
S. Kaulmanna · B. Haasdonka

Online Greedy Reduced Basis Construction Using
Dictionaries
Stuttgart, March 2013

a
Institute of Applied Analysis and Numerical Simulation,

University of Stuttgart, Pfa↵enwaldring 57, 70569 Stuttgart, Germany

{sven.kaulmann, haasdonk}@mathematik.uni-stuttgart.de.

Abstract The Reduced Basis method is a means for model order reduction for parametrized partial

di↵erential equations. In the last decades it has found broad application for problems with multi-query

or real-time character. While the method has shown to be performing well for numerous di↵erent

fields of applications, problems with high parameter dimension or high sensitivity with respect to the

parameter still pose major challenges. In our contribution, we present a new basis generation algorithm

that is particularly fit to these kinds of problems: Instead of building the reduced basis during the o✏ine

phase we build a large dictionary of basis vector candidates and compute a small parameter-adapted

basis from that dictionary with a Greedy procedure during the online phase.

Keywords Greedy algorithms · reduced basis methods · model order reduction · dictionary

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence

Pfa↵enwaldring 5a

70569 Stuttgart

publications@simtech.uni-stuttgart.de

www.simtech.uni-stuttgart.de

VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013

J. P. Moitinho de Almeida, P. Dı́ez, C. Tiago and N. Parés (Eds)

ONLINE GREEDY REDUCED BASIS CONSTRUCTION
USING DICTIONARIES

Sven Kaulmann⇤ and Bernard Haasdonk⇤

⇤Institute for Applied Analysis and Numerical Simulation,
University of Stuttgart,

Pfa↵enwaldring 57, 70569 Stuttgart, Germany
{sven.kaulmann|haasdonk}@mathematik.uni-stuttgart.de.

Key words: Greedy algorithms, reduced basis methods, model order reduction, dictio-
nary

Abstract. The Reduced Basis method is a means for model order reduction for parame-
trized partial di↵erential equations. In the last decades it has found broad application for
problems with multi-query or real-time character. While the method has shown to be per-
forming well for numerous di↵erent fields of applications, problems with high parameter
dimension or high sensitivity with respect to the parameter still pose major challenges.
In our contribution, we present a new basis generation algorithm that is particularly fit to
these kinds of problems: Instead of building the reduced basis during the o✏ine phase we
build a large dictionary of basis vector candidates and compute a small parameter-adapted
basis from that dictionary with a Greedy procedure during the online phase.

1 Introduction and Motivation

As numerical simulations find more and more use in real-world scenarios and industrial
applications, demands concerning e�ciency and reliability increase as well. Especially sce-
narios that call for real-time simulations or multi-query evaluations of partial di↵erential
equations (PDEs) often require means of model order reduction. Examples for such sce-
narios are optimal control and optimization settings.

The Reduced Basis (RB) method [6] provides model order reduction for a special class
of PDEs, so-called parametrized partial di↵erential equations, (in the weak form) given
as

Bh(uh(µ), vh;µ) = Lh(vh;µ) 8vh 2 Xh, (1)

for uh(µ) 2 Xh, µ 2 P ⇢ Rp and a suitable given discrete function space Xh. Here,
Bh : Xh ⇥Xh ⇥P ! R denotes a given parametrized bilinear form and Lh : Xh ⇥P ! R

1

Sven Kaulmann and Bernard Haasdonk

denotes a given parametrized linear form. We will assume Bh to be coercive and symmetric
in the sequel.

Such equations arise, for example, in the context of heat di↵usion. In this case, the
parameter µ could model the di↵usion coe�cient. The RB method now reduces the
complexity of Equation 1 from N = dim(Xh) to N 2 N, N ⌧ N , by introducing a low-
dimensional surrogate XN , dim(XN) = N of the high-dimensional discretization space
Xh. This space XN is the span of solutions of (1) for a given set of parameter values:

XN = h{uh(µ1), . . . , uh(µN)}i ,
µ1, . . . ,µN 2 P .

Galerkin-projection of Equation 1 then leads to a reduced dimensional equation system

AN(µ) · uN(µ) = bN(µ), (2)

where uN(µ) 2 RN , AN : P ! RN⇥N , (AN(µ))i,j = Bh('i,'j;µ), bN : P ! RN ,
(bN(µ))i = Lh('i;µ). Here, � = {'1, . . .'N} denotes an orthonormal basis of the space
XN .

The main idea of the RB method is the so-called o✏ine-online splitting of all compu-
tations: We introduce two phases of our computations:

O✏ine phase During this phase, all N -dependent computations are performed. This
phase may be very expensive as a certain amount of solutions uh(µi) needs to be
computed.

Online phase During this phase, the equation at hand is solved in the reduced space
XN for a given parameter µ. This phase is ideally totally independent of N , and
therefore usually very fast.

While the computation ofXN can clearly be done during the o✏ine phase, the assembly
of the equation system (2) needs to be done for every new given parameter µ during the
online phase. As this requires evaluations of Bh at the solutions uh(µi), the online phase
would hence depend on N . We thus make the assumption of parameter separability:

Assumption 1. Assume Bh, Lh to be parameter separable, that is

Bh(u, v;µ) =
QBX

q=1

⇥q
B(µ)B

q
h(u, v), Lh(u;µ) =

QLX

q=1

⇥q
L(µ)L

q
h(u), 8u, v 2 Xh, (3)

for given numbers QB, QL 2 N, parameter-dependent functions ⇥q
B,⇥

q
L : P ! R and

parameter-independent bilinear and, respectively, linear forms Bq
h : Xh ⇥ Xh ! R, Lq

h :
Xh ! R.

2

Sven Kaulmann and Bernard Haasdonk

Using Assumption 1, the assembly of the system (2) can be done in two steps: During
the o✏ine phase, after computing the reduced basis space XN , project the parameter-
independent components of Bh and Lh to XN :

(Aq
N)i,j = Bq

h('i,'j), 1  q  QB, 1  i, j  N,

(bqN)i = Lq
h('i), 1  q  QL, 1  i  N.

During the online phase, it then only remains to sum up the precomputed components:

AN(µ) =
QBX

q=1

⇥q
B(µ)A

q
N , bN(µ) =

QLX

q=1

⇥q
L(µ)b

q
N .

1.1 Error Estimation

One crucial ingredient of the reduced basis method is a posteriori error estimation.
Error estimation is used for basis construction during the o✏ine phase and for certification
by approximation quality control during the online phase. In our work we use a residual-
based estimator shortly outlined in this paragraph. For more details we refer to [1, 6].

Definition 1.1. For Bh given from (1) we denote by k·kµ : Xh ! [0,1) the parameter
dependent energy norm

kukµ =
p

Bh(u, u;µ). (4)

We introduce the residual and its Riesz-representative.

Definition 1.2. For a given function u 2 Xh let the residual rh[u] : Xh ⇥ P ! R be
given by

rh[u](v;µ) := Lh(v;µ)� Bh(u, v;µ) 8v 2 Xh.

Its Riesz-representative ru(µ) 2 Xh, given a parameter µ 2 P , is defined as the solution
to

Bh(ru(µ), v;µ) = rh[u](v;µ) 8v 2 Xh.

Using the Riesz-representative we can now state our error estimator.

Theorem 1.1 (Residual based a posteriori error estimate). Given parameters µ,µ 2 P,
the energy norm of the Riesz-representative to a given reduced approximation uN(µ) is an
e�cient a posteriori error estimate in the sense that

1

�µ(µ)

��ruN (µ)(µ)
��
µ

 kuh(µ)� uN(µ)kµ  1

↵µ(µ)

��ruN (µ)(µ)
��
µ
.

3

Sven Kaulmann and Bernard Haasdonk

Here we used the constants ↵µ, �µ 2 R,

↵µ = inf
u2Xh

Bh(u, u;µ)

kuk2µ
, �µ = sup

u,v2Xh

Bh(u, v;µ)

kukµ kvkµ
We define: �XN (µ) =

1
↵µ(µ)

��ruN (µ)(µ)
��
µ
.

Remark 1. The constants ↵µ,�µ can be bound by easily computable constants using the
Min-Theta approach [6].

Remark 2. In the following we will always assume the parameter µ 2 P to be given and
will use it without further notice.

1.2 E�cient Evaluation of the Error Estimator

As a preparation of evaluations of the error estimator in a reduced space XN we com-
pute the components rqL 2 Xh, q 2 {1, . . . , QL}

Bh(r
q
L, v;µ) = Lq

h(v) 8v 2 Xh, (5)

and the components rqB 2 Xh, q 2 {1, . . . , QB ·N} with

Bh(r
(j�1)·N+i
B , v;µ) = Bj

h('i, v) 8v 2 Xh, (6)

where � = {'i|1  i  N} is a basis of XN . For the sake of simplicity of the following
presentation, we collect the energy products of all Riesz-representatives in one matrix
G 2 RQr⇥Qr , Qr = QL +QBN :

G =

✓
G1 G2

G3 G4

◆
, (7)

where

(G1)i,j = Bh(r
i
L, r

j
L,µ), (G2)i,j = Bh(r

i
L, r

j
B,µ),

(G3)i,j = Bh(r
i
B, r

j
L,µ), (G4)i,j = Bh(r

i
B, r

j
B,µ).

Finally, we define the parameter vector ⇥r(µ, uN) 2 RQr for a given parameter µ 2 P
and a given reduced function uN 2 XN :

(⇥r(µ, uN))k =

(
⇥k

L(µ), k  QL

�(uN)i⇥
j
B(µ), else

(8)

where i = ((k � QL) mod N), j = k�QL�i
N + 1. The evaluation �XN (µ) of the error

estimator is then given as

�XN (µ) =
1

↵µ(µ)

p
⇥r(µ, uN) ·G ·⇥r(µ, uN).

4

Sven Kaulmann and Bernard Haasdonk

1.3 Summary

Using the o✏ine-online splitting, RB methods gain impressive complexity reductions for
a wide range of applications such as elliptic stationary problems [6], parabolic instationary
problems [3] and hyperbolic problems [4]. The Greedy-type algorithm used for basis
construction during the o✏ine phase [6] usually yields small bases that at the same time
guarantee a small error �XN (µ).

In this contribution, we investigate problems with very high sensitivity with respect to
the parameter µ that yield unfeasibly large reduced bases. For these kinds of problems, we
introduce a new method for model order reduction that uses a large dictionary of basis
vector candidates to build a small, parameter-adapted basis during the online phase.
Our method holds some similarity with the locally adaptive Greedy method introduced in
[5]. As a main di↵erence, our method does not use proximity in parameter space as an
indicator for well-suited basis candidates in the basis construction but directly measures
function similarity via error estimation. This will always yield ideal basis sizes.

Further ideas about Greedy methods and dictionary approaches can be found in [7].
In Section 2 we present our dictionary construction algorithm. Section 3 is dedicated to

the online basis construction procedure. Finally we present some preliminary numerical
results in Section 4.

2 Dictionary Construction and O✏ine Data Computation

During the o✏ine phase of our new method, we construct a “dictionary” D with size
D of basis vector candidates 'i 2 Xh:

D = {'i |1  i  D} .

For the experiments presented in Section 4 we use a pretty straightforward algorithm
to construct the dictionary: We choose a finite subset S ⇢ P , referred to as the training
set in the sequel, and compute

D = {uh(µ) 2 Xh |µ 2 S } . (9)

This idea restricts the size of the training set to a certain extent as its size is directly linked
to the size of the dictionary. We will comment on more elaborate methods in Section 5.

Together with the dictionary we compute the matrices
�
Aq

D 2 RD⇥D|1  q  QB

and

the vectors
�
bq
D 2 RD|1  q  QL

,

(Aq
D)i.j = Bq

h('i,'j), 'i,'j 2 D,

(bq
D)i = Lq

h('i), 'i 2 D (10)

that will be needed for reduced simulation during the online phase. Furthermore, we
compute the matrix G 2 R from Section 1.2 for � = D.

5

Sven Kaulmann and Bernard Haasdonk

3 Online Basis Construction

In this section we describe the Greedy algorithm that is used to construct a space
XN(µ) from the dictionary for a given parameter µ 2 P . As a means to this end we
define a so-called indicator function ⌘� : Xh ⇥ P ! [0,1) that indicates the reduction
of the error from Theorem 1.1 for a given Parameter µ⇤ 2 P in a given space XN if XN

is enlarged with ' 2 Xh:

⌘�(',µ
⇤;XN) = �XN (µ

⇤)��XN�h{'}i(µ
⇤). (11)

Using this indicator for selection of basis extension candidates from the dictionary in an
iterative basis construction algorithm will yield ideal basis sizes.

Algorithm 1. Given a parameter µ⇤ 2 P, an error tolerance " > 0, a desired basis size
N 2 N, n = 0 and X0 = {0} we now repeat the following steps to construct a parameter-fit
reduced basis space XN(µ⇤) from a precomputed dictionary D:

1. Evaluate the error estimator �Xn(µ
⇤). If �Xn(µ

⇤) < " or n � N set XN(µ⇤) =
Xn(µ⇤) and finish, else go on with Step 2.

2. Evaluate the indicator ⌘�(',µ⇤;Xn) for all dictionary elements ' 2 D.

3. Find the dictionary element that maximizes the indicator function:

'max = argmax
 2D

⌘�(,µ
⇤;Xn).

4. Set n = n+ 1 and enrich the reduced space: Xn = Xn�1 � h{'max}i.
Clearly, in a naive implementation, Step 2, which includes reduced simulation in the

space Xn�h{'}i and evaluation of the error estimator for all dictionary elements ' 2 D,
will be too costly to be applicable, especially for large dictionaries D (O(DN4)). We
will therefore now point out how Algorithm 1 can be performed with a complexity of
O(|D| · N3) which will be favorable over the standard Greedy RB approach where the
complexity is also cubic in the basis size but bases are usually a lot larger than with our
method.

3.1 Simultaneous Reduced Simulation and Indicator Evaluation

As a first step for evaluation of the indicator ⌘� (11) we need to compute all reduced
solutions un,' 2 Xn � h{'}i for all dictionary elements ' 2 D and a given space Xn.

Proposition 3.1. The solution un,'(µ) of Equation (2) in the space Xn � h{'}i for a
given parameter µ 2 P is given by

un,'(µ) =

✓
un

0

◆
+

�(',µ)� �(',µ)un

�(',µ)� �(',µ)A�1
n ↵(',µ)

·
✓�A�1

n ↵(',µ)
1

◆
,

6

Sven Kaulmann and Bernard Haasdonk

with suitably chosen An 2 Rn⇥n, un 2 Rn and functions ↵ : D⇥P ! Rn⇥1, � : D⇥P !
R1⇥n, �, � : D ⇥ P ! R.
Proof. We define the matrix An 2 Rn⇥n and the vectors un,bn 2 Rn for the space Xn as
in (2). Let

(↵('))i = (↵(',µ))i = Bh('i,';µ), 1  i  n,

(�('))i = (�(',µ))i = Bh(','i;µ), 1  i  n,

�(') = �(',µ) = Bh(',';µ),

�(') = �(',µ) = Lh(';µ).

for a given basis {'i|1  i  n} ⇢ Xn of Xn. The projection of Equation (1) onto the
space Xn � h{'}i for a given function ' 2 D is then given by

An,' · un,' = bn,', (12)

where

An,' =

✓
An ↵(')
�(') �(')

◆
2 R(n+1)⇥(n+1),

bn,' =

✓
bn

�(')

◆
2 Rn+1.

Multiplication of Equation (12) with the invertible block diagonal matrix diag(A�1
n , 1)

then yields:

An,' · un,' = bn,',

,
✓
A�1

n 0
0 1

◆✓
An ↵(')
�(') �(')

◆
· un,' =

✓
A�1

n 0
0 1

◆✓
bn

�(')

◆

,
✓

Idn A�1
n ↵(')

�(') �(')

◆
· un,' =

✓
un

�(')

◆

,
✓
Idn A�1

n ↵(')
0 �(')� �(')A�1

n ↵(')

◆
· un,' =

✓
un

�(')� �(')un

◆
,

where Idn 2 Rn⇥n denotes the n by n identity matrix.
Using back substitution we find the solution un,' :

(un,')n+1 =
�(')� �(')un

�(')� �(')A�1
n ↵(')

,

(un,')k = (un)k � (A�1
n ↵('))k(un,')n+1, k 2 {1, . . . , n}.

Which can be rewritten in the form

un,' =

✓
un

0

◆
+

�(')� �(')un

�(')� �(')A�1
n ↵(')

·
✓�A�1

n ↵(')
1

◆
. (13)

7

Sven Kaulmann and Bernard Haasdonk

Using Proposition 3.1, only one matrix-vector multiplication and two vector-vector
multiplications are needed for the computation of one reduced solution in Step (2) in
Algorithm 1. Only once per loop iteration in Algorithm 1, the matrix An needs to be
inverted. The quantities ↵,�, �, � and An can be extracted from AD(µ),bD(µ) where

AD(µ) =
QBX

q=1

⇥q
B(µ)A

q
D 2 RD⇥D, bq

D(µ)=
QLX

q=1

⇥q
L(µ)b

q
D 2 RD. (14)

Here {Aq
D|1  q  QB} , {bq

D|1  q  QL} are the precomputed quantities from Section 2.
In the sequel, we will outline how to e�ciently evaluate the indicator function ⌘�

for all possible extensions in Step (2) of Algorithm 1. When evaluating the indicator
⌘�(', µ⇤;Xn) for all dictionary elements ' we need to evaluate �Xn�h{'}i(µ⇤) for all
' 2 D. The next proposition proofs that these values can be computed simultaneously
for the whole dictionary.

Proposition 3.2. For suitable choice of matrices g1 2 R(n+1)⇥D, g2 2 R1⇥D the vector
� 2 RD with

� =
�
1, · · · , 1

� ·

0

BBB@

0

BBB@

1 · · · 1
�(un,'1)1 · · · �(un,'D)1

...
. . .

...
�(un,'1)n+1 · · · �(un,'D)n+1

1

CCCA
�
✓
g1

g2

◆
1

CCCA

contains the squared error estimators for all possible basis extensions:

� =
�
�Xn�h{'1}i(µ

⇤), · · · , �Xn�h{'D}i(µ⇤)
�
. (15)

Here we used the Hadamard product M � N 2 Rm⇥n of two matrices M,N 2 Rm⇥n,
(M �N)i,j = Mi,j ·Ni,j.

Proof. Given a parameter µ⇤ 2 P we define

S(µ⇤) =

0

BBBBBBB@

⇥1
L(µ

⇤) 0 · · · 0
...

...
. . .

...
⇥QL

L (µ⇤) 0 · · · 0
0

C(µ⇤)...
0

1

CCCCCCCA

2 R(QL+QB ·D)⇥(D+1),

where the coe�cient matrix C(µ⇤) 2 R(QB ·D)⇥D is given as

C(µ⇤) =

0

B@
⇥B(µ⇤) 0
0

. . .
⇥B(µ⇤)

1

CA ,

8

Sven Kaulmann and Bernard Haasdonk

with ⇥B(µ⇤) 2 RQB , (⇥B(µ⇤))k = ⇥k
B(µ

⇤). Using S(µ⇤) we define the matrix

G = G(µ⇤) = S(µ⇤)| ·G · S(µ⇤) 2 R(D+1)⇥(D+1), (16)

with G as computed in Section 2. For the exposition of the rest of the simultaneous
indicator evaluation we need some additional notation:

• Given a set of indices I = [i1, . . . , im] ⇢ N we define I ++ l := [i1 + l, . . . , im + l] for
l 2 N.

• Given a set of indices I = [i1, . . . , im] ⇢ N we define the set of indices [I, l] ⇢ N:
[I, l] := [i1, . . . , im, l] for l 2 N.

• Given a matrix M and two sets of indices I = [i1, . . . , i|I|] ⇢ N, J = [j1, . . . , j|J |] ⇢ N
we define the matrix MI,J 2 R|I|⇥|J |

(MI,J)k,l := Mik,jl .

Assume a basis � ⇢ D of the space Xn to be given. Let I� ⇢ N be an index set for �
and ID ⇢ N be an index set for D. Additionally we use the vectors un,' = un,'(µ⇤) from
Section 3.1.

Using the above notation we can define

g1 = G[1,I�++1],[1,I�++1] ·

0

BBB@

1 · · · 1
�(un,'1)1 · · · �(un,'D)1

...
. . .

...
�(un,'1)n · · · �(un,'D)n

1

CCCA

+G[1,I�++1],ID++1 ·

0

B@
�(un,'1)n+1 0

. . .
0 �(un,'1)n+1

1

CA ,

g2 =
�
1 · · · 1

� ·

0

BBB@
G

|
ID++1,[1,I�++1] �

0

BBB@

1 · · · 1
�(un,'1)1 · · · �(un,'D)1

...
. . .

...
�(un,'1)n · · · �(un,'D)n

1

CCCA

1

CCCA

+
�
G2,2, · · · , GD+1,D+1

� � ��(un,'1)n+1, · · · , �(un,'D)n+1

�
.

Using this definition of g1 and g2, one can show by performing all remaining multiplica-
tions that the vector � as defined in the proposition indeed represents the desired error
estimators.

9

Sven Kaulmann and Bernard Haasdonk

Figure 1: Heat di↵usion coe�cient �(µ) : ⌦ ! R (left), solution uh(µ) for µ = (1, 2, 3, 4, 5, 6, 7, 8) (right).

4 Experiments

In this section we present some preliminary numerical results for the method introduced
in this paper. All tests were performed using our C++ library DUNErb, based on the
Distributed and Unified Numerics Environment (DUNE). Both packages can be found
online1.

For our tests, we solve the heat equation on the unit cube ⌦ = [0, 1]3. The problem
statement is as follows: Find u(µ) 2 H1

0 (⌦) such that

�r · (�(x)ru(x)) = 1 in ⌦,

u(x) = 0 on �D = [0, 1]⇥ 0⇥ [0, 1],

�(x)ru(x) · n = 0 on @⌦ \ �D,

(17)

where µ 2 P = (0, 10]8. The heat di↵usion coe�cient �(µ) : ⌦ ! R has the form

�(µ)(x) =
8X

i=1

(µ)i · �i(x),

where, as usual, (µ)i 2 R denotes the i-th component of the vector µ and the functions
�i : ⌦ ! {0, 1} denote the characteristic functions for the eight subdomains of ⌦ sketched
in the left plot in Figure 1. Furthermore, the right plot shows a typical solution for a
given parameter.

4.1 O✏ine Phase

We discretize ⌦ using 1000 cubes, Xh is a linear discontinuous galerkin space with
4000 degrees of freedom. The training set S ⇢ P is given by a lognormal distribution

1
http://users.dune-project.org/

10

Sven Kaulmann and Bernard Haasdonk

1

10

100

1000

0 0.0001 0.0005 0.001 0.005 0.01

B
as

is
 S

iz
e

Distortion Online Basis Construction
Standard Greedy

Figure 2: Mean basis size N during the online phase
for the standard Greedy method and our online ba-
sis construction algorithm for di↵erent values of ⇢

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

0 0.0001 0.0005 0.001 0.005 0.01

R
un

tim
e

in
 m

s

Distortion Online Basis Construction
Standard Greedy

Figure 3: Mean total runtime during the online
phase for the standard Greedy method and our on-
line basis construction algorithm for di↵erent values
of ⇢

centered at 2 in each component. We generate a traditional [6] Greedy-basis �G with a
training set SG with |SG| = 1000 and a tolerance of 10�5 and a dictionary D using the
approach described in Section 2 using a training set SD � SG with |SD| = 2000. While the
generation of the traditional Greedy-basis takes more than 9 hours and produces about
600 megabytes of data, the generation of the dictionary takes only one hour but produces
about 1.1 gigabytes of data.

4.2 Online Phase

Using both the basis �G and the dictionary D we run online simulations on the test set
T = SG+⇢R where R contains random numbers in (0, 1]8 and ⇢ 2 R denotes a distortion
scale. For our algorithm, we use the same error tolerance as for the standard Greedy
algorithm: " = 10�5.

Figure 2 shows the resulting basis sizes N for the standard Greedy method (which is
fixed by the basis construction during the o✏ine phase, here: N = 871) and the basis
size N resulting from Algorithm 1 for di↵erent values of ⇢. We see that, especially for
small disturbances of the training parameters, our online basis generation algorithm yields
substantially smaller bases.

For small disturbances ⇢ this pays out in terms of runtime: Figure 3 shows mean online
runtimes for the two algorithms and di↵erent values of ⇢. This runtime includes reduced
simulation, error estimation and, for our algorithm, the time needed for basis construction.
Beginning with distortions in the range of 5·10�5 our algorithm is slower than the standard
approach as we then need lots of basis enrichment iterations in Algorithm 1. Still, it pays
out to use our algorithm even in these cases as we fulfill the error bound in all cases while
the standard Greedy method violates the error tolerance for the cases ⇢ = 5 · 10�3 (error:
maxµ2T �XN (µ) = 1.64 · 10�5) and ⇢ = 1 · 10�2 (error: maxµ2T �XN (µ) = 3.28 · 10�5).

11

Sven Kaulmann and Bernard Haasdonk

5 Outlook

In our future work we will investigate two di↵erent dictionary construction algorithms:
the “O✏ine–Greedy”-algorithm and the “Randomized O✏ine–Greedy”-algorithm. The
“O✏ine–Greedy”-algorithm will use Algorithm 1 with a small maximum basis size N
during the o✏ine phase to iteratively find the parameter µ worst approximated in the
current dictionary and enrich the dictionary with uh(µ). This algorithm will hopefully
build up a dictionary that combines good approximation quality with small online basis
sizes, even for large distortions ⇢.

REFERENCES

[1] Felix Albrecht, Bernard Haasdonk, Sven Kaulmann, and Mario Ohlberger. The Lo-
calized Reduced Basis Multiscale Method. In Angela Handlovičová, Zuzana Minare-
chová, and Daniel Ševčovič, editors, Algoritmy 2012, pages 393–403. Slovak University
of Technology in Bratislava, Publishing House of STU, April 2012.

[2] Jeanine Bernlöhr. Online Reduzierte Basis Generierung für parameterabhängige ellip-
tische partielle Di↵erentialgleichungen. Diploma Thesis, University of Stuttgart, June
2012.

[3] Bernard Haasdonk and Mario Ohlberger. Reduced basis method for finite volume ap-
proximations of parametrized linear evolution equations. M2AN. Mathematical Mod-
elling and Numerical Analysis, 42(2):277–302, 2008.

[4] Bernard Haasdonk and Mario Ohlberger. Reduced basis method for explicit finite
volume approximations of nonlinear conservation laws. In Hyperbolic problems: theory,
numerics and applications, pages 605–614. Amer. Math. Soc., Providence, RI, 2009.

[5] Yvon Maday and Benjamin Stamm. Locally adaptive greedy approximations for
anisotropic parameter reduced basis spaces. arXiv.org, math.NA, April 2012.

[6] Anthony T. Patera and Gianluigi Rozza. Reduced Basis Approximation and a Poste-
riori Error Estimation for Parametrized Partial Di↵erential Equations. Version 1.0,
Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Mono-
graphs in Mechanical Engineering.

[7] Vladimir Temlyakov. Greedy approximation, volume 20 of Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2011.

12

