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Abstract. If many numerical solutions of parametrized partial differential equations have to be
computed for varying parameters, usual finite element methods (FEM) suffer from too high computa-
tional costs. This can occur in optimization, control, parameter estimation, etc. The Reduced Basis
Method (RBM) is a technique for model reduction of such highly resolved discretization schemes.
The RBM allows to solve parametrized problems faster than by a direct FEM. Consequently, the
RBM is suitable for such multi-query settings.
In the current presentation we extend the RBM for the stationary viscous Burgers equation to the
time-dependent case and general quadratically nonlinear transport equations. We present the RB-
algorithm and its offline/online decomposition. A posteriori error estimators justify the approach.
Numerical experiments on a parameter-dependent transport problem, discretized with backward
Euler, Newton Method and FEM, demonstrate the applicability of the model reduction technique.
Comparison of the CPU times for RBM and FEM demonstrates the efficiency, in particular we
observe an acceleration factor of up to 66.

1. Introduction. We present the Reduced Basis Method (RBM) applied to a
parametrized quadratically nonlinear transport equation of the form

∂tū(µ) − div[η(µ)∇ū(µ) − ~c(µ)(ū(µ))2] = p(µ) in Ω × [0, T ](1.1)

ū(µ, 0) = u0(µ) in Ω(1.2)

ū(µ) = ud(µ) on ∂Ω × [0, T ].(1.3)

Here, Ω ⊂ R
2 denotes a domain with a Lipschitz-continuous boundary ∂Ω. With

T > 0 we denote the end time. The parameter vector is denoted by µ ∈ D ⊂ R
d,

where D is the parameter domain. In engineering applications the parameter vec-
tor expresses geometrical, physical or control parameters. The parameter dependent
viscosity η(µ) ≥ Iη > 0 which is assumed to be strictly positive with lower bound
Iη, the velocity ~c(µ), the Dirichlet values ud(µ), the source term p(µ) and the initial
data function u0(µ) may in general be space- and time-dependent. We generally as-
sume that all parameter functions depend affinely on the parameter. This means, e.g.
for the viscosity η(µ), that for appropriately chosen parameter-dependent functions
Θq

η(µ, t) and space-dependent functions ηq(x) for q = 1, . . . , Qη with low integer Qη we

have η(µ, x, t) =
∑Qη

q=1 Θq
η(µ, t)ηq(x). The RBM is depending on a so called reduced

basis. The simplest way of obtaining such a basis for time-dependent problems, can
be described as follows: Initially, one chooses in a suitable way N parameters µi ∈ D
and time instants ti ∈ [0, T ] for i = 1, . . . , N and computes the finite element (FE)
approximations uH(µi, ti) on a fine mesh, the so called snapshots. The number N
is typically small compared to the dimension N of the FE space. A new space XN
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is constructed as span of these N FE approximations. Then, in order to compute
approximations for many arbitrary new parameters µ ∈ D, possibly different from
µ1, ..., µN , an RB approximation uN (µ) is computed in the lower dimensional space
XN . Because of the lower dimension, the computations of the RB approximation
uN (µ, t) ∈ XN is faster than the computation of the FE approximation uH(µ, t).
The reduced simulation scheme is based on certain matrices, vectors, and in our case
tensors. These quantities can be decomposed in an offline/online procedure. Offline
means that we precompute and store parameter- and time-independent quantities. In
the online phase, these offline quantities are combined with few parameter-dependent
coefficients, which yield the final parameter-dependent system-matrices and vectors.
This online phase is therefore very fast. An analytical quantification of the error be-
tween the RB approximation uN (µ) and the FE approximation uH(µ) can be specified
by a posteriori error estimators.

The RBM has been applied to various kinds of PDEs, for a comprehensive
overview see [12]. In [6] and [4] linear and nonlinear parabolic PDEs are discretized
with the RBM. In the latter reference the nonlinearity is assumed to be monotone
and approximated by the so called empirical interpolation. In [14, 15] the focus is
geometric parameterization of the domain. The RBM has been extended from FEM
to Finite Volume discretizations for linear schemes and affine parameter dependence
[7] and more general parameter dependence [8]. In [16] the RBM is applied to the sta-
tionary, viscous Burgers equation. It contains an a posteriori error estimator between
uN (µ) and uH(µ) as well as an existence proof. The current presentation condenses
the results of the study [9], which extends this method and the results of [16]. We
focus on the time-dependent case, and allow a wider class of quadratically nonlinear
transport equations. The results presented in [4] are not applicable in our case, as the
nonlinearity of equation (1.1) can not be assumed to be monotone. Independently of
our study, [11] also treats the viscous time-dependent Burgers equation. Our study,
however, is not limited to one space dimension and we present an energy-norm error
estimator, analogous to [6] and [11].

The paper is organized as follows. In the next section, § 2, we first give the
discretization of the problem and based on this we introduce the RB algorithm. We
describe details on the offline/online decomposition in § 3, which results in a fast online
simulation scheme. To justify our approach analytically, we present two a posteriori
error estimators in § 4 that allow an efficient computation. Additionaly, in § 5 we
present some numerical experiments. In particular, we investigate the computational
gain and the error convergence. We conclude our study in § 6.

2. RB Approximation for Quadratically Nonlinear Transport Equa-
tions. We will first give the detailed discretization, which includes Dirichlet value
treatment, backward Euler for time discretization and the Newton method for the
nonlinearity. Based on this we introduce the RB approximation.

2.1. Boundary Value Treatment. In order to use the solution spaces with
zero boundary values, we transform the problem (1.1)–(1.3) to a problem with ho-
mogeneous Dirichlet boundary values by substituting u(µ) := ū(µ) − ud(µ) . This
yields

∂tu(µ) − div[η(µ)∇u(µ) − 2~c(µ)ud(µ)u(µ) − ~c(µ)(u(µ))2] = g(µ) in Ω × [0, T ]

u(µ, 0) = u0(µ) in Ω(2.1)

u(µ) = 0 on ∂Ω × [0, T ]
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with g(µ) := −∂tud(µ) + div[η(µ)∇ud(µ) − ~c(µ)(ud(µ))2] + p(µ).

2.2. Time Discretization. The time is discretized by backward Euler. There-
fore, we get a quadratically nonlinear elliptic PDE in each time instant. The index
k refers to the time instant tk = k∆t for given time step size ∆t > 0. The end-
time T refers to tK , i.e. k ∈ {0, ...,K}. The solutions for fixed time reside in the
Sobolev space X := H1

0 (Ω). For the detailed discretization we introduce the FE-
basis space XH ⊂ X. The FE space XH contains space-dependent basis functions
φi, 1 ≤ i ≤ N . The dimension N depends on the fineness of the mesh and the order
of the polynoms. The time-discrete finite element approximation for the time instant
tk is uk

H(µ) := uH(µ, tk). The weak exact solution of the given problem is denoted by
uk

e(µ). For simplicity we omit the parameter dependence of u if confusion is unlikely.
Definition 2.1. (Functions f , f̃ and the Fréchet-Derivative duf)

The parameter domain is D. Let

fk : X × X × D → R, f̃k : X × X × D → R and dufk : X × X × X × D → R

be mappings with the explicit definitions for all v, u ∈ X, µ ∈ D for a given uk−1
e (µ)

and uk−1
H (µ) ∈ X

fk(u, v;µ) :=

∫

Ω

(u − uk−1
e (µ))v − ∆t

∫

Ω

~ck(µ)∇(u2)v + ∆t

∫

Ω

ηk(µ)∇u∇v(2.2)

− ∆t

∫

Ω

2~ck(µ)∇(uk
d(µ)u)v − ∆t

∫

Ω

(

gk(µ)
)

v;

f̃k(u, v;µ) :=

∫

Ω

(u − uk−1
H (µ))v − ∆t

∫

Ω

~ck(µ)∇(u2)v + ∆t

∫

Ω

ηk(µ)∇u∇v(2.3)

− ∆t

∫

Ω

2~ck(µ)∇(uk
d(µ)u)v − ∆t

∫

Ω

(

gk(µ)
)

v and

dufk(u, v;w;µ) :=

∫

Ω

uv + ∆t

∫

Ω

ηk(µ)∇u∇v − 2∆t

∫

Ω

~ck(µ)∇(uw)v

− ∆t

∫

Ω

2~ck(µ)∇(uk
d(µ)u)v,

where uk
d(µ) := ud(µ, tk), ~ck(µ) := ~c(µ, tk), ηk(µ) := η(µ, tk) and gk(µ) := g(µ, tk)

are time discrete values of the parameter functions. The mapping dufk(u, v;w;µ) is
the partial derivative in the Fréchet sense with respect to u of fk(u, v;µ) at w. The
weak exact solution in the time instant k is defined as solution to the equation

fk(uk
e(µ), v;µ) = 0 for all v ∈ X, µ ∈ D(2.4)

in the infinite dimensional space H1
0 (Ω).

Remark 2.2. The results of this paper are applicable to nonlinear parameter-de-
pendent semidiscrete PDEs in weak form on a normed space (X, ‖.‖X) which have the
form

m(u, v) − m(uk−1, v) + ∆tbk(u, v;µ) + ∆tak(u, u, v;µ) = ∆tqk(v;µ)

m(u0, v) = h(v;µ)

for all k ∈ {0, ...,K} and v ∈ X, µ ∈ D where ak(., ., .;µ) is a trilinear form and m(., .)
as well as bk(., .;µ) are bilinear forms. The linear forms are h(.;µ) and qk(.;µ). The
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last argument in ak, bk, qk and h is the parameter vector µ. The forms are supposed
to fulfill the conditions

ak(u, v, w;µ) = ak(v, u, w;µ) for all u, v, w ∈ X(2.5)

and m(v, u) = m(u, v) for all u, v ∈ X.(2.6)

The bilinear form d(., .;µ) = m(., .) + b(., .;µ) + 2infw∈Xa(., .;w;µ) needs to have
a positive coercivity constant for all k ∈ {0, ...,K} and all µ ∈ D. One easily shows
that the Burgers equation fulfills these conditions.

2.3. Newton Method. The nonlinearity is linearized with the Newton Method.
The initial value of the Newton method is the approximation of the previous time

instant, uk,0
e (µ) := uk−1

e (µ), if Lk is the index of the last Newton iteration. Then, the
starting vector for the next time instant is uk+1,0

e (µ) = uk,Lk
e (µ). In the l-th iteration

step the linearized equation for determining uk,l+1
e (µ) is

dufk(uk,l+1
e (µ) − uk,l

e (µ), v;uk,l
e (µ);µ) = −fk(uk,l

e (µ), v;µ) for all v ∈ X.(2.7)

The stopping criterion for the Newton iteration is
∥

∥uk,l+1
e (µ) − uk,l

e (µ)
∥

∥

L2 < ǫtol.
For the analytical result of Propositon 2.4 and Lemma 2.5 we require Definition

2.3. The results are generally derived and therefore valid for the reduced basis treat-
ment as well as the FEM. We consider the Sobolev space H1

0 (Ω) with the well-defined
norm

‖u‖∆t :=
(

‖u‖2
L2(Ω) + ∆tIη ‖∇u‖2

L2(Ω)

)
1
2

for the timestep ∆t and the given lower

bound Iη for the viscosity.
Definition 2.3. (Coercivity Constant, Lipschitz Constant and Radius)

Let µ ∈ D be given and X a suitable function space. The positive coercivity constant

is defined as 0 < αk
∆t(µ) := infw∈X infv∈X,v 6=0

dufk(v,v;w;µ)

‖v‖2
∆t

and the Lipschitz constant

is L(∆t;µ) := supu,v,w1,w2∈X
|dufk(u,v;w1;µ)−dufk(u,v;w2;µ)|

‖v‖∆t‖u‖∆t‖w1−w2‖∆t
.

The radius is rk(∆t;µ) :=
αk

∆t(µ)
L(∆t;µ)

(

1 −
√

1 − τk(∆t;µ)
)

, where τk(∆t;µ) is de-

fined as τk(∆t;µ) := 2L(∆t,µ)ǫk,k−1(∆t;µ)

(αk
∆t

(µ))
2 . We define the residual as

ǫk,k′

(∆t;µ) = supv∈X
−f̃k(uk′

H (µ),v;µ)
‖v‖∆t

.

The convergence of the Newton Method with using the previous time step as
starting point is demonstrated in the Proposition 2.4. .

Proposition 2.4. (Convergence of the Newton Method )
If the bilinear form dufk(., .;w;µ) has a positive coercivity constant αk

∆t(µ) and a
Lipschitz constant L(∆t;µ) with respect to w for all w ∈ X, and the time step size
∆t is small enough, then the Newton Method (2.7) converges to the exact solution,
uk

e(µ)of the equation

fk(., v;µ) = 0 for all v ∈ X

i.e. uk,l
e (µ) → uk

e(µ) for l → ∞ with
∥

∥uk,l+1
e (µ) − uk

e(µ)
∥

∥

∆t
≤ C ′(∆t, k;µ)

∥

∥uk,l
e (µ) − uk

e(µ)
∥

∥

∆t
for all µ ∈ D

where C ′(∆t, k;µ) := L∆t(∆t;µ)

2(αk
∆t

(µ)−L∆t(∆t;µ)rk(∆t;µ))
. The constant C ′(∆t, k;µ) converges

to zero for ∆t → 0.
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Proof. We apply the ideas of [13, Chapter 10.3.1, page 353] and [3, page 301,
Lemma 3.3 and Theorem 3.1], for details see [9, Chapter 2].

Additionally, we want to show that the error which appears by solving f̃k(., v;µ) =
0 instead of fk(., v;µ) = 0, i.e. putting the approximate previous time instant uk−1

H (µ)
instead of the exact previous time instant uk−1

e (µ), is small.
Lemma 2.5. (Convergence in Time)

If the bilinear form dufk(., .;uk−1
H (µ);µ) is for a fixed µ ∈ D coercive and the time

step size ∆t is sufficiently small, then the approximation uk,l
H (µ) converges to the exact

weak solution uk
e(µ) in each time instant with

∥

∥

∥
uk

e(µ) − uk,Lk

H (µ)
∥

∥

∥

∆t
≤ ∆k

e(∆t;µ) for all k ∈ {0, ...,K}.(2.8)

with ∆k
e(∆t;µ) := ǫtol

k
∑

k′=1

C1(∆t, k′;µ)
1

Πk
k′′=k′αk′′

∆t(µ)
,

C ′(∆t, k;µ) := L(∆t;µ)

αk
∆t

(µ)
rk(∆t;µ), C1(∆t, k;µ) := C′(∆t,k;µ)

1−C′(∆t,k;µ) and ǫtol is the stop-

ping criterion for the Newton iteration. The constant C1(∆t, k;µ) converges to zero
for ∆t → 0.

Proof. For details see [9, Chapter 2].

2.4. RB Projection. The RB algorithm consists of a projection to a lower
dimensional subspace and an effective decomposition. In this section we concentrate
on the RB projection that is given explicitly below. Given a parameter-dependent
PDE, for example Eqn. (2.1), where the parameter vector µ resides in D, we construct
the parameter sample set SN by arbitrarly choosing N tuples (µi, t

ki) ∈ D × [0, T ].
Definition 2.6. (Parameter Sample Set SN , Reduced Basis Space XN , Reduced

Basis Approximation uN (µ))
In general, the parameter domain D ⊂ R

d is a cartesian product of intervals and the
parameter µ ∈ D. The parameter sample set is given by
SN := {(µn, tkn) = (µ1

n, ..., µp
n, tkn) : tkn := kn∆t, kn ∈ {1, ...,K}, 1 ≤ n ≤ N}.

The RB space is defined as XN := span{uk1,l1
H (µ1), ..., u

kN ,lN
H (µN )} with (ki, li) ∈

{1, ...,K}×{1, ..., Lk}. For simplicity, we use the abbrevation ξn(x) := ukn

H (µn, x). Af-
ter Galerkin projection of the underlying PDE, in our case (2.4), to the smaller dimen-

sional space XN , the RB approximation can be decomposed as uk
N (µ) =

∑N
n=1 uk

Nn
(µ)ξn(x).

Here the coefficient vector is uk
N (µ) = (uk

N1
(µ), ..., uk

NN
(µ)).

We solve the underlying PDE N -times with the FEM for all (µn, tkn) of SN and
get N FE-approximations ukn

H (µn), 1 ≤ n ≤ N . The RB space XN is constructed
with the above computed FE approximations. It holds that XN ⊂ XH ⊂ X.

If we now look for several approximations of many different tuples, possibly
(µ, tk) /∈ SN , but (µ, tk) ∈ D × [0, T ], we compute the coefficient vector uk

N (µ) for
µ ∈ D.

3. Offline/Online Decomposition. A fundamental ingredient in reduced basis
approximation of P2DEs is the effective decomposition of the computations in an
offline and online phase. The offline phase prepares parameter-independent quantities,
the computation of those quanties is (typically heavily) depending on H. The offline
computed quantities are stored. The online phase assembles the final parameter-
dependent matrices and vectors for the RB algorithm, which is ideally independent of
the complexity H, the dimension of the FE space XH . In each Newton step we solve
a linearized equation (2.7) in XN .
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The construction of XN is the first step in the offline stage, see Definition 2.6.
Secondly, we computed the offline matrices, vectors and a tensor. In order to discrim-
inate the offline quantities are denoted with a ’hat’ as a superscript.

Definition 3.1. (Offline Quantities)
The mass matrix is defined as M̂ := (

∫

Ω
ξiξj)

N
i,j=1 and the offline part of the stiffness

matrix is given by B̂q := (
∫

Ω
η̂q(x)∇ξi∇ξj −

∫

Ω
~cq(x)∇(ud(x)ξi)ξj)

N
i,j=1, 1 ≤ q ≤ Qb.

Ĥq := (
∫

Ω
uq

0(x)ξi)
N
i=1, 1 ≤ q ≤ Qh and Ĝq := (

∫

Ω
ĝq(x)ξi)

N
i=1, 1 ≤ q ≤ Qg are

parameter-independent vectors. The tensor is Âq := (Âq
imj)

N
i,m,j=1 with Âq

imj :=

−
∫

Ω
~cq(x)∇(ξiξm)ξj , 1 ≤ q ≤ Qa = Qc + QcQd, 1 ≤ i,m, j ≤ N.
Definition 3.2. (Online Quantities - Matrices and Vectors) The online quan-

tities are the mass matrix M = M̂ , the stiffness matrix Bk(µ) =
∑Qb

q=1 Θq
b(µ, tk)B̂q

and the right hand side Gk(µ) =
∑Qg

q=1 Θq
g(µ, tk)Ĝq. The vector H(µ) is defined as

H(µ) =
∑Qh

q=1 Θq
h(µ)Ĥq.

The matrix Bk(µ) is a sum of products that consists of the parameter- and time-
dependent factor Θq

b(µ, tk) and the offline matrix B̂q. The number Qb indicates the

number of summands of the affine decomposition of Bk(µ). Here, the parameter-
and time-dependent factor Θq

b(µ, tk) and the number Qb depends on the assumed de-

composition of the parameter function η(µ, t, x) =
∑Qη

q=1 Θq
η(µ, t)η̂q(x). It holds that

Qb = Qη +QcQd where Qc is the number of the summands of ~c(µ) and Qd is the num-

ber of the summands of ud(µ). Analogously, the decomposition of Gk(µ) and H(µ)
consists of the parameter-independent vectors Ĥq and Ĝq as well as the coefficients.

The nonlinearity appears in a trilinear form in the weak formulation, see the
second integral in equation (2.2), explicitly

ak(u, v;w;µ) = −

∫

Ω

Qc
∑

q=1

Θq
c(µ, tk)~cq(x)∇(uw)v.

The space-independent factors could be written outside the integral. In the of-
fline stage we compute a tensor that results from the space-dependent integral and
store it. Consequently, we use the matrix Ak(uk

N (µ))(µ) :=
∑QA

q=1 Θq
A(µ, tk)Âquk

N (µ),

where Âquk
N (µ) ∈ R

N×N denotes the matrix obtained from the tensor-vector prod-

uct between the tensor Âq and the vector uk
N (µ) along the first dimension, i.e.

(Âquk
N (µ))m,j =

∑N
i=1 Âq

imju
k
Ni

(µ).
The above defined quantities are contained in the matrix

DF k(w)(µ) := [M(µ) + 2∆tAk(w)(µ) + ∆tBk(µ)] and in the vector
F k(w)(µ)uk(µ) := [M(µ)+∆tAk(w)(µ)+∆tBk(µ)]uk(µ)−∆tGk(µ)−M(µ)uk−1(µ).
Consequently, we get the following system of equations
(3.1) DF k(uk,l+1

N (µ) − uk,l
N )(µ) · uk,l

N (µ) = −F k(uk,l
N (µ))(µ) · uk,l

N (µ)
for each Newton step 1 ≤ l ≤ Lk and time instant 1 ≤ k ≤ K. In the online stage we
compute the RB approximation for a new parameter vector, µnew ∈ D.

There are two loops. One loop over the discrete time instants, i.e. k = 0, ...,K,
and in every time instant we perform a loop over all Newton steps, i.e. l = 1, ..., Lk.
The computational complexity depends cubicly on N .

The matrices derived from the tensor are computed in every Newton step. There-
fore this matrix enlarges the complexity of the algorithm used to solve quadratically
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nonlinear PDEs compared to one that approximates linear PDEs. In every Newton
step we multiply the stored tensor with the current coefficient vector uk,l

N (µ), which is
the tensor vector product. Higher nonlinearities demand another method, empiricial
interpolation see [1] and [4] for details. In the following we summarize the algorithm
on which the RBM implementations are based. The overall online algorithm is as
follows:

Algorithm (On-line stage)
Let ǫtol > 0 and the offline computed quantities Ĥq, Ĝq, B̂q, M̂ as well as Âq be
given.

1. Choose a new parameter vector µnew in D.
2. Compute the time- and parameter-dependent factors Θq

a(µnew, tk) for all 1 ≤
q ≤ Qa and all 1 ≤ k ≤ K, analogously we compute Θq

b(µnew, tk), Θq
g(µnew, tk)

and Θq
h(µnew).

3. Multiply the parameter- and time-dependent factors Θq
b(µ, tk) with the offline

computed space-dependent matrix B̂q as well as the space-dependent vectors
Ĝq and Ĥq. Then we sum up over all q’s, i.e.

Bk(µnew) =

Qb
∑

q=1

Θq
b(µnew, tk)B̂q, M = M̂

Gk(µnew) =

Qg
∑

q=1

Θq
g(µnew, tk)Ĝq and

Hk(µnew) =

Qh
∑

q=1

Θq
h(µnew, tk)Ĥq.

4. In the first time instant k = 0 we compute the starting coefficient vector
u0

N (µnew) by solving H(µnew) = M u0
N (µnew).

5. In the next time instant k := k + 1 we set the previous approximation as
starting vector for the Newton iteration, i.e. uk,0

N (µnew) := uk−1
N (µnew) and

l = 0.
6. In every Newton step we assemble the matrix Ak(uk,l

N (µnew))(µnew) by

Ak(uk,l
N (µnew))(µnew) =

Qq
∑

q=1

Θq
A(µnew, tk)Âquk,l

N (µnew).

7. We compute

F k(uk,l
N (µnew))(µnew)uk,l

N (µnew) = [M + ∆tAk(uk,l
N (µnew))(µnew)

+ ∆tBk(µnew)]uk,l
N (µnew) − ∆tGk(µnew) − Muk−1

N (µnew)

and the Newton increment

δuk,l
N (µnew) = −[M + 2∆tAk(uk,l

N (µnew))(µnew) + ∆tBk(µnew)]−1F k(µnew) .

8. The next Newton iterate is uk,l+1
N (µnew) := uk,l

N (µnew) + δuk,l
N (µnew).

9. We compute ǫ :=
∥

∥

∥
uk,l+1

N (µnew) − uk,l
N (µnew)

∥

∥

∥

L2(Ω)

if ǫ ≥ ǫtol → l := l + 1, go to 5.
if ǫ ≤ ǫtol → uk

N (µnew) := uk,l+1
N (µnew), go to 6.

7



4. A Posteriori Error Estimators. We justify the results of the RB algorithm
by two a posteriori error estimators that quantify the error between the RB and the
FE approximation. Futhermore, an efficient computation of the a posteriori error
estimators is demonstrated, i.e. the online computation is independent of N .

In this section we present two different a posteriori error estimators. The first
one assumes that the dual norm of the residual is smaller than a problem specific
constant. The second one does not require a similar restriction.

Definition 4.1. (Residuals)
The dual norm of the residual ǫk

N (∆t;µ) with the RB appoximation uk
N (µ) is defined as

ǫk
N (∆t;µ) := supv∈XH ,v 6=0

fk
N (uk

N (µ),v;µ)
‖v‖∆t

∈ R with fN (u, v;µ) : XN×XN×D → R. The

explicit definition of fN is identical to Definition 2.1, equation (2.2), but using the pre-
vious RB approximation uk−1

N (µ) instead of the exact previous time iteration uk−1
e (µ).

The mapping fH(., .; .) : XH × XH × D → R is identical to Definition 2.1, equation
(2.2), but using the previous approximation uk−1

H (µ) instead of the exact previous time

iteration uk−1
e (µ). The radius is rk

N (∆t;µ) :=
αk

∆t(µ)
L(∆t;µ)

(

1 −
√

1 − τk
N (∆t;µ)

)

, where

τk
N (∆t;µ) is defined as τk

N (∆t;µ) :=
2L(∆t,µ)ǫk,k−1

N
(∆t;µ)

(αk
∆t

(µ))
2 . If ∆t is suitably small,

0 < ∆t < 1 according to the viscosity η(µ) and the scaling vector ~c(µ), the bilinear

form dufk(., .;uk,Lk

N (µ);µ) is coercive. With this we can derive the following error
estimators.

Proposition 4.2. (1. Error Estimator)

If the bilinear form dufk(., .;uk,Lk

N (µ);µ) is coercive for all µ ∈ D where uk,Lk

N (µ) ∈

XN is the approximation to fk
N (., v;µ) = 0 for all v ∈ XN and uk,Lk

H (µ) ∈ XH is the
approximation to fk

H(., v;µ) = 0 for all v ∈ XH and the dual norm of the residual
is bounded,

ǫk
N (∆t;µ) := sup

v∈XH ,v 6=0

fk
N (uk

N (µ), v;µ)

‖v‖∆t

<

(

αk
∆t(µ)

)2

2L(∆t;µ)
,

then the error between the RB solution uk
N (µ) and the FE approximation uk

H(µ) is
bounded as follows,

∥

∥uk
N (µ) − uk

H(µ)
∥

∥

∆t
≤ Dk

N (∆t;µ)

with Dk
N (∆t;µ) :=

∑k
k′=1

(

rk′

N (∆t;µ)

Πk
k′′=k′+1

αk′′

∆t
(µ)

)

. By Πl
k=1a(k) we denote the product of

a(k) · ... · a(l).
Proof. We apply the idea of [16, Proposition 2.1], for details see [9, Chapter 4.1].

Proposition 4.3. (2. Error Estimator)
If the bilinear form dufk(., .;w;µ) is coercive for all µ ∈ D, k ∈ {0, ...,K} and w ∈ X,
then we have

∥

∥uk
N (µ) − uk

H(µ)
∥

∥

∆t
≤ ∆k

N (∆t;µ) for all µ ∈ D, k ∈ {0, ...,K} with

∆k
N (∆t;µ) :=

∑k
k′=1

ǫk′

N (∆t;µ)

Πk
k′′=k′

αk′′

∆t
(µ)

.

Proof. For details see Appendix A or [9, Chapter 4.1].
The error estimators should be computable by an offline/online decomposition,

in order to guarantee the efficiency. The factors contained in the error estimators
∆k

N (∆t, µ) and Dk
N (∆t, µ) are ǫk

N (∆t;µ), αk
∆t(µ), L(∆t;µ) and constants. We assume

the coercivity constant, the Lipschitz constants and all the other constants to be
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given. The residuals ǫk
N (∆t, µ) and ǫk,k′

N (∆t, µ) can be computed via an online/offline
decomposition similar to [16], [10], [5] and [6], see [9]. The online computations are
independent of the dimension N .

5. Numerical Experiments. In this section we apply the above described al-
gorithm. We consider the unit square Ω = [0, 1]2. The finite element space XH has
the dimension N = 10201. The detailed implementation as well as all offline compu-
tations are based on the C++ environment DUNE (Distributed and Unified Numerics
Environment). For details see www.dune.org and [2]. Just the online algorithm is re-
alized by Matlab routines. The implementations run on an x86 64 AMD Athlon(tm)
64 X2 Dual Core Processor 3800+ AuthenticAMD. We used a BICGSTAB scheme in
the FE-algorithm.
The numerical solution obtained by this implementation approximate equation (2.1).
Originally, we intended to solve a PDE with inhomogeneous Dirichlet boundary value
ud(µ) 6= 0 and denote the solution as ū(µ). We transformed the solution as follows
u(µ) := ū(µ)−ud(µ) and get the third term in equation (1.1), homogeneous Dirichlet
boundary values and the below defined right hand side. The right hand side is

g(µ) = −

∫

Ω

(∂tud(µ))v +

∫

Ω

~c(µ)(ud(µ))2∇v +

∫

Ω

∇(η(µ)∇ud(µ) + p(µ))v.

5.1. First Example. In this example we demonstrate the nonlinear evolution.
The parameter functions of (2.1) are

η(µ, x, t) = µ1, p(µ) = 0,

ud(µ, x, t) = (2 − µ4)µ5e
−100((y−0.1)2+x2) + (µ4 − 1)µ5e

−100((y−0.2)2+x2) and

c(µ, x, t) =

(

µ2y
µ3x

)

.

The RB space XN contains the five first Newton iterations of the detailed simulation
for the first time instant, K = 1 and L1 = 5.

SN := {(µ, 0.5) : µ = (0.1, 10, 10, 3, 1)}

XN := span
{

u1,1
H (µ), ..., u1,5

H (µ)
}

with µ = (0.1, 10, 10, 3, 1), N = dim(XN ) = 5.

The RB and FE approximations, u1,5
N (µ) and u1,5

H (µ), are visualized with GRAPE
in Figure 5.1, a) and b). Figure 5.1 c) shows the inhomogeneous approximation
ū(µ) = u1,5

H (µ) + u1
d(µ). The viscosity is small compared to the scaling function

~c(µ, x, t) = ~c(µ2, µ3, x, t) for the nonlinear convective term. The L2-error between the
fifth Newton iteration is ||u1,5

H (µ)−u1,5
N (µ)||L2 = 5.57494e−05 and the corresponding

relative L2-error
||u1,5

H
(µ)−u

1,5
N

(µ)||L2

||u1,5
H

(µ)||L2
= 0.000372078.

The detailed approximation lasts 24.6255 sec for five Newton steps, while the RB
simulation for five Newton steps takes 0.180968 sec. The computations of the offline
quantities is done in 1722.48 sec. This example demonstrates the accuracy of the
RBM concerning the nonlinearity.

5.2. Second Example. In this example we construct a RB space that allows a
wide choice of parameter variation. We show the results of three different parameter
configurations, µ = (0.1, 0, 5, 4, 1), µ = (0.1, 2, 3, 2.46, 1) and µ = (0.1, 4.2, 1.3, 5.3, 1).
The parameter space is D := {0.1}× [0, 5]× [0, 5]× [2, 6]. The endtime is T = 0.5 and
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a) b) c)

Figure 5.1. a) RB approximation u
1,5

N
(µ) for µ = (0.1, 10, 10, 3, 1) and the first time instant

t1 = 0.5 and for the fifth Newton step l = 5 b) FE approximation u
1,5

H
(µ) c) inhomogeneous FE

approximation u
1,5

H
(µ) + u1

d
(µ)

a) b)

Figure 5.2. a) RB approximation uk
N

(µ) for µ = (0.1, 0, 5, 4, 1) and tk = 0.5 and b) FE

approximation uk
H

(µ) for µ = (0.1, 0, 5, 4, 1) and tk = 0.5

the time step size ∆t = 0.5. The RB space XN consists of 20 basis functions, the FE
approximations uk

H(µ) for all (µ, t) ∈ SN with SN := {(0.1, µ2, µ3, µ4, 1, t1) : µ2, µ3 ∈
{0, 5}, µ4 ∈ {2, 3, 4, 5, 6}}.
First we compute the FE and the RB approximation for µ = (0.1, 0, 5, 4, 1) ∈ D. The
L2-error between the FE and RB approximation is

∥

∥u1
H(µ) − u1

N (µ)
∥

∥

L2 = 0.00203646

and the relative L2 error is
‖u1

H(µ)−u1
N (µ)‖

L2

‖u1
H

(µ)‖
L2

= 0.0467045. The visualization is nearly

identical, see Figure 5.2. This demonstrates the accuracy of the RBM with respect
to parameter variation.

The FE simulation is computed in 5.01631 sec, K = 1 , Lk = 1, the RB Simulation
needs just 0.118945 sec. In Figure 5.3 one can see that the FE and RB approximation
for the parameter vector µ = (0.1, 2, 3, 2.46, 1) are almost equal, although three pa-
rameter components are varied compared to the training parameter. The relative L2

error is
‖u1

H(µ)−u1
N (µ)‖

L2

‖u1
H

(µ)‖
L2

= 0.00051514. In Figure 5.4 the FE and RB approximation

for the parameter vector µ = (0.1, 4.2, 1.3, 5.3, 1) are presented. The time savings are
obvious, because the RB algorithm needs just 0.118945 sec, while the FE algorithm
needs 5.01631 sec.

5.3. Third Example. In this example we demonstrate the computational gain
by using the RBM instead of the FEM. The main goal of RB-approaches is an acceler-
ated online phase compared to the full simulation. The data functions are the same as
in the first example. The time step size is ∆t = 0.05 and the end time is T = 0.5. The
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a) b)

Figure 5.3. a) RB approximation uk
N

(µ) for µ = (0.1, 2, 3, 2.46, 1) and tk = 0.5 b) FE approx-

imation uk
H

(µ) for µ = (0.1, 2, 3, 2.46, 1) and tk = 0.5

a) b)

Figure 5.4. Approximation for the parameter vector µ = (0.1, 4.2, 1.3, 5.3, 1) at the first time
step t1 = 0.5 and first Newton step l = 1 a) with the RBM b) with the FEM

computations are done for one time instant and one Newton step Lk = 1. We consider
the following parameter domain D := {0.01} × [4.5, 5.5]× [4.5, 5.5]× {1} × {1} ⊂ R

5,
the sample set SN := {(µ, tk)| µ = (0.01, 5, 5, 1, 1), tk = k∆t, 1 ≤ k ≤ 10} and the RB
space XN consists of 10 time iterations for parameter vector µ = (0.01, 5, 5, 1, 1) ∈ D.
Compared to the second example, we just vary two components µ2 and µ3 of the
parameter vector, but consider a larger timespan. The other components of the pa-
rameter vector remain fixed. We compute the RB approximation for a parameter
vector µ = (0.01, 5.2, 4.8, 1, 1). Table 5.1 demonstrates that the error and the relative
error are still acceptable, although we computed the approximation corresponding to
new parameter vector that is different from the reference parameters.

The CPU times of the FE simulation are 45.2068 sec, RB simulation 0.680140
sec and offline computations take 5556.04 sec. In Figure 5.6 we demonstrate the ef-
ficiency of the RBM compared to FEM. We see, that the RBM really is useful for
many-query settings. For sufficiently many simulations, the runtime for offline phase
plus the multiple online computations, is lower than the computational time for the
multiple FEM simulations. The L2-error and relative L2-error is presented in Table
5.2.
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Figure 5.5. RB trajectory for the parameter vector µ = (0.01, 5.2, 4.8, 1, 1), with final time 0.5
and with a time step size ∆t = 0.05 and N = 10 for t1 = 0.05 , t2 = 0.1, ... , t10 = 0.5

Table 5.1

Absolute and relative L2 error between RB and FEM approximation, parameter vector µ =
(0.01, 5.2, 4.8, 1, 1), T = 0.5, ∆t = 0.05 and N = 10

time instant tk
∥

∥uk
N (µ) − uk

H(µ)
∥

∥

L2(Ω)

‖uk
N (µ)−uk

H(µ)‖
L2(Ω)

‖uk
H

(µ)‖
L2(Ω)

t0 = 0 0 0
t1 = 0.05 0.000549648 0.0281908
t2 = 0.1 0.00113435 0.031538
t3 = 0.15 0.00173473 0.0349544
t4 = 0.2 0.0023629 0.0388154
t5 = 0.25 0.00298377 0.0425092
t6 = 0.3 0.00361479 0.0463289
t7 = 0.35 0.00422896 0.0499113
t8 = 0.4 0.00484625 0.0535105
t9 = 0.45 0.00544773 0.0569121
t10 = 0.5 0.00608852 0.0606843

Table 5.2

Absolute and relative L2 error between RB and FEM approximation, parameter vector µ =
(0.01, 5, 5, 1, 1), T = 0.5, ∆t = 0.05 and N = 10

time instant tk
∥

∥uk
N (µ) − uk

H(µ)
∥

∥

L2(Ω)

‖uk
N (µ)−uk

H(µ)‖
L2(Ω)

‖uk
H

(µ)‖
L2(Ω)

t0 = 0 0 0
t1 = 0.05 2.7705 · 10−11 1.46338 · 10−9

t2 = 0.1 4.09397 · 10−11 1.17237 · 10−9

t3 = 0.15 4.7922 · 10−11 9.94021 · 10−10

t4 = 0.2 5.40204 · 10−11 9.12845 · 10−10

t5 = 0.25 6.0319 · 10−11 8.83424 · 10−10

t6 = 0.3 6.60415 · 10−11 8.69686 · 10−10

t7 = 0.35 7.2702 · 10−11 8.81296 · 10−10

t8 = 0.4 7.81986 · 10−11 8.86577 · 10−10

t9 = 0.45 8.46411 · 10−11 9.0773 · 10−10

t10 = 0.5 8.72021 · 10−11 8.92068 · 10−10

The experiments show that a specific, problem dependent construction of the
space XN is essential. The construction of the offline quantities is expensive. There-
fore, the RBM is applicable if the user is interested in many computations. In gen-
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eral, the comparison between the FE and RB simulation time shows the time savings,
achieved by applying the RBM.

6. Conclusion. We have presented a Reduced Basis Method for parametrized
quadratically nonlinear transport equations with implicit time discretizations. The
main ingredient is an offline/online decomposition of the trilinear form, which is re-
quired for solving the Newton loop. We have derived a posteriori error estimators,
that can be used to give rigorous quantification of the reduced model’s error in the
online phase. The implementation, experimental comparison and validation of the
estimators remains to be done. Experimentally, we have applied the method to a
viscous Burgers Equation with 1st Order FEM discretization. The results indicate
that the RB method gives good approximations compared to the FEM solutions. The
RB method gives a considerable CPU gain for sufficiently many simulations.
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Appendix A. Error Estimator. We define general forms that we use in the
subsequent proof of Proposition 4.3.

Definition A.1. (General Forms) The bilinear forms mk : X ×X ×D → R and
bk : X × X × D → R are defined as

m(u, v;µ) :=

∫

Ω

uv and bk(u, v, µ) :=

∫

Ω

ηk(µ)∇u∇v −

∫

Ω

~ck(µ)∇(ud(µ)u)v.

The linear form qk : X × D → R that represents the right hand side is

qk(v;µ) :=

∫

Ω

(

−
uk

d(µ) − uk−1
d (µ)

∆t
+ div[ηk(µ)∇uk

d(µ) − ~ck(µ)(uk
d(µ))2] + pk(µ)

)

v

Proposition A.2. (2. Error Estimator)
If the bilinear form dufk(., .;w;µ) is coercive for all µ ∈ D, k ∈ {0, ...,K} and w ∈ X,
then we have

∥

∥uk
N (µ) − uk

H(µ)
∥

∥

∆t
≤ ∆k

N (∆t;µ) for all µ ∈ D, k ∈ {0, ...,K}
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with ∆k
N (∆t;µ) :=

∑k
k′=1

ǫk′

N (∆t;µ)

Πk
k′′=k′

αk′′

∆t
(µ)

.

Proof. Let v ∈ XH and µ ∈ D, then we have using Definition 2.1, 4.1 and A.1

0 = fk
H(uk

H(µ), v;µ) − fk
N (uk

N (µ), v;µ) + fk
N (uk

N (µ), v;µ)

= m(uk
H(µ), v) − m(uk−1

H (µ), v)

+∆tbk(uk
H(µ), v;µ) + ∆tak(uk

H(µ), uk
H(µ), v;µ) − ∆tqk(v;µ)

−m(uk
N (µ), v) + m(uk−1

N (µ), v)

−∆tbk(uk
N (µ), v;µ) − ∆tak(uk

N (µ), uk
N (µ), v;µ) + ∆tqk(v;µ) + fk

N (uk
N (µ), v;µ)

= m(uk
H(µ) − uk

N (µ), v) − m(uk−1
H (µ) − uk−1

N (µ), v) + ∆tbk(uk
H(µ) − uk

N (µ), v;µ)

+∆tak(uk
H(µ), uk

H(µ), v;µ) − ∆tak(uk
N (µ), uk

N (µ), v;µ) + fk
N (uk

N (µ), v;µ).

We choose the test function to be v = uk
H(µ) − uk

N (µ) ∈ XH , and get

m(v, v) +∆tbk(v, v;µ) + ∆tak(uk
H(µ), uk

H(µ), v;µ) − ∆tak(uk
N (µ), uk

N (µ), v;µ)

= m(uk−1
H (µ) − uk−1

N (µ), v) − fk
N (uk

N (µ), v;µ).

We assumed that the trilinear form ak(u, v, w;µ) is symmetric with respect to the
first two arguments. Therefore, it follows,

m(v, v) +∆tbk(v, v) + ∆tak(v, uk
H(µ), v;µ) + ∆tak(v, uk

N (µ), v;µ)

= m(uk−1
H (µ) − uk−1

N (µ), v) − fk
N (uk

N (µ), v;µ).

Based on Definition 2.1 the following relation between fk and dufk holds

αk
∆t(µ) ‖v‖2

∆t ≤
1

2

[

dufk(v, v;uk
H(µ);µ) + dufk(v, v;uk

N (µ);µ)
]

= −fk
N (uk

N (µ), v;µ) + m(uk−1
H (µ) − uk−1

N (µ), v)

≤ −fk
N (uk

N (µ), v;µ) + ‖v‖∆t

∥

∥uk−1
H (µ) − uk−1

N (µ)
∥

∥

∆t
.

Without loss of generalization we assume v 6= 0, otherwise this statement is clear.
Dividing by ‖v‖∆t αk

∆t(µ) and inserting the definition of the dual norm of the residuum
ǫk
N (∆t;µ) results in

‖v‖∆t ≤
ǫk
N (∆t;µ)

αk
∆t(µ)

+
1

αk
∆t(µ)

∥

∥uk−1
H (µ) − uk−1

N (µ)
∥

∥

∆t

≤
ǫk
N (∆t;µ)

αk
∆t(µ)

+
∆k−1

N (∆t;µ)

αk
∆t(µ)

= ∆k
N (∆t;µ).
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