained for the choice 2.41i),
∆(Y,µ) := ‖u(µ)− PY u(µ)‖) the algorithm is called a strong greedy, while for γ < 1
the algorithm is called weak greedy algorithm. Note, that (38) is valid in the case of
∆(Y,µ) := ∆u (µ), i.e. 2.41iii), due to the Lemma of Céa (Prop. 2.14), the effectivity
(Prop. 2.21) and the error bound property (Prop. 2.19). Using the notation uN (µ),∆u (µ)
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for the RB-solution and estimator using the corresponding intermediate spaces Xn for
1≤ n ≤N we derive




u(µ(n+1))− PXn
u(µ(n+1))





= inf
v∈Xn





u(µ(n+1))− v






≥
α(µ)

γ (µ)





u(µ(n+1))− uN (µ
(n+1))





≥
α(µ)

γ (µ)ηu (µ)
∆u (µ

(n+1))

=
α(µ)

γ (µ)ηu (µ)
sup
µ∈P
∆u (µ)≥

α(µ)

γ (µ)ηu (µ)
sup
µ∈P
‖u(µ)− uN (µ)‖

≥
α(µ)

γ (µ)ηu (µ)
sup
µ∈P





u(µ)− PXn
u(µ)





≥
ᾱ2

γ̄ 2
sup
µ∈P





u(µ)− PXn
u(µ)





 .

Hence, a weak greedy algorithm with parameter γ := ᾱ2

γ̄ 2 ∈ (0,1] is obtained.

As a result the greedy algorithm is theoretically well founded. Now merely the
question arises, when “good approximability” is to be expected for a given problem.
A positive answer has been given in [52, 57]. The assumptions in the statement are,
for example, satisfied for the thermal block with B1 = 2,B2 = 1, fixing µ1 = 1 and
choosing a single scalar parameter µ :=µ2.

Proposition 2.45 (Global Exponential Convergence for p = 1). LetP = [µmin,µmax]⊂
R+ with 0 < µmin < 1,µmax = 1/µmin. Further, assume that a(u, v;µ) := µa1(u, v) +
a2(u, v) is symmetric, f is not parameter-dependent, a := ln µmax

µmin
> 1

2e and N0 :=
1+ b2ea + 1c. For N ∈ N define SN via µmin = µ

(1) < . . . < µ(N ) = µmax with log-
arithmically equidistant samples and XN the corresponding Lagrangian RB-space. Then

‖u(µ)− uN (µ)‖µ
‖u(µ)‖µ

≤ e−
N−1
N0−1 ,µ ∈P ,N ≥N0.

With uniform boundedness of the solution and norm-equivalence we directly ob-
tain the same rate (just with an additional constant factor) for the error ‖u(µ)− uN (µ)‖.

We proceed with further aspects concerning computational procedures.

Remark 2.46 (Training Set Treatment). There are several ways, how the training set
can be treated slightly differently, leading to improvements.

i) Multistage Greedy: The first approach aims at a runtime acceleration: Instead of
working with a fixed large training set Strain, which gives rise to O (|Strain|) runtime com-
plexity in the greedy algorithm, one generates coarser subsets of this large training set:

S (0)
train
⊂ S (1)

train
⊂ . . .⊂ S (m)

train
:= Strain.

Then, the greedy algorithm is started on S (0)
train

resulting in a basis ΦN (0) . This basis is
used as starting basis for the greedy algorithm on the next larger training set. And this
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procedure is repeated until the greedy is run on the complete training set, but with a large
starting basis ΦN (m−1) . The rationale behind this procedure is that many iterations will be
performed on small training sets, while the few final iterations still guarantee the precision
on the complete large training set. Overall, a remarkable runtime improvement can be
obtained, while the quality of the basis is not expected to degenerate too much. Such an
approach has been introduced as multistage greedy procedure [65].

ii) Training set adaptation: The next procedure aims at adaptation of the training
set in order to realize uniform error distribution over the parameter space. For a given
problem it is not clear a-priori, how the training set should be chosen best. If the training
set is chosen too large, the offline runtime may be too high. If the training set is too
small, overfitting may easily be obtained, cf. Rem. 2.42. The idea of the adaptive training
set refinement [29, 30] is to start the greedy with a coarse set of training parameters,
which are vertices of a mesh on the parameter domain. Then, in the finite element spirit,
a-posteriori error estimators for subdomains are evaluated, grid cells with large error
are marked for refinement, the marked cells are refined and the new vertices added to
the training set. By this procedure, the training set is adapted to the problem at hand.
The procedure may adaptively identify “difficult” parameter regions for example small
diffusion constant values and refine more in such regions.

iii) Randomization: A simple idea allows to implicitly work with a large training
set: When working with randomly drawn parameter samples, one can draw a new set
Strain in each greedy loop iteration. Hereby, the effective parameter set that is involved
in the training is virtually enlarged by a factor N. This idea and refinements have been
presented in [37].

iv) Full optimization: In special cases, a true (local) optimization over the parameter
space in (35), i.e. Strain =P can be realized, too [68]. The choice of a large training set is
then reduced to a choice of a small set of multiple starting points for the highly nonlinear
optimization procedure.

Remark 2.47 (Parameter Domain Partitioning). The greedy procedure allows to pre-
scribe accuracy via εtol and obtain a basis of size N that is a-priori unpredictable and
hence the final online runtime is unclear. It would be desirable to control both the accu-
racy (by prescribing εtol) as well as the online runtime (by demanding N ≤ Nmax). The
main idea to obtain this is via parameter domain partitioning:

i) hp-RB-approach [20, 19]: Based on adaptive bisection of the parameter domain into
subdomains, a partitioning of the parameter domain is generated (h-adaptivity). Then,
small local bases can be generated for the different subdomains. If the accuracy and basis
size criterion are not both satisfied for a subdomain, this subdomain is again refined and
bases on the subdomains are generated. Finally, one has a collection of problems of type
(PN (µ)), where P now is reduced to each of the subdomains of the partitioning. For a
newly given µ in the online phase, merely the correct subdomain and model need to be
identified by a search in the grid hierarchy. This method balances offline cost, both in
terms of computational and storage requirements, against online accuracy and runtime.

ii) P-partition: A variant of parameter domain partitioning using hexaedral parti-
tioning of the parameter space guarantees shape-regularity of the subdomains [29]. The
method prevents partitioning into long and thin areas, as can happen in the hp-RB-
approach. Instead of two stages of partitioning and then piecewise basis generation, this
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approach has a single stage: For a given subdomain a basis generation is started. As soon
as it can be predicted that the desired accuracy cannot be met with the currently prescribed
maximum basis size, the basis generation is stopped (early stopping greedy), the subdomain
is uniformly refined into subdomains and the basis generation is restarted on all child el-
ements. The prediction and early stopping of the greedy procedure is crucial, otherwise
Nmax basis vectors would have been generated on the coarse element, before one detects
that the basis must be discarded and the element must be refined. This prediction there-
fore is based on an extrapolation procedure, estimating the error decay by the decrease of
the error for only a few iterations. For more details we refer to [29].

We want to draw the attention to the conditioning issue: If µ(i) ≈ µ( j ) it can be
expected due to continuity that the two snapshots u(µ(i)), u(µ( j )) are almost linearly
dependent. Hence, the corresponding rows/columns of the reduced system matrix
AN will be almost linearly dependent and hence AN possibly be badly conditioned.
As seen in Prop. 2.12 orthonormalization of a basis may improve the conditioning
of the reduced system. Interestingly, this can be realized via the Gramian matrix,
i.e. the matrix KN of inner products of the snapshots, and does not involve further
expensive high-dimensional operations. For some interesting properties of Gramian
matrices, we refer to Exercise 5.14. Using the Gramian matrix, the Gram-Schmidt
orthonormalization can then be performed by a Cholesky factorization.

Proposition 2.48 (Orthonormalization of Reduced Basis). AssumeΦN = {ϕ1, . . . ,ϕN }
to be a reduced basis with Gramian matrix denoted KN . Choose C := (LT )−1 ∈ RN×N

with L being a Cholesky-factor of KN = LLT . We define the transformed basis Φ̃N :=
{ϕ̃1, . . . ϕ̃N } by ϕ̃ j :=

∑N
i=1 Ci jϕi . Then Φ̃N is the Gram-Schmidt orthonormalized basis.

Again the proof is skipped and left as Exercise 5.15. If we are working with a
discrete (P (µ)) and the initial basis is given via the coefficient matrix ΦN ∈ RN ×N

and K ∈ RN ×N denotes the full inner-product matrix, then the Gramian matrix is
obtained by (27), the matrix C can be computed as stated in the proposition and the
coefficient matrix of the transformed basis is simply obtained by the matrix product
Φ̃N = ΦC. Actually, instead of Gram-Schmidt also other transformations are viable,
cf. Exercise 5.16.

We briefly comment on basis generation for the primal-dual RB-approach.

Remark 2.49 (Basis Generation for Primal-Dual-Approach). The a-posteriori error
bound in Prop. 2.27 suggests to choose the dimensionality of XN ,X du

N such that∆u (µ)≤
εtol and∆du

u (µ)≤ εtol in order to obtain the “squared” effect in the error bound. For con-
struction of XN ,X d u

N one could proceed as follows: i) Run independent greedy procedures
for the generation of XN ,X du

N by using (P (µ)) and (P ′(µ)) as snapshot suppliers, using
the same tolerance εtol and∆u (µ) and∆du

u (µ) as error indicator. ii) Run a single greedy
procedure based on the output error bound ∆′s (µ) and add snapshots of the solutions of
(P (µ)), (P ′(µ)) either in a single space X or in separate spaces XN ,X du

N in each iteration.

We conclude this section with some experiments which are contained in the script
rb_tutorial.m in our toolbox RBmatlab. In particular, we continue the previous
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Figure 6: Error convergence for Lagrangian reduced basis with equidistant snapshots.

Figure 7: Plot of 8 orthogonal basis functions of an equidistant Lagrangian reduced
basis.

38



experiments on the thermal block model from Sec. 2.1 with a focus on the basis
generation. In Fig. 6 we demonstrate the error and error bound convergence when
using a Lagrangian reduced basis with equidistantly sampled parameter set. For this
example we choose B1 = B2 = 3 and µ = (µ1, 1, . . . , 1) with µ1 ∈ [0.5,2]. The error
and error bound are measured as a maximum over a random test set of parameters
Stest with |Stest| = 100. We observe nice exponential error decay with respect to the
sample size N for both the error and the error bound. A typical effect is the flattening
or saturation of the error bound at values of about 10−7, when using double values.
This is explained by and expected due to numerical accuracy problems, as the error
bound is a square root of a residual norm, the accuracy of which is limited by machine
precision. The first 8 basis vectors of the corresponding orthonormalized Lagrangian
reduced basis are illustrated in Fig. 7. We clearly see the steep variations of the basis
functions around the first subblock Ω1.
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Figure 8: Maximum test error and error bound for greedy reduced basis generation
for B1 = B2 = 2.

Finally, we investigate the results of the greedy procedure. For µmin = 1/µmax =
0.5 and B1 = B2 = 2 we choose a training set of 1000 random points, εtol = 10−6 and
the field error estimator as error indicator, i.e. ∆(Y,µ) :=∆u (µ). We again measure
the quality by determining the maximum error and error bound over a random test
set of size 100. The results are plotted in Fig. 8 and nicely confirm the exponential
convergence of the greedy procedure for smooth problems. With growing block
number B1 = B2 = 2,3,4 the problem is getting more complicated as is indicated in
Fig. 9, where the slope of the greedy training estimator curves (εn)n∈N obviously is
flattening.
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Figure 9: Maximum training error estimator of the greedy procedure for varying
block numbers.

2.7 Empirical Interpolation Method
As last approach of this section, we comment on an important general interpolation
procedure, the empirical interpolation (EI) method [2, 51], that can be used in RB-
methods for several purposes. In particular the procedure can be used in the case,
where the given problem does not allow for a parameter separable representation.
The EI-method then generates a parameter separable approximation, which can be
used as approximate full problem. The notion empirical is motivated by the fact
that it is based on function snapshots for parametric function interpolation. The
EI-method selects a basis, that can be used in addition to the reduced basis, which is
therefore called collateral basis. The procedure is another instance of a greedy type
procedure.

Definition 2.50 (Empirical Interpolation Method, Offline Phase). Let Ω⊂Rd be an
open bounded domain, G ⊂ C 0(Ω̄) a bounded closed set of functions and εtol,EI a given
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error tolerance. Set Q0 := ;,X0 := {0},T0 := ;, m = 0 and define iteratively

while εm := max
g∈G
‖g − Im(g )‖∞ > εtol,EI (39)

gm+1 := argmax
g∈G
‖g − Im(g )‖∞

rm+1 := gm+1− Im(gm+1)
xm+1 := argmax

x∈Ω̄
|rm+1(x)|

Tm+1 := Tm ∪{xm+1}
qm+1 := rm+1/rm+1(xm+1)

Qm+1 := Qm ∪{qm+1}
Xm+1 := span(Qm+1)

m ← m+ 1
end while.

Here, Im : C 0(Ω̄)→ Xm denotes the interpolation operator with respect to the interpo-
lation points Tm ⊂ Ω̄, and the interpolation space Xm , i.e. the unique operator with
Im(g )(xm′) = g (xm′), m′ = 1, . . . , m, g ∈G.
The algorithm produces an interpolation space XM and points TM by setting M := m+1
as soon as the loop condition (39) is false.

We give some remarks on practical implementation of the procedure, the assumed
function regularity, the collateral basis and the interpolation points.

Remark 2.51 (Practical Implementation). First, if |G|=∞ then a finite subset Gtrain ⊂
G is used instead of G for practical purposes. Similarly, Ω is usually replaced by a finite
set of pointsΩtrain ⊂Ω to obtain a computable algorithm. Further, instead of the accuracy
termination criterion (39), the final dimension M can be specified as input parameter (as
long as M ≤ dimspan(G)) and the extension loop can be terminated as soon as M is
reached.

Remark 2.52 (Function Regularity). The formulation assumes continuous functions,
which can directly be extended to arbitrary functions, which allow point evaluations.
Note, that in this respect L∞, as frequently assumed in literature, is not sufficient for a
well-defined scheme.

Remark 2.53 (Collateral Basis). The sets QM are called collateral bases. They are hier-
archical in the sense that QM ⊂QM+1. Further they have the property that qm(xm′) = 0
for m′ < m.

Remark 2.54 (Magic Points). Surprisingly, when choosing a set of polynomials G =
{x i}ni=1 on Ω̄ = [−1,1], the resulting points are such that cos−1(TM ) is roughly equidis-
tant [27]. This is an interesting fact, as this makes the points have a similar charac-
teristic as the optimal point set for polynomial interpolation, which are the Tschebysheff
points. This motivates the notion “magic points” [51] for the TM , as the heuristic proce-
dure “magically” produces point sets, which are known to be optimal. Certainly, a fact
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indicating that this is not a real surprise, is that the interpolation points are automati-
cally determined in a greedy fashion to minimize the supremum norm of the resulting
interpolation residual. This optimality with respect to the supremum norm is exactly
the property of the Tschebysheff points. While theoretically optimal interpolation point
sets are only known for simple geometries, the EI is straightforwardly applicable to any
arbitrarily shaped domain Ω, rendering it a powerful interpolation technique.

Given the offline data QM ,TM of the EI, the online phase, i.e. the actual interpo-
lation, can be easily formulated.

Proposition 2.55 (Empirical Interpolation, Online Phase). Let a collateral basis QM
and interpolation points TM be given from the offline phase of the EI. Then, the matrix

QM := (q j (xi ))
M
i , j=1 ∈R

M×M (40)

is a lower triangular matrix with 1 diagonal, hence regular. Set the vector g ∈C 0(Ω̄),gM :=
(g (xi ))

M
i=1 ∈R

M and let αM = (αi )
M
i=1 ∈R

M be the solution of the linear equation system

QMαM = gM .

Then the interpolation of g is simply

IM (g ) =
M
∑

i=1

αi qi . (41)

Proof. The fact that the system matrix is lower triangular with 1 diagonal simply
follows from the definition. For the interpolation property we directly see that both
sides of (41) coincide in the interpolation points i = 1, . . . , M :

M
∑

j=1

α j q j (xi ) =
M
∑

j=1

(QM )i jαi = (QMαM )i = (g)i = g (xi ) = IM (g )(xi ).

As for other interpolation techniques, the relation to the best approximation is of
interest, which is reflected by the Lebesgue constant. For any interpolation operator
I : C 0(Ω̄)→XM , the Lebesgue constant is defined as

ΛM :=max
x∈Ω̄

M
∑

i=1

|ξi (x)|

where ξi are nodal basis functions with respect to the interpolation points. Then for
any interpolation operator and any u ∈C 0(Ω̄) holds

‖u − I (u)‖∞ ≤ (1+ΛM ) inf
v∈XM

‖u − v‖∞ .

Now, for the EI the Lebesgue constant can be upper bounded. The following
result holds [51].
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Proposition 2.56 (Lebesgue Constant Bound). For the EI-operator IM the Lebesgue
constant can be upper bounded by

ΛM ≤ 2M − 1.

and the bound is sharp.

This statement is quite pessimistic, as much better Lebesgue constants can be
observed in practice. However, the bound on the Lebesgue constant is sharp, as
examples can be constructed, where this bound is attained.

In contrast, an optimistic result is given in the following. Similar as for the (RB)
greedy procedure, also for the EI-offline procedure approximation rate statements
can be given. For example a central result of [51] is the following.

Proposition 2.57 (A-priori Convergence Rate). If there exists a sequence of exponen-
tially approximating subspaces, i.e. Z1 ⊂ Z2 ⊂ . . . span(G) with dimZM =M for M ∈N
and there exist c > 0,α > log(4) such that

inf
v∈ZM

‖u − v‖∞ ≤ c e−αM , ∀u ∈G, M ∈N

then the EI offline phase yields almost as good spaces in the sense that

‖u − IM (u)‖∞ ≤ c e−(α−log(4))M .

In addition to such a-priori convergence statements, also a-posteriori error con-
trol is possible.

Proposition 2.58 (A-posteriori Error Estimation for EI). Let IM , IM ′ be EI-operators
for M ′ > M with corresponding collateral basis and interpolation points. Set the ma-
trix Q := (q j (xi ))

M ′
i , j=M+1 ∈ R

(M ′−M+1)×(M ′−M+1). For g ∈ C 0(Ω̄) let g′ := (g (xi )−
IM (g )(xi ))

M ′
i=M+1 and α′ := (α′i )

M ′
i=M+1 = Q−1g′. If g ∈ span(QM ′) then the following

a-posteriori error bounds hold:

‖g − IM (g )‖∞ ≤ ∆EI,∞(g ) :=


α′




1 =
M ′
∑

i=M+1

|α′i |, (42)

‖g − IM (g )‖L2 ≤ ∆EI,2(g ) :=
q

(α′)T KQα
′ (43)

where

KQ :=
�∫

Ω
qi q j

�M ′

i , j=M+1
.

The proof is left as a simple exercise using the nestedness of the interpolation
matrices QM and QM ′ and the definitions.

In this bound, a certain exactness for a higher EI-index M ′ >M is assumed for ex-
act certification. This assumption can be widely found, e.g. [24, 73]. An alternative,
which requires a certain smoothness knowledge instead of this exactness assumption,
has been presented in [18].

A useful property is the following, which states conservation of linear operations.
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Proposition 2.59 (Conservation Property). Let f ∈
�

C 0(Ω̄)
�′

be a linear functional
on continuous functions and f (g ) = 0 for all g ∈G. Then we also have

f (IM (g )) = 0, ∀g ∈G.

Proof. By linearity we immediately have f (g ) for all g ∈ span(G). As QM ⊂ span(G)
by construction, the claim follows by linearity of the interpolation operator.

An intuitive example of such functionals are conservation of zeros/roots: If f is
a point evaluation in x̄ and g (x̄) = 0 for all g ∈G, then also IM (g )(x̄) = 0. This can
for instance be used in the conservation of zero entries in the interpolation of sparse
vectors or (vectorized) sparse matrices [73].

Another example could be the interpolation of zero-mean functions: If
∫

Ω g = 0
for all g ∈ G, then also

∫

Ω IM (g ) = 0. This can be beneficial in the interpolation of
conservative operators [17]. Similarly, one could imagine interpolation of divergence
free velocity fields in fluid dynamics, etc.

Now we will establish the connection to the previous sections, i.e. apply the EI
in a parametric context and formulate an EI-RB-scheme. In particular we provide
EI-approximations for problems with non-separable data functions.

Definition 2.60 (EI for Parametric Functionals). Let X ⊂ L2(Ω) and f ∈ X ′ be a
parametric continuous linear form of the type

f (v;µ) =
∫

Ω
g (x;µ)v(x)d x (44)

for g (·;µ) ∈ C 0(Ω̄). In general g and f may be non parameter separable. Then set
G := {g (·;µ)|µ ∈P } and compute the EI offline data QM = {qi}Mi=1 and TM = {xi}Mi=1

according to Def. 2.50. Then we obtain parameter-separable approximations g̃ , f̃ for g
and f by

g̃ (·;µ) := IM (g (·;µ)) =
M
∑

m=1

θm(µ) g̃m(·) (45)

f̃ (v;µ) :=
∫

Ω
g̃ (x;µ)v(x)d x =

M
∑

m=1

θm(µ) f̃m (46)

with components g̃m := qm , f̃m :=
∫

Ω g̃m v and coefficient function vector

(θ1(µ), . . .θM (µ))
T :=Q−1

M g(µ)

using the local evaluation vector g(µ) := (g (x1;µ), . . . , g (xM ;µ))T and interpolation
matrix QM as in (40).

Similar parameter separable approximation can be obtained for non-parameter
separable bilinear forms, e.g. a(u, v;µ) :=

∫

Ω c(x;µ)∇u(x) · ∇v(x)d x by EI for c.
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Hereby, a non-parameter separable problem of type (P ) with solution u can be
approximated by EI of the data functions resulting in an approximate variational
form (P̃ ) with solution ũ.

For simplicity, in the following we ignore the output functional.

Proposition 2.61 (EI-approximated Full Problem (P̃ (µ))). Assume that a(·, ·;µ) is
a continuous bilinear form, uniformly coercive in µ and f (·;µ) is uniformly bounded
with respect to µ. Assume that the EI-approximations are sufficiently accurate in the sense
that we have εa ,ε f ∈R with εa < ᾱ such that for all u, v ∈X ,µ ∈P

|a(u, v;µ)− ã(u, v;µ)| ≤ εa ‖u‖‖v‖ , | f (v;µ)− f̃ (v;µ)| ≤ ε f ‖v‖ . (47)

Then the forms ã, f̃ are continuous and ã is coercive with coercivity lower bound α̃ :=
α− εa > 0, hence the following problem has a unique solution ũ(µ) ∈X

ã(ũ, v;µ) = f̃ (v;µ), v ∈X (48)

which satisfies ‖ũ‖ ≤ ‖ f̃ ‖X ′/α̃.

Proof. Continuity of the approximated forms simply follows by

| f̃ (v)| ≤ | f̃ (v)− f (v)|+ | f (v)| ≤ ε f ‖v‖+ ‖ f ‖X ′ ‖v‖= (ε f + ‖ f ‖X ′)‖v‖

and similar for ã. For the coercivity we obtain

ã(u, u)

‖u‖2
=

a(u, u)− (a(u, u)+ ã(u, u))

‖u‖2
≥

a(u, u)

‖u‖2
−
|a(u, u)− ã(u, u)|

‖u‖2

≥ α− εa = α̃ > 0.

The remaining statements follow by the Lax-Milgram theorem.

This statement is valid for any approximation procedure. Specifically for the EI
and the previous example for f in (44), it is easy to see that the ε f can be related to
the error bounds (assuming their validity):

| f (v)| − f̃ (v)|=
�

�

�

�

∫

Ω
(g − g̃ )v

�

�

�

�

≤ ‖g − g̃‖L2 ‖v‖L2 ≤∆EI,2(g (·;µ))‖v‖H 1 .

Hence, choosing ε f ≥ supµ∈P ∆EI,2(g (·;µ)) will guarantee the validity on the f -
approximation assumption in (47). Similarly, for the bilinear form a(u, v) =

∫

Ω c(·;µ)∇u·
∇v we can satisfy the assumption on a in (47) by choosing εa ≥ supµ∈P ∆EI,∞(c(·;µ)).
So, εa can be made small by ensuring that the ∆EI,∞(c(·;µ)) are small, i.e. the EI is
sufficiently accurate. Now, the RB-machinery of the previous sections can be applied
to generate an approximate well-posed reduced problem (P̃N ) with solution ũN and
the error ũ − ũN can be quantified by the presented estimators. However, for con-
trolling the complete error u − ũN the interpolation error needs to be additionally
estimated. This can be obtained by a disturbance argument.
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Proposition 2.62 (A-posteriori Error Estimator for EI-RB-Approximation). Let u(µ) ∈
X be the solution of the non parameter separable problem (P ) and ũN (µ) be the RB-
approximation of the EI-approximated system (P̃ (µ)). Then we have the error bound

‖u − ũN‖ ≤∆EI(µ)+∆ũ (µ) (49)

where∆ũ (µ) denotes the standard RB error bound for the error ũ − ũN analogous to (8)
and∆EI is an appropriate empirical interpolation error contribution

∆EI(µ) :=
1

α
ε f +

‖ f̃ ‖X ′

α(α− εa)
εa . (50)

Proof. We first note by definitions of (P ) and (P̃ )

a(u − ũ, v) = a(u, v)− a(ũ, v) = f (v)− f̃ (v)+ ã(ũ, v)− a(ũ, v) =: r̃ (v),

where the second equality follows from adding 0 = f̃ (v)− ã(ũ, v) = 0. Using the
approximation property yields

‖ r̃‖X ′ ≤ ε f + εa ‖ũ‖ .

Then, Lax-Milgram together with the bound for ũ from Prop. 2.61 allows to con-
clude

‖u − ũ‖ ≤
1

α
‖ r̃‖ ≤

1

α
ε f +

‖ f̃ ‖X ′

α(α− εa)
εa =∆EI(µ). (51)

The overall bound (49) then follows by the triangle inequality.

3 Instationary Problems
In this section, we aim at extending the methodology to time-dependent problems.
Historically, time-dependent problems have even been the motivation for reduced
basis modelling [1, 4, 41, 58], in particular in the context of fluid flow and for the pur-
pose of understanding complexity in turbulence. However, these techniques were not
certified by error estimation and not subject to offline/online decomposition, etc. as
presented for the stationary case. The first publication known to us dealing with cer-
tified RB-method for instationary problems can be found in [24, 26], where parabolic
problems were considered. A central result of that work, a space-time energy norm
error estimator, will be given in a reformulated fashion in this section. Otherwise,
the formulations and techniques of this section are now based on our previous work
[31] and comprise also new results by following the pattern of the previous section.
In particular we will proceed in parallel to the stationary case and sequentially prove
similar results with the same notions.

Instead of giving a variational formulation, we consider an alternative operator-
based formulation in the current section. This will in particular allow an RB-approach
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for finite difference or finite volume discretizations of hyperbolic equations, which
are usually not motivated by a variational formulation. However, note that all of the
following could as well be formulated in a variational fashion.

We admit that by the focus and choice of the presentation in this section we are
clearly biased to our own previous work, as most other articles on RB-methods for
instationary problems with variational discretizations use corresponding weak forms
of the PDE. For such formulations and RB-schemes, we refer to [20, 19, 25, 24, 26,
44, 47, 67].

3.1 Model Problem
As model problem we consider a linear advection-diffusion problem on a rectangular
domain Ω = (0,2)× (0,1) with end time T = 1, i.e. for given µ find u(x, t ;µ) as
solution of

∂t u(µ)+∇ · (v(µ)u(µ)− d (µ)∇u(µ)) = 0 in Ω× (0,T )

with suitable initial condition u(x, 0;µ) = u0(x;µ) and Dirichlet boundary condi-
tions. The initial and time-variant inhomogeneous Dirichlet boundary values gD (x, t )
are based on a nonnegative radial basis function linearly decaying over time with cen-
ter on the top edge at x1 = 1/2. The velocity field is chosen as a superposition of two
divergence free parabolic velocity fields in x1 and x2-direction with weighting factor
1 and µ1, i.e.

v(x;µ) =
�

µ1

5

2
(1− x2

2 ),−
1

2
(4− x2

1 )
�T

.

The diffusivity is chosen as d (µ) := 0.03 ·µ2 resulting in a parametrization of the
velocity and diffusivity by (µ1,µ2) ∈ [0,1]2. Note, that the above problem is chang-
ing type with parameter, i.e. for µ2 = 0 we obtain a hyperbolic problem, while for
µ2 > 0 it is parabolic. Some solution snapshots over time (using a FV-discretization,
details will be reported in the experiments at the end of Sec. 3.5) are presented in Fig.
10, each column representing a time evolution of a different parameter.

3.2 Full Problem
The above problem is an example of a general linear evolution problem of the type

∂t u −L (u;µ) = q(µ) in Ω× (0,T )
u(0) = u0(µ) in Ω

With Ω ⊂ Rd the spatial domain, [0,T ] the time-interval with final time T > 0, L
denotes a linear spatial differential operator, q an inhomogeneity and u0 the initial
values.

The full problem will be based on a time-discrete formulation based on K ∈ N
steps in time, stepsize ∆t := T /K and time instants t k := k∆t , k = 0, . . . ,K . For
notational convenience, we assume constant ∆t , though varying time-step widths
can easily be incorporated in the following.
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Figure 10: Illustration of shapshots of the advection diffusion example: initial data
(top) and time evolution at time t = 0.5 (middle row) and t = 1 (bottom) for param-
eter vectors µ= (0,0)T , (1,0)T , (1,1)T from left to right.

We again assume that X is a Hilbert space with inner product 〈·, ·〉 and norm
‖·‖ and we seek the solution variable uk (µ) ∈ X with uk (x;µ)≈ u(x, t k ;µ) for k =
0, . . . ,K . We assume a general explicit/implicit time-discretization withL k

I (µ),L
k

E (µ) :
X →X linear continuous operators and b k (µ) ∈X . Note, thatL k

I ,L k
E , b k will typ-

ically depend on∆t , hence these operators reflect both the time-discretization as well
as the space discretization. For simplicity we assume u0 ∈X , otherwise an initial data
projection needs to be included. Then, the problem for the discrete solution can be
formulated as a time-marching evolution scheme.

Definition 3.1 (Full Evolution Problem (E(µ))). For µ ∈ P find a sequence of solu-
tions {uk (µ)}Kk=0

⊂ X by starting with u0(µ) ∈ X and iteratively solving the following
operator equations for uk+1(µ)

L k
I (µ)u

k+1(µ) =L k
E (µ)u

k (µ)+ b k (µ), k = 0, . . . ,K − 1.

We omit output estimation here, and give comments on this in Rem. 3.13. We
again formulate some requirements for well-posedness.

Definition 3.2 (Uniform Continuity and Coercivity). The parametric operators are as-
sumed to be continuous with continuity constants γ k

I (µ) :=




L k
I (µ)





 ,γ k
E (µ) :=





L k
E (µ)





.
The continuity is assumed to be uniform with respect to µ and t in the sense that for
some γ̄I , γ̄E <∞ holds γ k

I (µ)≤ γ̄I , γ k
E (µ)≤ γ̄E for all µ and k. Further,L k

I is assumed
to be coercive, i.e. there exists a constant

αk
I (µ) := inf

v∈X \{0}

¬

L k
I (µ)v, v

¶

‖v‖2
> 0
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and the coercivity is uniform with respect to µ and t in the sense that for some ᾱI > 0
holds αk

I (µ)≥ ᾱI for all µ and k. Similarly, for b k (µ) we assume uniform boundedness

by




b k (µ)




≤ γ̄b for suitable γ̄b .

Under these assumptions, one obtains well-posedness and stability of the problem
(E(µ)).

Proposition 3.3 (Well-posedness and Stability of (E(µ))). The solution trajectory {uk (µ)}Kk=0
of (E(µ)) is well-defined and bounded by





uk (µ)




≤




u0






�

γ̄E

ᾱI

�k

+
γ̄b

ᾱI

 

k−1
∑

i=0

�

γ̄E

ᾱI

�i!

. (52)

Proof. Well-definedness of the solution in iteration k follows by Lax-Milgram, uni-
form continuity/coercivity and gives the bound





uk+1




≤
1

ᾱI

�

γ̄E





uk




+ γ̄b

�

.

The bound (52) then easily follows by induction.

The constants γ̄E , γ̄b and ᾱI , and herewith the constant on the right hand side of
(52) depend on ∆t . Hence the behavior for ∆t → 0 is of interest. One can show
that the solution does not diverge with decreasing∆t , under some conditions on the
continuity and coercivity constant. We leave the proof of the following as Exercise
5.17.

Proposition 3.4 (Uniform Boundedness with respect to ∆t ). Let γ̄E ≤ 1, ᾱI = 1+
α∆t and γ̄b =C∆t with α,C independent of∆t . Then

lim
K→∞





uK




≤ e−αT




u0




+ C̃ T

with explicitly computable,∆t -independent constant C̃ .

Note, that this statement is a very coarse qualitative statement. Certainly stronger
results such as convergence of uK (µ) (and for any other t ) are usually expected (and
provided) by reasonable discretizations, i.e. instantiations of (E(µ)).

Again, we assume parameter-separability analogous to Def. 2.5 for later efficient
offline/online-decomposition. In contrast to the stationary case, we assume that the
time dependency also is encoded in the coefficient functions such that the compo-
nents are parameter- and time-independent.

Definition 3.5 (Parameter-Separability). We assume the operators L k
I ,L k

E , b k to be
parameter-separable, i.e. there exist coefficient functions θk

I ,q : P → R and parameter-
independent continuous linear operatorsLI ,q : X →X for q = 1, . . . ,QI such that

L k
I (µ) =

QI
∑

q=1

θk
I ,q (µ)LI ,q
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and similar definitions forL k
E , b k and u0 with corresponding coefficient functions θk

E ,q (µ),

θk
b ,q
(µ), θu0,q (µ), componentsLE ,q , bq , u0

q and number of components QE ,Qb ,Qu0 .

Assuming Lipschitz-continuity of the coefficient functions with respect toµ, one
can derive Lipschitz-continuity of the solution similar to Prop. 2.7. Also, sensitivity
equations for instationary problems can be obtained similar to Prop. 2.8, which is
made use of in the context of parameter optimization, cf. [15].

Several examples fit into the framework of the above problem (E(µ)).

Example 7 (Finite Element Formulation for a Diffusion Problem). For an implicit fi-
nite element discretization of a diffusion problem with homogeneous Dirichlet boundary
data we can choose X := span{φi}Ni=1 ⊂H 1

0 (Ω) as the space of piecewise linear functions
on the grid T assigned with the H 1

0 (Ω) inner product. The variational time marching
form of parabolic problems

m(uk+1, v)+∆t a(uk+1, v) = m(uk , v), v ∈X

with m(u, v) :=
∫

Ω uv,a(u, v) :=
∫

Ω d∇u · ∇v and L2(Ω) orthogonal projection of the
initial data u0 := PX u0 then can directly be transfered to the operator formulation by
defining b k := 0 and the operators implicitly via

¬

L k
E u, v

¶

:= m(u, v),
¬

L k
I u, v

¶

:= m(u, v)+∆t a(u, v), u, v ∈X .

Parameter-separability of the data functions will result in parameter-separable operators.
However, note that this Galerkin formulation does not allow (large) advection terms or
vanishing diffusion unless accepting possible instability, as the implicit spatial discretiza-
tion operator may become non-coercive.

Example 8 (Finite Volume Discretization for Advection Problem). Given a trian-
gulation T = {Ti}Ni=1 of Ω ⊂ Rd one can choose the discrete basis functions ψi :=
χTi

, i = 1, . . . ,N of characteristic functions of the grid elements. Then we define X :=
span{ψi}Ni=1 ⊂ L2(Ω) a Finite Volume space of piecewise constant functions with the
L2(Ω) inner product. An explicit Euler forward time-discretization of an advection prob-
lem with Dirichlet boundary data bdir and velocity field v can then easily be formulated.
For this we first define u0 = PX u0 ∈ X as L2-projection of given initial data u0 to piece-
wise constant functions and defineL k

I := I d as the identity on X . Using for example a
Lax-Friedrichs numerical flux with parameter λ > 0 [49], we obtain b k =

∑

i b k
i ψi ∈X

with

b k
i :=−

∆t

|Ti |

∑

j∈Ndir(i)

|ei j |
2
[v(ci j ) ·ni j −λ

−1]bdir(ci j ),

where Ndir(i) is the set of indices enumerating the Dirichlet boundary edges of Ti , |ei j | is
the length and ci j the centroid of the corresponding edge and |Ti | indicates the volume of
element Ti . The operatorL k

E is specified via its operation on a vector of unknowns, i.e. for
all w =

∑

i wiψi and w ′ :=L k
E w =

∑

i w ′iψi with vectors of unknowns w,w′ ∈ RN
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we assume w′ = L̂k
E w with matrix L̂k

E ∈R
N ×N defined by entries

(L̂k
E )i ,l :=







1− ∆t
|Ti |
∑

j∈Nint(i)∪Ndir(i)
|ei j |

2 [v(ci j ) ·ni j +λ
−1] for l = i

− ∆t
|Ti |
|ei l |

2 [v(ci l ) ·ni l +λ
−1] for l ∈Nint(i)

0 otherwise

where Nint(i) are the neighboring element indices of Ti . Note that this discretization
scheme requires a CFL condition, i.e. sufficiently small ∆t in order to guarantee a stable
scheme. Similarly, diffusion terms or additional Neumann boundary values can be dis-
cretized as explicitly specified in [31]. Our additional requirements are satisfied under
suitable assumptions on the data functions: Again, parameter-separability and uniform
continuity of the data functions result in parameter-separability and uniform continuity
of the operators. The implicit operator (the identity) clearly is uniformly coercive indepen-
dent of the data functions. In particular, this example gives a discretization and hence
results in an RB-method for a hyperbolic problem. Also, it can be shown that the assump-
tions of Prop. 3.4 are satisfied.

Example 9 (Finite Differences). Similar to the Finite Volume example, also Finite Dif-
ference discretizations can be treated with the current evolution and RB-formulation.
Given Ωh = {xi}Ni=1 ⊂ Ω̄ as discrete set of grid points used for the finite difference dis-
cretization, we define X := span{δxi

}Ni=1 as the set of indicator functions δxi
: Ωh → R

of the discrete point set, and assign it with a discrete inner product, e.g. an approxima-
tion of a L2 inner product 〈u, v〉 :=

∑N
i=1 wi u(xi )v(xi ) for u, v ∈ X with weights

wi ∈ R. Again, parameter-separability of the data functions will result in parameter-
separable finite difference operators. Uniform boundedness of the data in combination
with continuous evaluation functionals results in uniformly bounded operators.

To conclude this section, we summarize that (E(µ)) captures quite general PDEs
(hyperbolic, parabolic), which have a time-derivative of first order and arbitrary spa-
tial differential operator. Further, different spatial discretization techniques are al-
lowed: FV, FD, FE or DG schemes, etc. Different time-discretizations are allowed:
Euler forward/backward, or Crank-Nicolson. Also operator splitting is allowed: dif-
ferent parts of the continuous differential operatorL may be discretized implicitly,
others explicitly.

3.3 RB-Approach
We again assume the availability of an RB-space XN with reduced basisΦN = {ϕ1, . . . ,ϕN },
N ∈N. We give a procedure for basis generation in Sec. 3.5.

Definition 3.6 (RB-Problem (EN (µ))). Forµ ∈P find a sequence of solutions {uk
N (µ)} ⊂

XN by starting with u0
N (µ) := PXN

u0(µ) and iteratively solving

L k
I ,N (µ)u

k+1
N (µ) =L k

E ,N (µ)u
k
N (µ)+ b k

N (µ), k = 0, . . .K − 1,

with reduced operators and reduced inhomogeneity

L k
N ,I (µ) = PXN

◦L k
I (µ), L k

N ,E (µ) = PXN
◦L k

E (µ), b k
N (µ) = PXN

b k (µ),
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where PXN
: X →XN denotes the orthogonal projection with respect to 〈·, ·〉.

The well-posedness and stability of {uk
N } follow exactly identical to Prop. 3.3.

We again can state a simple consistency property, which is very useful for validating
program code as commented in Rem. 2.17.

Proposition 3.7 (Reproduction of Solutions). If for someµ ∈P we have {uk (µ)}Kk=0
⊂

XN then uk
N (µ) = uk (µ) for k = 0, . . . ,K.

Proof. The statement follows by induction. For k = 0 we have u0 ∈XN and PXN
|XN
=

I d , therefore u0
N = PXN

u0 = u0. For the induction step assume that uk = uk
N . With

(EN (µ)) we obtain

0 =L k
I ,N uk+1

N −L k
E ,N uk

N − b k
N = PXN

�

L k
I uk+1

N −L k
E uk

N − b k
�

. (53)

Using (E(µ)) and uk = uk
N we verify −L k

E uk
N − b k = −L k

I uk+1 and (53) reduces
to PXN

�

L k
I (u

k+1
N − uk+1)

�

= 0. This means L k
I ek+1 ⊥ XN using the abbreviation

ek+1 := uk+1 − uk+1
N . But by the assumption uk+1 ∈ XN we also have ek+1 ∈ XN .

Hence uniform coercivity implies

0=
¬

L k
I ek+1, ek+1

¶

≥ ᾱI





ek+1






2

proving ek+1 = 0 and, hence, uk+1 = uk+1
N .

Proposition 3.8 (Error-Residual Relation). Forµ ∈P we define the residualR k (µ) ∈
X via

R k (µ) :=
1

∆t

�

L k
E (µ)u

k
N (µ)−L

k
I (µ)u

k+1
N (µ)+ b k (µ)

�

, k = 0, . . . ,K − 1. (54)

Then, the error ek (µ) := uk (µ)− uk
N (µ) ∈X satisfies the evolution problem

L k
I (µ)e

k+1(µ) =L k
E (µ)e

k (µ)+R k (µ)∆t , k = 0, . . . ,K − 1. (55)

Proof. Using (E(µ)) and (EN (µ)) yields

L k
I ek+1 = L k

I uk+1−L k
I uk+1

N

= L k
E uk + b k −L k

E uk
N +L

k
E uk

N −L
k

I uk+1
N =LE ek +∆tR k .

The following a-posteriori error bound simply follows by applying the a-priori
bounding technique of Prop. 3.3 to the error-evolution of Prop. 3.8.
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Proposition 3.9 (A-posteriori Error Bound X -norm). Let γUB(µ) and αLB(µ) be com-
putable upper/lower bounds satisfying

γ k
E (µ)≤ γUB(µ)≤ γ̄E , αk

I (µ)≥ αLB(µ)≥ ᾱI , µ ∈P , k = 0, . . . ,K .

Then, the RB-error can be bounded by




uk (µ)− uk
N (µ)





 ≤ ∆k
u (µ) with

∆k
u (µ) :=





e0






�

γUB(µ)

αLB(µ)

�k

+
k−1
∑

i=0

�

γUB(µ)

αLB(µ)

�k−i−1 ∆t

αLB(µ)





R i




 .

Proof. The error-residual relation (55) and the Lax-Milgram theorem imply the recur-
sion





ek+1




≤
γUB(µ)

αLB(µ)





ek




+
∆t

αLB(µ)





R k




 .

Then, the bound follows by induction.

The bound can be simplified by ensuring that u0
q ∈XN : Then by linear combina-

tion u0(µ) ∈ XN and with reproduction of solutions, see Prop. 3.7, we get


e0


= 0,
consequently the corresponding term in the error bound vanishes. We will return to
this in Rem. 3.24.

Note, that there is no simple way to obtain effectivity bounds for this error es-
timator. Numerically, effectivities of this error bound may be large. Nevertheless,
the error bound is rigorous, thus if the error bound is small, the true error is ensured
also to be small, usually even some orders of magnitude better. Additionally, the
error bound predicts zero error a-posteriori:

Proposition 3.10 (Vanishing Error Bound). If uk (µ) = uk
N (µ) for all k = 0, . . . ,K

then∆k
u (µ) = 0, k = 0, . . . ,K.

Proof. If uk = uk
N , k = 0, . . . ,K we conclude with (E(µ)) and the residual definition

(54) thatR k = 0 and hence∆k
u (µ) = 0.

The above general estimators can be improved, if more structure or knowledge
about the problem is available. The following is a result from [24, 26] and applies to
implicit discretizations of symmetric parabolic problems, cf. Example 7. For this, we
additionally assume

L k
E (µ) =Lm(µ), L k

I (µ) =Lm(µ)+∆tLa(µ), (56)

for k = 0, . . . ,K andLa ,Lm : X →X being continuous linear operators independent
of t and ∆t . Here Lm can correspond to a general mass term and La can represent
a stiffness term. Correspondingly, we additionally assume symmetry

〈Lm(µ)u, v〉= 〈u,Lm(µ)v〉 , 〈La(µ)u, v〉= 〈u,La(µ)v〉 , u, v ∈X ,µ ∈P , (57)
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positive definiteness ofLm and coercivity ofLa :

〈Lm(µ)u, u〉> 0, u 6= 0, α(µ) := inf
u 6=0

〈La(µ)u, u〉
‖u‖2

> 0,µ ∈P . (58)

Then, Lm ,La induce scalar products and we can define the following µ-dependent
space-time energy norm for u = (uk )Kk=1

∈X K

‖u‖µ :=

 

¬

Lm(µ)u
K , uK

¶

+∆t
K
∑

k=1

¬

La(µ)u
k , uk

¶

!1/2

Then the following error bound can be proven.

Proposition 3.11 (A-posteriori Error Bound, Space-Time Energy Norm). Under
the assumptions (56) – (58) we have for the solutions u(µ) := (uk (µ))Kk=1

, uN (µ) :=
(uk

N (µ))
K
k=1

of (E(µ)) and (EN (µ))

‖u(µ)− uN (µ)‖µ ≤∆
en
u (µ) with

∆en
u (µ) :=

 

¬

Lm(µ)e
0, e0

¶

+
∆t

αLB(µ)

K−1
∑

i=0





R i (µ)






2
!1/2

,

where αLB(µ) is a computable lower bound of the coercivity constant of La , i.e. 0 <
αLB(µ)≤ α(µ).

Proof. The proof [24]makes repeated use of Young’s inequality, i.e. for all ε,a, b ∈R
holds ab ≤ 1

2ε2 a2 + 1
2ε

2b 2. Starting with the error evolution equation (55), making
use of the additive decomposition (56) and taking the scalar product with ek+1 yields
¬

Lm ek+1, ek+1
¶

+∆t
¬

La ek+1, ek+1
¶

=
¬

Lm ek , ek+1
¶

+∆t
¬

R k , ek+1
¶

. (59)

The first term on the right hand side can be bounded by Cauchy-Schwartz and
Young’s inequality with ε= 1:

¬

Lm ek , ek+1
¶

≤
¬

Lm ek , ek
¶1/2¬

Lm ek+1, ek+1
¶1/2

≤
1

2

¬

Lm ek , ek
¶

+
1

2

¬

Lm ek+1, ek+1
¶

.

The second term on the right hand side of (59) can be bounded by Young’s inequality
with ε2 = α and coercivity:

∆t
¬

R k , ek+1
¶

≤ ∆t




R k










ek+1






≤ ∆t
� 1

2α





R k






2
+

1

2
α




ek+1






2
�

≤ ∆t
� 1

2α





R k






2
+

1

2

¬

La ek+1, ek+1
¶

�

.
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Then, (59) implies

1

2

¬

Lm ek+1, ek+1
¶

−
1

2

¬

Lm ek , ek
¶

+
1

2
∆t
¬

La ek+1, ek+1
¶

≤∆t
1

2α(µ)





R k






2
.

Summation over k = 0, . . . ,K yields a telescope sum and simplifies to

1

2

¬

Lm eK , eK
¶

−
1

2

¬

Lm e0, e0
¶

+
1

2
∆t

K
∑

k=1

¬

La ek , ek
¶

≤
K−1
∑

k=0

∆t

2α





R k






2
.

Multiplication with 2 and adding the e0-term gives the statement.

Remark 3.12 (Extensions). Extensions of the error estimator ∆en
u (µ) exist. For exam-

ple, LI may be non-coercive [48], orLE may be ∆t -dependent [31], i.e. one can allow
also explicit discretization contributions as obtained in Euler forward or Crank Nicol-
son time discretization. More error estimators can be derived by a space-time (Petrov-)
Galerkin viewpoint, cf. [67, 74].

Remark 3.13 (Output Estimation). We did not yet address output estimation for the
instationary case. This can be realized in simple or in more advanced ways, similar to the
approaches of Sec. 2. Possible outputs in time-dependent scenarios can be time-dependent
outputs s k (µ) at each time step or a single scalar quantity s (µ) for the complete time-
trajectory. For this, the problem (E(µ)) can be extended by l k ∈X ′, k = 0, . . . ,K and

s k (µ) = l k (uk ;µ), k = 0, . . . ,K , s(µ) =
∑K

k=0 s k (µ).

Then, one possibility for output estimation is the direct extension of the procedure of Def.
2.9: The reduced problem can be extended by

s k
N (µ) := l k (uk

N ;µ), k = 0, . . . ,K , sN (µ) :=
K
∑

k=0

s k
N (µ).

Then, output error bounds are obtained using continuity of the output functionals:

|s k (µ)− s k
N (µ)| ≤ ∆k

s (µ) :=




l k (·;µ)






X ′
∆k

u (µ), k = 0, . . . ,K ,

|s(µ)− sN (µ)| ≤ ∆s (µ) :=
K
∑

k=0

∆k
s (µ).

This procedure again is admittedly very coarse. First, as only a “linear” dependence on
the state error bound is obtained, and secondly, as the possible bad effectivity of the state
bounds is inherited to the output bounds. Using a primal-dual technique, better estimates
of single outputs can be obtained, cf. [24]. The dual problem to a scalar output of an in-
stationary problem is a backward-in-time problem, where the inhomogeneities are given
by the output functionals. Then, similar to Def. 2.26, an output correction can be per-
formed by the primal residual applied to the dual solution, and output error bounds can
be obtained which have the “squared” effect as in (20).
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3.4 Offline/Online Decomposition
The offline/online decomposition is analogous to the stationary case. The main in-
sight is that with time-independent operator components, the offline storage does not
grow with K , but is independent of the time-step number. Herewith we again obtain
an online phase, which is independent of the dimension H of the spatial discretiza-
tion.

We again assume that X = span(ψi )
N
i=1 is a discrete high-dimensional space of

dimensionN , we are given the inner product matrix K and system matrix and vector
components

K := (
¬

ψi ,ψ j

¶

)Ni , j=1 ∈R
N ×N , bq := (

¬

bq ,ψi

¶

)Ni=1 ∈R
N ,

LI ,q := (
¬

LI ,qψ j ,ψi

¶

)Ni , j=1 ∈R
N ×N , LE ,q := (

¬

LE ,qψ j ,ψi

¶

)Ni , j=1 ∈R
N ×N ,(60)

for q = 1 . . . ,Qb , and QI ,QE , respectively, and u0
q = (u

0
q ,i )
N
i=1 ∈ R

N , q = 1, . . . ,Qu0

the coefficient vector of u0
q =

∑N
i=1 u0

q ,iψi ∈ X . For a solution of (E(µ)), one can
assemble the system components by evaluating the coefficient functions and linear
combinations

u0(µ) =
Qu0
∑

q=1

θu0,q (µ)u
0
q , bk (µ) =

Qb
∑

q=1

θk
b ,q (µ)bq ,

Lk
I (µ) =

QI
∑

q=1

θk
I ,q (µ)LI ,q , Lk

E (µ) =
QE
∑

q=1

θk
E ,q (µ)LE ,q ,

and iteratively solve

Lk
I (µ)u

k+1 = Lk
E (µ)u

k +bk (µ), k = 0, . . .K − 1, (61)

in order to obtain the vector of unknowns uk = (uk
i )
N
i=1 ∈R

N of uk =
∑N

i=1 uk
i ψi ∈

X .

Remark 3.14 (Time Evolution for Non-Variational Discretizations). For variational
discretizations, e.g. finite elements, the matrices LI ,q ,LE ,q are exactly the components of
the FEM mass or stiffness matrices, hence assembly is clear. For non-variational discretiza-
tions such as Finite Differences or Finite Volumes one can apply the current technique by
assuming a quadrature approximation of the L2(Ω) scalar product based on the current
grid points, cf. Example 8 and 9. In both cases, K will be a diagonal matrix. The dis-
cretization for FD or FV schemes is frequently not given in terms of the above variational
matrices, but matrices and vectors of unknowns are given by point-evaluations of the op-
erator results, i.e. if v =L u for u, v ∈X , then a linear operatorL : X →X is realized
by a matrix operation v = L̂u. The relation to a matrix L = (

¬

Lψ j ,ψi

¶

)Ni , j=1 of type

(60) is simple: Set v =Lψ j , then v= L̂e j and

(L)i j = eT
i Le j =

¬

Lψ j ,ψi

¶

= 〈v,ψi 〉= 〈ψi , v〉= eT
i Kv= eT

i KL̂e j .
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Hence L=KL̂. Therefore, the evolution step (61) reads

KL̂k
I (µ)u

k+1 =KL̂k
E (µ)u

k +Kb̂k (µ), k = 0, . . .K − 1,

hence, one can also omit K in the evolution for the solution of (E(µ)). In particular this
procedure is implemented in RBmatlab and used in the experiments of this section.

Now, the offline-online decomposition of (EN (µ)) is straightforward:

Proposition 3.15 (Offline/Online Decomposition of (EN (µ))).
(Offline Phase:) After computation of a reduced basis ΦN = {ϕ1, . . . ,ϕN } compute the

parameter- and time-independent matrices and vectors

bN ,q := (
¬

bq ,ϕi

¶

)Ni=1 ∈R
N , LN ,I ,q := (

¬

LI ,qϕ j ,ϕi

¶

)Ni , j=1 ∈R
N×N ,

u0
N ,q := (

D

u0
q ,ϕi

E

)Ni=1 ∈R
N , LN ,E ,q := (

¬

LE ,qϕ j ,ϕi

¶

)Ni , j=1 ∈R
N×N .

(Online Phase:) For a given µ ∈ P evaluate the coefficient functions θk
I ,q (µ), θ

k
E ,q (µ),

θu0(µ) and θk
b
(µ), assemble the reduced system matrices and vectors

Lk
N ,I (µ) :=

QI
∑

q=1

θk
I (µ)LN ,I ,q , Lk

N ,E (µ) :=
QE
∑

q=1

θk
E (µ)LN ,E ,q ,

bk
N (µ) :=

Qb
∑

q=1

θk
b (µ)bN ,q , k = 0, . . . ,K − 1

and solve the discrete reduced evolution system by u0
N :=

∑Qu0

q=1θu0,q (µ)u
0
N ,q and

Lk
N ,I (µ)u

k+1
N = Lk

N ,E (µ)u
k
N +bk

N (µ), k = 0, . . . ,K − 1.

Again, the computational procedure for obtaining the components is very simple:
If we again assume the reduced basis to be given as coefficient matrix ΦN ∈ RN ×N ,
the components can be computed by

LN ,E ,q :=ΦT LE ,qΦ, LN ,I ,q :=ΦT LI ,qΦ, bN ,q :=ΦT bq , u0
N ,q :=ΦT u0

q .

The offline/online decomposition of the error estimators can also be realized.
Computational procedures for obtaining upper continuity and lower coercivity bounds
have been addressed in Sec. 2.5. The remaining ingredient for ∆k

u (µ) or ∆en
u is again

an efficient computational procedure for the residual norm. Analogous to Prop. 2.30
we obtain parameter-separability of the residual.

Proposition 3.16 (Parameter-Separability of the Residual). Set QR :=N (QE +QI )+
Qb and defineRq ∈X , q = 1, . . . ,QR by

(R1, . . . ,RQR
) :=

�

LE ,1ϕ1, . . . ,LE ,QE
ϕ1, . . . ,LE ,1ϕN , . . . ,LE ,QE

ϕN ,

LI ,1ϕ1, . . . ,LI ,QI
ϕ1, . . . ,LI ,1ϕN , . . . ,LI ,QI

ϕN , b1, . . . , bQb

�

.
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Let uk
N (µ) =

∑N
i=1 uk

N ,iϕi , k = 0, . . . ,K be the solution of (EN (µ)) and define θk
R (µ) :=

(θk
R ,q (µ))

K−1
k=0

by

(θk
R ,1(µ), . . . ,θ

k
R ,QR
(µ)) :=

1

∆t

�

θk
E ,1(µ)u

k
N ,1(µ), . . .θ

k
E ,QE
(µ)uk

N ,1(µ), . . . ,

θk
E ,1(µ)u

k
N ,N (µ), . . .θ

k
E ,QE
(µ)uk

N ,N (µ),

−θk
I ,1(µ)u

k+1
N ,1 (µ), . . .−θ

k
I ,QI
(µ)uk+1

N ,1 (µ), . . . ,

−θk
I ,1(µ)u

k+1
N ,N (µ), . . .−θ

k
I ,QI
(µ)uk+1

N ,N (µ),

θk
b ,1(µ), . . .θ

k
b ,Qb
(µ)
�

.

Then the residualR k (µ) defined in (54) is parameter-separable with

R k (µ) =
QR
∑

q=1

θk
R ,q (µ)Rq .

Herewith the norm




R k (µ)




 can be computed efficiently with the offline/online

procedure as stated in Prop. 2.32, now using the Gramian matrix GR := (
¬

Rq ,Rq ′
¶

)QR

q ,q ′=1
,

the coefficient vector θk
R (µ) and computing





R k (µ)




=
q

θk
R (µ)

T GRθ
k
R (µ).

This completes the offline/online computational procedure for the general RB-approach
for instationary problems.

We close this section on offline-online decomposition with a remark concerning
possible coupling of time-step and spatial discretization.

Remark 3.17 (Coupling of Spatial and Time Discretization). Note, that a slight de-
pendence of the online phase on the spatial discretization exists via possible time-step con-
straints: The reduced problem has identical number of timesteps as the full problem. If
∆t is constrained to O (∆x) for explicit discretizations of advection terms or O (∆x2) for
explicit discretization of diffusion operators, this implies that the full problem cannot be
chosen highly accurate without affecting the time-discretization and herewith the reduced
simulation. So in RB-approaches of time-evolution problems, only the complexity due to
spatial, but not the time-discretization is reduced.

3.5 Basis Generation
Again, we address the basis generation as separate section, although it is naturally
part of the offline phase.

The most simple basis type for the instationary case is obtained by considering
time as an additional “parameter” and then using a Lagrangian reduced basis accord-
ing to Def. 2.39, i.e. ΦN = {uk (i)(µ(i))}Ni=1.
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While this procedure is good for validation purposes, cf. Prop. 3.7, or for testing
an RB-scheme, there are serious difficulties with this approach for obtaining a good
and small basis. First, the time-parameter manifold may be more complex and hence
many snapshots and herewith a larger basis may be required. Further, it is unclear,
how to choose the time-indices k (i), and technically, for obtaining a single uk (i)(µ(i))
one needs to compute the complete trajectory uk (µ(i)) for k = 0, . . . k (i), and discard
the unused information of the initial time steps.

The first procedure we will present addresses the first difficulty, the treatment
of large snapshot sizes. The so called Proper Orthogonal Decomposition (POD) al-
lows to compress large snapshot sets to the most important POD modes, that means
a few vectors or functions containing the most important information of the data.
Starting with a large number of functions {ui}ni=1 ⊂X the POD generates a small or-
thonormal set of basis functions ΦN with N � n by means of the so called empirical
correlation operator. Technically, the POD corresponds to the Principal Component
Analysis [42], the Karhunen-Loeve [45, 50] or the Hotelling Transformation [38].
We restrict ourselves to the definition and some elementary properties and refer to
[72, 42] for details.

Proposition 3.18 (Proper Orthogonal Decomposition). Let {ui}ni=1 ⊂ X be a given
set of snapshots. Then define the empirical correlation operator R : X →X by

Ru :=
1

n

n
∑

i=1

〈ui , u〉 ui , u ∈X .

Then R is a compact self-adjoint linear operator and there exists an orthonormal set
{ϕi}n

′

i=1 of n′ ≤ n eigenvectors with real eigenvalues λ1 ≥ λ2 ≥ . . .≥ λn′ > 0 with

Ru =
n′
∑

i=1

λi 〈ϕi , u〉ϕi . (62)

We denote ΦN := PODN ({ui}) := {ϕi}Ni=1 as the POD-basis of size N ≤ n′.

Proof. R is linear and bounded by ‖R‖ ≤ 1
n

∑n
i=1 ‖ui‖

2 and has finite-dimensional
range, so R is compact. Further, R is self adjoint, as

〈Ru, v〉=
1

n

∑

i

〈ui , u〉 〈ui , v〉= 〈u, Rv〉 ,

hence, by the spectral theorem there exists an orthonormal system satisfying the
spectral decomposition (62). It must be finite, n′ <∞, as the range of R is finite.

Some interesting properties are the following, see also Fig. 11 for an illustration.

• {ϕi} as orthonormal basis is not unique due to sign change in each vector, or
possible rotations if an eigenspace has dimension larger than one.

• The bases obtained by POD are hierarchical, i.e ΦN ′ ⊆ ΦN for N ′ ≤N .
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Figure 11: Illustration of POD.

• The POD does not depend on the order of the data {ui}ni=1 (in contrast to a
Gram-Schmidt orthonormalization).

• Let XPOD,N := span(PODN ({ui}ni=1)). Then ϕ1 is the direction of highest vari-
ance of {ui}ni=1, ϕ2 is the direction of highest variance of the projected data
{PX⊥POD ,1

ui}ni=1, etc.

• The coordinates of the data with respect to the POD-basis are uncorrelated, cf.
Exercise 5.18.

• {ϕi} and {
Æ

λi} are the principal axis and axis intercepts of the ellipsoid



u, R−1u
�

=
1.

• The POD has a best-approximation property with respect to the squared error
and the error can be exactly computed by the truncated eigenvalues, cf. Exercise
5.19.

inf
Y⊂X

dim(Y )=N

1

n

n
∑

i=1

‖ui − PY ui‖
2 =

1

n

n
∑

i=1





ui − PXPOD,N
ui







2
=

n′
∑

i=N+1

λi . (63)

The eigenvalue problem for the correlation operator either is very high-dimensional
(dimX =N ) or even infinite-dimensional (dim(X ) =∞). This poses challenges for
computational procedures. If the number of snapshots n <N , the N -dimensional
eigenvalue problem can be reformulated by an n-dimensional eigenvalue problem for
the Gramian matrix and hence provide a more efficient computational procedure.
Such a reformulation is sometimes referred to as method of snapshots [66] or the ker-
nel trick in machine learning [64]. We leave the proof of the following proposition
as Exercise 5.20.
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Proposition 3.19 (Computation by Gram matrix). Let Ku := (
¬

ui , u j

¶

)ni , j=1 ∈R
n×n

be the Gramian matrix of the snapshot set {ui}ni=1 ⊂ X . Then the following are equiva-
lent

i) ϕ ∈ X is an eigenvector of R for eigenvalue λ > 0 with norm 1 and a representa-
tion ϕ =

∑

i ai ui with a= (ai )
n
i=1 ∈ ker(Ku )

⊥

ii) a= (ai )
n
i=1 ∈R

n is an eigenvector of 1
n Ku with eigenvalue λ > 0 and norm 1p

nλ
.

Remark 3.20 (Difference between Greedy and POD). We briefly comment on some
differences between the POD of Prop. 3.18 and the strong greedy procedure of Def. 2.40,
i.e. using the true projection error as indicator, ∆(Y,µ) := ‖u(µ)− PY u(µ)‖. Both
methods require the set of snapshots to be available, hence many full simulations. The
main difference is the error measure that is guiding both procedures. The POD is aiming
at minimizing the mean squared projection error, while the greedy procedure is aiming
at minimizing the maximum projection error. So, “outliers” with single large error are
allowed in POD, while the greedy algorithm will prevent such large deviations. Com-
putationally, the greedy procedure produces an RB-space spanned by snapshots, i.e. a La-
grangian RB-space, the POD produces a space that is subset of a span of snapshots, but it
is not a Lagrangian RB-space.

Now, the greedy and POD procedure can be suitably combined to produce incre-
mentally good bases for time-dependent problems. The resulting algorithm is called
POD-Greedy procedure (initially denoted PCA-fixspace in [31]) and meanwhile is
standard in RB-approaches for time-dependent problems, cf. [17, 19]. The idea is
to “be greedy” with respect to the parameter and use POD with respect to time:
We search the currently worst resolved parameter using an error bound or indicator
∆(Y,µ), then compute the complete trajectory of the corresponding solution, or-
thogonalize this trajectory to the current RB-space, perform a POD with respect to
time in order to compress the error trajectory to its most important new informa-
tion, and add the new POD-mode to the current basis.

The use of the POD in the POD-Greedy procedure eliminates the two remaining
problems that were stated above: We do not need and worry how to select time-
instants for basis extension, and we do not discard valuable information in the com-
puted trajectory, but try to extract maximal new information from the selected tra-
jectory.

Definition 3.21 (POD-Greedy Procedure). Let Strain ⊂ P be a given training set of
parameters and εtol > 0 a given error tolerance. Set X0 := {0},Φ0 := ;, n := 0 and define
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iteratively

while εn := max
µ∈Strain

∆(Xn ,µ)> εtol (64)

µ(n+1) := arg max
µ∈Strain

∆(Xn ,µ)

uk
n+1 := uk (µ(n+1)), k = 0, . . . ,K , solution of (E(µ(n+1)))

ek
n+1 := uk

n+1− PXn
uk

n+1, k = 0, . . . ,K

ϕn+1 := POD1({e
k
n+1}

K
k=0)

Φn+1 := Φn ∪{ϕn+1}
Xn+1 := Xn + span(ϕn+1)

n ← n+ 1
end while.

Thus, the output of the algorithm is the desired RB-space XN and basis ΦN by set-
ting N := n+1 as soon as (64) is false. The algorithm can be used with different error

measures, e.g. the true squared projection error∆(Y,µ) :=
∑K

k=0





uk (µ)− PY uk (µ)






2

or one of the error estimators ∆(Y,µ) := ∆K
u (µ) or ∆(Y,µ) := ∆en

u (µ). In the first
case, we denote the algorithm the strong POD-Greedy procedure, while in the latter
cases it is called a weak POD-Greedy procedure.

Remark 3.22 (Consistency of POD-Greedy to POD and Greedy). In the case of a
single timestep K = 1, the evolution scheme corresponds to a single system solve and,
hence, can be interpreted as solving a stationary problem. The POD-Greedy procedure
then just is the standard greedy algorithm with included orthogonalization. On the other
hand, it can easily be seen that for the case of a single parameter P = {µ} ⊂ Rp but
arbitrary K > 1 the POD and POD-Greedy coincide: The POD-Greedy incrementally
finds the next orthogonal basis vector, which is just the next POD-mode. Therefore, the
POD-Greedy basis of a single trajectory is optimal in the least-squares sense. Thus, the
POD-Greedy is a generalization of the POD.

Again, the procedure is not only heuristic, but indeed also convergence rates can
be derived, and a result analogous to Prop. 2.43 holds after some extensions [28].
First, a space-time norm for trajectories v := (vk (µ))Kk=0

⊂ X K+1 is introduced by
suitable weights wk > 0,

∑

k wk = T and

‖v‖T :=

 

K
∑

k=0

wk





vk






2
!1/2

.

Then, the manifold of parametric trajectories is introduced as

MT := {u(µ) = (uk (µ))Kk=0|µ ∈P }⊂X K+1,

while the flat manifold is

M := {uk (µ)|k = 0, . . . ,K ,µ ∈P }⊂X .
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The componentwise projection on a subspace Y ⊂ X is defined by PT ,Y : X K+1 →
Y K+1 via

PT ,Y u := (PY uk )Kk=0, u ∈X K+1.

Now the convergence rate statement can be formulated, where again dn denotes the
Kolmogorov n-width as defined in (37).

Proposition 3.23 (Convergence Rates of POD-Greedy Procedure). Let Strain =P be
compact, and the error indicator∆ chosen such that for suitable γ ∈ (0,1] holds





u(µ(n+1))− PT ,Xn
u(µ(n+1))







T
≥ γ sup

u∈MT





u − PT ,Xn
u






T
. (65)

i) (Algebraic convergence rate:) if dn(M )≤M n−α for some α, M > 0 and all n ∈N and
d0(M )≤M then

εn ≤C M n−α, n > 0

with suitable (explicitly computable) constant C > 0.
ii) (Exponential convergence rate:) if dn(M )≤M e−anα for n ≥ 0, M ,a,α > 0 then

εn ≤C M e−cnβ , n ≥ 0

with β := α/(α+ 1) and suitable (explicitly computable) constants c ,C > 0.

Remark 3.24 (Choice of Initial Basis). The POD-Greedy procedure can also be used
in a slightly different fashion, namely as extension of an existing basis Φ 6= ;. For this
we simply set N0 := |Φ|, the initial basis ΦN0

:= Φ and RB-space XN0
:= span(Φ) and

start the POD-Greedy with N0 instead of 0. One possible scenario for this could be the
improvement of an existing basis: If insufficient accuracy is detected in the online phase,
one can return to the offline phase for a basis extension. Another useful application of this
variant is choosing the initial basis such that u0

q ∈ XN0
. Then the RB-error at time t = 0

is zero and the a-posteriori error bounds are more tight, as the initial error contribution
is zero.

Remark 3.25 (Adaptivity, PT-Partition). As the solution complexity of time-dependent
simulations is much higher than for stationary problems, the size of Strain is more critical
in the instationary case: Although the a-posteriori error estimators have complexity poly-
nomial in N they still are not very cheap due to the linear scaling with K. The size of
Strain being limited, the choice and adaptation of the training set of parameters, [29, 37]
becomes an even more important issue for instationary problems.

Especially for time-dependent problems, the solution variability with varying param-
eter and time can be very dramatic (e.g. a transport process with varying directions, see
the model problem of Sec. 3.1). Then the parameter-domain partitioning approaches men-
tioned in Sec. 2.6 can also be applied. In particular the h p-RB-approach has been extended
to parabolic problems [19] and the P-partition approach has been used for hyperbolic prob-
lems [29].
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If the time-interval is large such that solution variation are too high, parameter do-
main partitioning may be not sufficient. In these cases, also time-interval partitioning
can be applied [14, 16]. This means that single bases are constructed for subintervals of
the time-axis. For the reduced simulation, a suitable switching between the spaces must
be realized over time. This can either be done during the Galerkin-projection step of the
RB-scheme, or done as a separate orthogonal projection step. In both cases, the error es-
timation procedure can be kept fully rigorous by suitably incorporating the additional
projection errors [14]. The division of the time-interval can be obtained adaptively:
Starting with a large interval the basis generation with the POD-Greedy is initiated. As
soon as a too large basis is obtained (or anticipated early by extrapolation), the POD-
Greedy is terminated, the time interval is split and separate bases are constructed on the
subintervals.

We also want to conclude this section with some experiments which again can be
reproduced with the script rb_tutorial.m. We choose the model problem of Sect.
3.1 and apply a finite volume discretization. For this we assume a uniform hexaedral
grid consisting of 64× 32 squares, and set ∆t = 1/256. The advection is discretized
explicitly with an upwind flux and the diffusion is discretized implicitly, cf. [31]. The
time-step width is sufficiently small in order to meet the CFL timestep restriction.
The snapshot plots in Fig. 10 already were based on this discretization.

We generate a POD-Greedy basis using the initial data field u0 as starting basis,
setting εtol = 1 · 10−2 and choosing the X -norm error indicator from Prop. 3.9 as
selection criterion ∆(Y,µ) := ∆K

u (µ) with the (coarse) bound constants γUB(µ) = 1
and αLB(µ) = 1, as the explicit and inverted implicit spatial discretization operators
are L2-stable due to our choice of time-step width. As training parameter set we use
the vertices of a uniform 10× 10 grid of points onP = [0,1]2.

The resulting POD-Greedy training estimator development is illustrated in Fig.
12a) by plotting for each basis size N the maximal estimator over the training set of
parameters. It nicely shows an exponentially decaying behavior, however the conver-
gence is much slower compared to the stationary case due to the complex parameter
and time-dependence. In fact the low-diffusion region is very hard to approximate,
which causes the relatively large basis sizes. This difficult region is also reflected
in Fig. 12b) where parameter selection frequencies are plotted over the training set.
Larger circles indicate training parameters which are chosen more frequently dur-
ing basis generation. Note, that this is a difference to the greedy algorithm in the
stationary case: Parameters can be selected multiple times during the POD-Greedy
procedure, as addition of a single mode to the basis does not necessarily reduce the
error to zero.

The first 16 generated basis vectors are plotted in Fig. 13. One can observe in-
creasing oscillations in the basis functions. One can also observe that the initial con-
dition, cf. Fig. 10, was chosen as initial basis.

In Fig. 14a) we illustrate the behavior of the a-posteriori error bound∆k
u and the

error
ek (µ) := max

k ′=0...,k





uk ′(µ)− uk ′

N (µ)






at final time k = K for a parameter sweep along the diagonal of P by µ = s ·
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Figure 12: Illustration of POD-Greedy results for advection-diffusion model prob-
lem. a) Plot of maximal training estimator decay and b) plot of parameter selection
frequency.
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Figure 13: Illustration of the first 16 basis vectors produced by the POD-Greedy
procedure.

(1,1)T , s ∈ [0,1]. It can be verified that indeed the error estimator is below εtol for
the training points obtained by s = i/10, i = 0, . . . , 10. This bound cannot be guar-
anteed for test-points in the low-diffusivity region. The results indicate that it would
be beneficial to include more training points in this difficult parameter region. For
example, one could choose the diffusivity values log-equidistant in accordance with
Prop. 2.45 or apply an adaptive training set extension algorithm [29, 30]. The ratio
of the error bound and the true error is about one order of magnitude, hence can be
considered to be quite good. This is made more explicit in Fig. 14b), where for a test
set of 200 random parameters, we plot the effectivities ηk (µ) :=∆k

u (µ)/ek (µ) at final
time k = K where the test-points are sorted according to µ2. We nicely see that the
effectivities are lower bounded by 1, i.e. the error estimators are reliable, while the
factor of overestimation is not too large. Note, however, that the error estimators are
mostly incremental with growing k, hence the effectivities are expected to get worse
for larger times T . This can be improved by space-time Galerkin approaches and
estimators [67, 74].

4 Extensions and Outlook
We give some comments and references to literature on further aspects and some
current developments that could not be covered by this introductory tutorial chapter.
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vectors.
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Some extensions are meanwhile well-established. The first question is the treat-
ment of nonlinear problems. In the case of simple “polynomial” nonlinearities,
which can be written as a multilinear form in the variational form of the PDE, this
multilinearity can be effectively used for suitable offline/online decomposition of the
Galerkin-reduced system [69] and the Newton-type iteration for solving the fixpoint
equation. Also, a-posteriori error analysis is possible for these RB-approaches mak-
ing use of the Brezzi-Rappaz-Raviart theory. Problems that can be treated by this are
nonlinear diffusion or nonlinear advection problems, e.g. the Burgers equation [70].
For more general nonlinearities, the EI-method can be applied for approximating sta-
tionary and instationary nonlinear problems [25]. A specialization of this procedure
for discretization operators is the Empirical Operator Interpolation initially used in
[33] and then extended to nonlinear problems in [32, 17], which requires local re-
construction of the reduced solution and local evaluation of the differential opera-
tor. This procedure has later been denoted Discrete Empirical Interpolation Method
(DEIM) [10] in the context of nonlinear state-space dynamical systems. Note, how-
ever, that the stability of the approximated RB-systems involving an EI approxima-
tion step is a nontrivial aspect.

The second obvious possiblity for extensions of the presented methodology is the
treatment of more general linear problems. As harmonic Maxwell’s or Helmholtz
equations are non-coercive, a more general notion of stability is considered in RB-
approaches, the inf-sup stability. This notion generalizes the coercivity (inf-sup con-
stant being always at least as large as coercivity constant) while the RB-error bounds
have frequently identical structure and the inf-sup constant “replaces” the coercivity
constant [61, 71]. A main problem is that inf-sup stability is not inherited to sub-
spaces, hence separate test- and trial spaces must be constructed in order to guarantee
stability of the reduced systems. By suitable definition of a norm on the test space,
optimal stability factors can be obtained by double greedy procedures [11]. In the
context of time-dependent problems, an interesting possibility is the formulation as a
time-space variational form [67], which represents an inf-sup stable formulation. The
resulting RB error estimators are typically very sharp in contrast to the incremental
estimators of Sec. 3. In particular they have provable effectivity bounds. However,
the discretization then must be adjusted to be able to cope with the additional dimen-
sion by the time variable. The notion of inf-sup stability is also required in treatment
of systems of PDEs, most notably the Stokes system [62] for viscous flow. Parameter
dependence can also be obtained by geometry parametrization [63]. As a general
solution strategy, the parametrized PDE is mapped to a reference domain which in-
corporates the geometry parameters in the coefficient functions of the transformed
PDE.

Various recent developments can be found, which represent active research direc-
tions in RB-methods. First, the variational problems can be additionally constrained
with inequalities. The resulting variational inequalities can also be treated success-
fully with RB-methods, both in stationary and instationary cases [23, 34, 35]. The
Stokes system reveals a saddle point structure which is typical for other types of prob-
lems. Such general saddle point problems have been considered in [22]. Extensions
to more complex coupled systems, e.g. Navier-Stokes [13, 69] or the Boussinesq-
approximation [47], can be found. An important field of application for RB-methods

68



are multi-query scenarios in optimization or optimal control. Both parameter opti-
mization [15, 56] as well as optimal control for elliptic and parabolic equations have
been investigated [12, 43, 44]. Parameters can also be considered as random influ-
ence in PDEs, corresponding Monte-Carlo approaches using reduced order models
can be realized [7, 36]. Multiscale problems which require multiple evaluation of
micro-models for a macro-scale simulation, can make use of RB-micromodels [6, 48],
or domain partitioning approaches can be used to capture global parametric infor-
mation in local bases [46]. An important branch of past and current application
are domain decomposition approaches based on RB-models for simple geometries,
which then are coupled to more complex geometrical shapes involving a huge num-
ber of local parameters. The original Reduced Basis Element method [53] has been
extended to an extremely flexible static condensation approach [39] which allows to
construct online various geometries by using RB-models as “Lego” building blocks.
Iterative domain decomposition schemes [54] can be used for handling distributed
coupled problems.

5 Exercises
Exercise 5.1 (Finite-Dimensional XN for Thermal Block). Show that the thermal
block model for B1 = 1 has a solution manifold, which is contained in an N := B2-
dimensional linear subspace XN ⊂ H 1

ΓD
. This can be obtained by deriving an explicit

solution representation. In particular, find N snapshot parameters µ(i), i = 1, . . . ,N,
such that XN = span{u(µ(1)), . . . , u(µ(N ))}.

Exercise 5.2 (Many Parameters, Simple Solution). Devise an instantiation of (P (µ))
with arbitrary number of parameters p ∈N but solution being contained in a 1-dimensional
linear subspace.

Exercise 5.3 (Conditions for Uniform Coercivity). Assume a parameter-separable bi-
linear form a(·, ·;µ). Under which conditions on the coefficient functions θa

q and the
components aq can uniform coercivity of a be concluded?

Exercise 5.4 (Thermal Block as Instantiation of (P (µ))). Verify that the thermal block
satisfies the assumption of (P (µ)), i.e. uniform continuity, coercivity and parameter-
separability of the bilinear and linear forms. In particular, specify the constants, the
coefficient functions and components. Argue that it even is an example for a compliant
problem, i.e. symmetric and f = l .

Exercise 5.5 (Finite-Dimensional Exact Approximation for Qa = 1). Assume a gen-
eral problem of type (P (µ)) with parameter-separable forms. Show that in the case of
Qa = 1 the solution manifoldM is contained in a reduced basis space XN of dimension
at most Q f , and show that there exist N ≤Q f parameters µ(i), i = 1, . . . ,N such that

XN = span(u(µ1), . . . , u(µ(N ))).

Exercise 5.6 (Lipschitz-Continuity of (P (µ))). Let θa
q ,θ f

q ,θl
q be Lipschitz-continuous

with respect to µ with Lipschitz-constants La
q , L f

q , Ll
q .
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i) Show that a, f , l are Lipschitz continuous by computing suitable constants La , L f , Ll
such that

|a(u, v;µ)− a(u, v;µ′)| ≤ La ‖u‖‖v‖


µ−µ′


 ,

| f (v;µ)− f (v;µ′)| ≤ L f ‖v‖


µ−µ′


 ,

|l (v;µ)− l (v;µ′)| ≤ Ll ‖v‖


µ−µ′


 , u, v ∈X ,µ,µ′ ∈P .

ii) Derive suitable constants Lu , Ls such that


u(µ)− u(µ′)


≤ Lu



µ−µ′


 , |s(µ)− s(µ′| ≤ Ls



µ−µ′


 , µ,µ′ ∈P .

Hint: Lu = L f /ᾱ+ γ̄ f La/ᾱ
2, Ls = Ll γ̄ f /ᾱ+ γ̄l Lu .

Remark: An identical statement holds for the reduced solutions uN (µ), sN (µ).

Exercise 5.7 (Differentiability of u(µ)). Prove Prop. 2.8.

Exercise 5.8 (Best-approximation Bound for Symmetric Case). Show that if a(·, ·;µ)
is symmetric, for all µ ∈P holds

‖u(µ)− uN (µ)‖ ≤

s

γ (µ)

α(µ)
inf

v∈XN

‖u(µ)− v‖ .

(This is a sharpening of (4), and hence the Lemma of Céa by a square root.)

Exercise 5.9 (Relative Error and Effectivity Bounds). Provide proofs for the relative
a-posteriori error estimate and effectivity, Prop. 2.22.

Exercise 5.10 (Energy Norm Error and Effectivity Bounds). Provide proofs for the
energy norm a-posteriori error estimate and effectivity, Prop. 2.23.

Exercise 5.11 (α(µ) for Thermal Block). Show for the thermal block that α(µ) =
mini µi . (Therefore, αLB(µ) can be chosen as that value in the error bounds.) Similarly,
show that γ (µ) = maxi µi . (Hence effectivities are always bounded by µmax/µmin if
µ ∈ [µmin,µmax]

p .)

Exercise 5.12 (Max-theta Approach for Continuity Upper Bound). Let a be symmet-
ric and all aq positive semidefinite and θa

q (µ) > 0, q = 1, . . . ,Qa ,µ ∈ P . Let µ̄ ∈ P
and γ (µ̄) be known. Show that for all µ ∈P holds

γ (µ)≤ γUB(µ)<∞,

with continuity upper bound

γUB(µ) := γ (µ̄) max
q=1,...,Qa

θa
q (µ)

θa
q (µ̄)

.
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Exercise 5.13 (Monotonicity of Greedy Error). Prove that the greedy algorithm pro-
duces monotonically decreasing error sequences (εn)n≥1 if

i) ∆(Y,µ) := ‖u(µ)− PY u(µ)‖, i.e. the orthogonal projection error is chosen as
error indicator.

ii) we have the compliant case (a(·, ·;µ) symmetric and f (·;µ) = l (·;µ)) and∆(Y,µ) :=
∆en

u (µ), i.e. the energy error estimator from Prop. 2.23 is chosen as error indicator.

Exercise 5.14 (Gramian Matrix and Properties). Let {u1, . . . , un} ⊂ X be a finite sub-
set. Define the Gramian matrix through

G := (
¬

ui , u j

¶

)ni , j=1 ∈R
n×n .

Show that the following holds:

i) G is symmetric and positive semidefinite,

ii) rank(G) = dim(span({ui}ni=1)),

iii) {ui}ni=1 are linearly independent⇔G is positive definite.

(Recall that such Gramian matrices already appeared as Gl ,Gr ,KN in the offline/online
decomposition in Prop. 2.32, Prop. 2.33 and Prop. 2.34.)

Exercise 5.15 (Gram Schmidt Orthonormalization). Prove that the procedure given
in Prop. 2.48 indeed produces the Gram-Schmidt orthonormalized sequence.

Exercise 5.16 (Orthonormalization of Reduced Basis). Prove that the procedure given
in Prop. 2.48 produces an orthonormal basis also if C is chosen differently, as long as it
satisfies CCT =G−1. (Hence, more than only Cholesky-factorization is possible.)

Exercise 5.17 (Uniform Boundedness with Respect to ∆t ). Prove the statement of
Prop. 3.4. Hint:

 

1

1+α T
K

!K

=







 

1

1+ αT
K

! K
αT







αT

→ e−αT

as K→∞.

Exercise 5.18 (Data Uncorrelated in POD-Coordinates). Verify that the coordinates
of the data {ui}ni=1 with respect to the POD-basis {ϕ j }n

′

j=1 are uncorrelated and the mean
squared coordinates are just the eigenvalues of the correlation operator, i.e. for all j , k =
1, . . . , n′, j 6= k holds

n
∑

i=1

¬

ui ,ϕ j

¶

〈ui ,ϕk〉= 0,
1

n

n
∑

i=1

¬

ui ,ϕ j

¶2
= λ j .

71



Exercise 5.19 (POD Mean Squared Error). Prove the second equality in (63): Let
{ui}ni=1 be given. Show that the mean squared error of the POD-projection can be ex-
plicitly obtained by the sum of the truncated eigenvalues, i.e.

1

n

n
∑

i=1





ui − PXPOD,N
ui







2
=

n′
∑

i=N+1

λi .

Exercise 5.20 (POD via Gramian Matrix). Prove Prop. 3.19, i.e. the equivalence of
computation of the POD via the correlation operator or the Gramian matrix.
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A-posteriori error bounds

energy norm, 17, 54, 70
output, 15, 21
relative, 16, 70
state space, 15, 21, 43, 46, 53

Advection-diffusion model, 47

Certification, see A-posteriori error bounds
Coercivity constant, lower bound, 27, 29
Coercivity, uniform, 7, 48
Collateral basis, 41
Compliant problem, 17
Continuity constant, upper bound, 29,

70
Continuity, uniform, 7, 48
Convergence

EI convergence rates, 43
global exponential convergence, 35
Greedy convergence rates, 34
POD-Greedy convergence rates, 63
uniform convergence, 14

Differentiability, 10, 70

Effectivities, 16, 17, 21
Empirical correlation operator, 59
Empirical Interpolation (EI)

a-posteriori error estimation, 43
a-priori convergence rate, 43
conservation property, 44
Lebesgue constant bound, 43
method, 40

Error estimators, see A-posteriori error
bounds

Error indicator, choice of, 32
Error-residual relation, 13, 52
Evolution problem, 48

Finite Difference discretization, 51
Finite Volume discretization, 50

Greedy
convergence rates, 34
multistage, 35

procedure, 31
strong, 34
weak, 33, 34

Kolmogorov width, 34

Lagrangian Reduced Basis, 31
Lipschitz continuity, 10, 69

Magic points, 41
Min-theta procedure, 28
Multi-query, 1, 69

Offline phase, see Offline/Online decom-
position

Offline/Online decomposition, 2, 22, 23,
26, 27, 56, 57

Online phase, see Offline/Online decom-
position

Orthonormalization, 12, 37
Output approximation, 11, 20, 55
Overfitting, 33

Parameter domain partitioning, 36
Parameter separability, 8, 25, 49, 57
Parameter vector, 2
Parametric PDEs, 2
POD-Greedy

convergence rates, 63
procedure, 61

Primal-dual approach, 20
Proper Orthogonal Decomposition (POD),
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Real-time, 1
Reduced Basis

method, 2
space, 10

Reproduction of solutions, 14, 52

Slim computing, 2
Snapshots, 2, 10
Solution manifold, 2, 6, 8, 9
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Space-time energy norm, 54
Stability, 8, 12, 49
State approximation, 11, 51
Successive Constraint Method (SCM), 29

Taylor Reduced Basis, 31
Thermal Block model, 5, 9, 69
Training set

adaptivity, 36
treatment, 35

Vanishing error bound, 15, 53
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