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Feature Space Interpretation of SVMs
with Indefinite Kernels

Bernard Haasdonk

Abstract—Kernel methods are becoming increasingly popular for various kinds of machine learning tasks, the most famous being the

support vector machine (SVM) for classification. The SVM is well understood when using conditionally positive definite (cpd) kernel

functions. However, in practice, non-cpd kernels arise and demand application in SVMs. The procedure of “plugging” these indefinite

kernels in SVMs often yields good empirical classification results. However, they are hard to interpret due to missing geometrical and

theoretical understanding. In this paper, we provide a step toward the comprehension of SVM classifiers in these situations. We give a

geometric interpretation of SVMs with indefinite kernel functions. We show that such SVMs are optimal hyperplane classifiers not by

margin maximization, but by minimization of distances between convex hulls in pseudo-Euclidean spaces. By this, we obtain a sound

framework and motivation for indefinite SVMs. This interpretation is the basis for further theoretical analysis, e.g., investigating

uniqueness, and for the derivation of practical guidelines like characterizing the suitability of indefinite SVMs.

Index Terms—Support vector machine, indefinite kernel, pseudo-Euclidean space, separation of convex hulls, pattern recognition.

�

1 INTRODUCTION

IN the last decade various so-called kernel methods for
machine learning and data analysis have been developed

and successfully applied. These methods do not necessarily
require vectorial representations of the objects in contrast to
many traditional methods. Instead, they are based on a
problem specific choice of similarity measure between pairs
of objects, the kernel function. By various possible choices of
such functions, kernel methods are applicable to a wide
range of structured or unstructured data types, e.g., general
discrete structures [1], strings [2], weighted automata [3],
etc. Every data analysis algorithm that only makes use of
inner products between data vectors can be transformed
into a kernel method by the kernel trick, which consists of
replacing the inner product by an arbitrary kernel function.
The most popular representatives of kernel methods are
support vector machines (SVMs) for classification pro-
blems. In recent years, they have been established as
methods of first choice on various learning problems in
many fields of applications, cf. [4], [5]. There are several
reasons for their success. The main arguments for practi-
tioners are existing fast implementations and, the general
ease of use, as in SVMs only few architectural decisions
have to be taken: Only a positive definite kernel function
and some parameters have to be provided. Even the choice
of these few parameters can be automatized by model
selection strategies, e.g., [6]. Therefore, the crucial compo-
nent where the user can introduce some available problem
specific a priori knowledge is the kernel function.

Very important arguments for theoreticians are the
foundations in statistical learning theory and the clear
intuitive geometric interpretation [7]. SVMs are hyperplane
classifiers in implicitly defined Euclidean feature spaces.
They perform optimal separation of patterns by margin
maximization. This is the basis for general understanding,
adequate practical application, improvements, and new
algorithms. However, this geometric interpretation is only
available in the case of conditionally positive definite (cpd)
kernel functions (cf. Section 3 for definitions).

In practice, the requirement of a kernel function to be cpd
turns out to be a very strict assumption.Many situations exist
where standard cpd kernels are not applicable, as in the case
of general nonvectorial data. Unless some specialized kernels
exist, the user must construct a kernel function by hand. As a
starting point, ad hoc or even sophisticated dissimilarity or
similaritymeasuresmay be available, but they often produce
non-cpd kernels. In other situations, standard kernels can be
applied, but additional problem specific a priori knowledge
needs to be incorporated in order to improve the method’s
performance. This also frequently leads to non-cpd kernels.
We review various examples in Section 2. Therefore, non-cpd
kernels often are available, but it is not clear what is the best
way to use them in the SVM framework. A practical
“heuristic” approach is to use the indefinite kernels in SVMs
as usual. This has been realized in various publications [8],
[9], [10], [11], [12]. The empirical classification results of such
non-cpd kernels often are very good, but theoretical founda-
tion is missing. Using these kernels has consequences for the
numerical optimization problem, as convexity is lost. This
gives rise to questions on the number and optimality of
solutions.

Themotivation for the presentwork now stems from these
two facts: Good empirical results demand theoretical under-
standing and geometry is a fundamental step towards such
understanding. We therefore concentrate on providing a
geometric interpretation of training and classification of
SVMs with non-cpd kernels. This interpretation enables
further theoretical investigations, such as statements on
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optimality of solutions and derivation of practically relevant
criteria for the application of indefinite SVMs.

The structure of the paper is as follows: In the next section,
we review existing work dealing with indefinite kernels in
SVMs. In Section 3, we introduce the necessary notations
concerning kernels and the pseudo-Euclidean spaces, which
is the framework where indefinite SVMs can be interpreted.
The main part of the work starts in Section 4, where we
illustrate linear classification in pseudo-Euclidean spaces by
minimizing the distance of convex hulls. Section 5 then
demonstrates that SVM classification exactly coincides with
the pseudo-Euclidean convex hull classification and we
present examples of the correspondences. Section 6 com-
ments on theoretical statements on uniqueness of the
solutions.We illustrate the practical aspects and implications
of our work in Section 7 and conclude with final remarks in
Section 8. Mathematical details, derivations and proofs are
omitted in the main text, these can be found in the Appendix
which appears at www.computer.org/publications/dlib.

2 EXISTING WORK ON INDEFINITE KERNELS

IN SVMS

We give a brief literature review of existing work on
indefinite kernels in SVMs. This will additionally accent-
uate the need for theoretically investigating these kernels, as
the experimental results are increasingly dominating.

The first examples of such kernels are cpd kernels which
are not positive definite. These kernels are known to produce
convenient convex optimization problems for SVMs [13].
Some standard kernels are known to be cpd for suitable
parameter ranges. For instance, the Sigmoid kernel, which is
widely used in neural net design, has been investigated on
cpd-ness [14]. This reference also presents relevant theore-
tical results. A main finding is that the widespread SVM
implementation libsvm [15] does converge for indefinite
kernels, namely, to a stationary point of the nonconvex
optimization problem. In [16], the Sigmoid kernel is again
addressed and an interpretation in a so-called hyperbolic
space is given. For the interpretation of SVMs, we regard the
embedding applied in the following section asmore suitable,
as it is a Euclidean embedding for cpd functions.

The major part of the literature consists of successful
applications of non-cpd kernels which result from problem-
specific kernel constructions. As one example, geometric
transformation knowledge is known to be advantageous for
image classification. If incorporated into kernel functions,
this often leads to non-cpd kernels with good SVM classifica-
tion results. Examples are the jittering kernels [9] approach,
where the kernel evaluation is performed involving a set of
locally transformed patterns, or tangent distance kernels [10],
where tangents of the transformations are applied in the
kernel evaluations.This example indicates amuchwider field
of indefinite kernels, namely, kernels constructed from
distance measures. For instance, Kullback-Leibler divergence
kernels [11] were constructed for objects represented as
probability density functions. In [8], a problem specific
dissimilarity measure for time sequences called dynamic time
warping was incorporated into Gaussian kernels. More
general distance substitution kernels were investigated in [17].
In order to avoid working with non-cpd kernels, regulariza-
tion methods have been proposed, which aim at making the
kernel matrix positive definite, e.g., [18], [19]. One

obtains convex optimization problems by this, but other
severe conceptional and computational problems arise, cf.
Section 7.5. In general, few explanations for the success of
non-cpd kernels are given. So, various publications gain
sound mathematical foundation by the present work.

3 NOTATION

Wewill use the following general notations and terminology.
x; b; f , etc., denote general variables or unstructured objects.
MT orwT stand for the transpose of amatrixM or a vectorw.
In is the n� n identity matrix. 1p;0p, and ei 2 IRp denote the
vector of ones, zeros, and the ith unit-vector. The matrix
diagðv1; . . . ;vmÞ is the diagonal matrix with entries given by
the concatenation of the vectors vi. Sums will be abbreviated
by

P
i :¼

Pn
i¼1 and

P
i;j :¼

Pn
i;j¼1 .

Having a maximization problem max���� Jð����Þ under some
constraints, we will use the notion feasible point ���� for a point
satisfying the constraints of the optimization problem. A
feasible direction����� in����will be a direction such that����þ ������
is a feasible point for some range � 2 ½0; ��with some � > 0. A
stationary point ���� of the maximization problem is a point
where the derivatives of the optimization function in all
feasible directions are nonpositive. A local optimum ���� of a
maximization problem is a stationary point where addition-
ally the curvature of the optimization function in feasible
directions with vanishing directional derivative is nonposi-
tive. A stationary point includes possible saddle-points,
which is the reason for considering the second order
condition for local optima.

3.1 Kernels

A fundamental ingredient in SVMs is the notion of a kernel k,
which is usually a symmetric function k taking two
arguments of an arbitrary set X where the data stems from,
i.e., k : X � X ! IR. For given data points ðxiÞni¼1 2 Xn,
which may be nonvectorial, the kernel matrix K :¼
ðkðxi; xjÞÞni;j¼1 can be defined. If for all n, all sets of data
points and all vectors v 2 IRn the inequality vTKv � 0 holds,
then k is called positive definite. If this is only satisfied for
those v with 1T

nv ¼ 0, then k is called conditionally positive
definite. A kernel is indefinite, if for some K vectors v and v0

exist with vTKv > 0 and v0TKv0 < 0. The main contribution
of the present work is the interpretation of SVMs for the case
of non-cpd functions. Occasionally, we use the more
expressive notion indefinite, which includes part of the cpd
functions. For these functions, our result coincides with the
existing Euclidean interpretations.

Starting with an arbitrary symmetric function k, a
corresponding squared distance can be defined by

d2ðx; x0Þ :¼ kðx; xÞ � 2kðx; x0Þ þ kðx0; x0Þ: ð1Þ

The synonym dissimilarity could be used, but for the sake of
homogeneity we stick to the notion distance. In the case of a
cpd kernel, this corresponds to the induced distance in a
Euclidean feature space. For general symmetric kernels, this
definition does not define the square of a metric, as d2 might
be negative or

ffiffiffiffiffi
d2

p
violates the triangle inequality. But, at

least, it yields a symmetric function d2 with zero diagonal.
This squared distance function will allow a representation
of the data in certain vector spaces.
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3.2 Pseudo-Euclidean Spaces

Our main argumentation is taking place in pseudo-
Euclidean (pE) spaces. We briefly introduce our notation,
details including illustrations are presented in Section 1.1
and in [20], [19].

With IRðp;qÞ, we denote the pE space of signature ðp; qÞ,
wherep; q 2 NN0. This space canbe seenasaproduct of a “real”
and “imaginary” Euclidean vector space IRp � iIRq. Its
elements are denoted with z, the vector of real coordinates.
The bilinear but not necessarily positive definite inner product
is defined by hz; z0ipE :¼ zTMz0, where M :¼ diagð1p;�1qÞ.
Usual geometric concepts can be straightforwardly defined:
The reduced convex hull of a set of points is given by
conv�ðfz1; . . . ; zngÞ :¼ f

P
i �izij

P
i �i ¼ 1 and 0 � �i � �g,

where � balances the reduction from � ¼ 1 (ordinary non-
reduced convex hull) until � ¼ 1=n, where the set consists of
the single point, the mean of the zi. The squared norm is
defined as jjzjj2pE :¼ hz; zipE. This notion immediately implies
the squared distance of two points by jjz� z0jj2pE. The mapping
Mzdefinesthereflectionofavector in IRðp;qÞwithrespect tothe
real space IRp. Orthogonality, hyperplanes, and normal vectors
canbereasonablydefinedandcorrespondinglinearclassifica-
tioncanbeperformed. Note that the squared norm and the
squared distance can be negative in contrast to the
Euclidean case. In particular, jjz� z0jj2pE may not define a
metric, as it can violate the triangle inequality.

The relevance of these pE spaces is that they provide a
unifying framework for both structural and vectorial data
after appropriate embeddings [20]. By assuming a squared
distance function on arbitrary structured data, an embed-
ding in a pE space can be constructed, which allows to
maintain this distance information. It was given by [20] and
also used in [18], [19]. A concrete construction is given in
the proof of Proposition 1 in the Appendix.

Proposition 1 (Isometric Embedding). Let fxigni¼1 2 Xn be
data points and d2 : X � X ! IR be a symmetric function
with zero diagonal. Then, there exists a pE space IRðp;qÞ with
pþ q < n and an embedding � : fxigni¼1 ! IRðp;qÞ such that
for all i; j holds

d2ðxi; xjÞ ¼ jj�ðxiÞ � �ðxjÞjj2pE: ð2Þ

The signature ðp; qÞ is given by the number p of positive
and the number q of negative eigenvalues of a so-called
centered kernelmatrix constructed from the distance informa-
tion. The most important point for our purpose is that the
distance data can be induced by a kernel via (1). Then, the pE
inner product and � 1

2 d
2 differ from k only by a suitable

function h and h0 of one argument,which is useful for various
reformulation steps, cf. Lemma 6 in the Appendix for details:

kðxi; xjÞ ¼ � 1

2
d2ðxi; xjÞ þ h0ðxiÞ þ h0ðxjÞ

¼ �ðxiÞTM�ðxjÞ þ hðxiÞ þ hðxjÞ:
ð3Þ

The embedding can be performed in such a way that it
becomes centered (mean 0) and the coordinates are
uncorrelated. In particular, for cpd kernels, this resulting
space will be Euclidean. For many embeddings of real data,
the variance in the imaginary directions is empirically much
lower than the variance in the real directions [19].

In practice, kernels mostly produce nonnegative squared
distances by (1), for instance, every kernel constructed from
a Gaussian kðx; x0Þ ¼ e�fðx;x0Þ with nonnegative f and
fðx; xÞ ¼ 0. Still, the study of negative squared distances
is relevant in the case of such practical kernels. The reason
is that constructions in the embedding pE space, like convex
combinations of points, can result in negative squared
distances even if the squared distances between the
embedded points are all positive.

A slightly more abstract framework called Krein or
Pontryagin-spaces [21] for embedding the whole original
spaceX would also have been an appropriate framework for
our interpretation, if we would confine ourselves to sym-
metric kernels which allow a so-called Kolmogorov decomposi-
tion [21]. But, as we demonstrate in the next section, only the
space resulting from embedding the (finite) training data is
required for understanding the SVM. So, we stick to themore
easily accessible class of finite-dimensional Krein-spaces,
which exactly are the pE spaces. In this finite-dimensional
case, we do not have to make any further restrictions on the
kernels other than being symmetric functions.

4 OPTIMAL SEPARATION OF CONVEX HULLS

IN IRðp;qÞ

Different methods of linear classification in pE spaces have
been proposed, e.g., the Fisher linear discriminant or a
generalized nearest mean classifier [20], [19]. Also, methods
for using SVMs in these spaces have been proposed, which
require the regularizations mentioned in Section 2 [18], [19].
In this section, we present another classification procedure
which maintains and makes use of the pE geometry of the
spaces. It turns out that it is an optimal hyperplane
classification method and exactly the operation that is
performed by a non-cpd SVM.

Note that the method described in the sequel only
requires distance information. Therefore, we formulate it
solely in terms of distances and completely avoid the kernel
function, which induces the distance. So, the method may
be particularly attractive for the active research field of
distance based learning. If required, all expansions in terms
of distances can be expressed by the kernel function by
application of (1) and (3). The classification method is based
on convex hulls; therefore, we denote it as CH classification.

It has been shown that maximization of the (soft) margin
in Hilbert-spaces can equivalently be formulated as mini-
mization of distances of (reduced) convex hulls [22], [23].
This separation of convex hulls can be applied in pE spaces,
as we also have the notions of distance and convex hulls. As
in Section 3, we assume to have training data ðxi; yiÞ 2
X � f�1g for i ¼ 1; . . . ; n and an arbitrary squared distance
measure d2 : X � X ! IR, which can be given explicitly or
induced by (1) based on some symmetric kernel function k.
This data is assumed to be isometrically embedded in some
IRðp;qÞ according to Proposition 1.

The formalization of minimizing the distance in IRðp;qÞ

between the reduced convex hulls of the positive and of the
negative training examples is

min
z�;zþ

jjz� � zþjj2pE ð4Þ

s:t: z� 2 conv�f�ðxiÞji : yi ¼ �1g: ð5Þ
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This can be expressed by distances between training
points as described in the Appendix. This reformulation
mainly makes use of rewriting zþ and z� as convex
combinations z� ¼

P
i:yi¼�1 ���i�ðxiÞ with

P
i:yi¼þ1 ���i ¼ 1,P

i:yi¼�1 ���i ¼ 1, and 0 � ���i: We obtain the dual optimiza-
tion problem minimizing the distance between the convex
hulls which we will refer to as (CH-DU)

max
���1;...;���n

1

2

X
i;j

���i ���jyiyjd
2ðxi; xjÞ

s:t: 0 � ���i � �;
X
i

���iyi ¼ 0 and
X
i

���i ¼ 2:

We choose the notation ���i in order to discriminate from
SVM-related variables �i later on. Note that this optimiza-
tion problem is quadratic, but not necessarily convex, as the
quadratic form can be indefinite. This can cause phenomena
like multiple local optima as we illustrate in Section 6. The
existence of an optimum is trivial as the feasible domain is
bounded. Note also that the optimization function in (CH-
DU) can be replaced by �

P
i;j ���i ���jyiyjkðxi; xjÞ due to

Lemma 6 in the Appendix.
The natural classifier in IRðp;qÞ based on a feasible point ���������

from (CH-DU) is the minimum distance classifier with
respect to the two points zþ and z�, i.e., the sign of

gðzÞ ¼ jjz� z�jj2pE � jjz� zþjj2pE: ð6Þ

Similar to the Euclidean case, this is a hyperplane classifier.
For the image of a training point z ¼ �ðxÞ, the classification
rule can be expressed in the original space X without
explicit embedding, as is derived in the Appendix:

fðxÞ ¼ �
X
i

���iyid
2ðxi; xÞ þ b with

b ¼ 1

2

X
i;j

���i ���jyid
2ðxi; xjÞ:

ð7Þ

We now argue why this classification rule can be applied to
thewhole (possibly infinite) spaceX . If an arbitraryx 2 X has
to be classified, we imagine (a possibly different) isometric
embedding�0 in apE space IRðp0;q0Þ,wherex is simultaneously
embedded with the training data. As the training procedure
(CH-DU) and the classification rule (7) are independent of the
specific embedding, training, and classification of �0ðxÞ will
exactly result in the decision rule (7). At this point,we see that
it is no limitation that the embedding is data-dependent, as
we do not explicitly make use of it.

So, we obtain a classification method for arbitrary
symmetric distance data, which is an optimal hyperplane
classifier in the sense that it is theminimumdistance classifier
with respect to closest points of convexhulls,where closeness
is measured with the pE norm. Fig. 1 gives an illustration of
the classification behavior of the classifier on simple data
embeddings f�ðxiÞgni¼1 in the low-dimensional pE space
IRð1;1Þ. Here, and in all subsequent illustrations of IRð1;1Þ,

HAASDONK: FEATURE SPACE INTERPRETATION OF SVMS WITH INDEFINITE KERNELS 485

Fig. 1. Illustration of pseudo-Euclidean CH classification. (a) Separable data with convex hulls, (b) separable data with reduced convex hulls,
(c) nonseparable data with convex hulls, and (d) nonseparable data with reduced convex hulls.



the real space is plotted horizontally, the imaginary part
vertically, and both axes are identically scaled. The absolute
scale and position of the axes are irrelevant in all figures;
therefore, we omit further annotation with units or axes.

TheCHclassifierwas trained bynumerically solving (CH-
DU) for different values of � and the classification was
performed by evaluations of (7) for a suitable rectangle in
IRð1;1Þ. The resulting decision values of the classifier are color-
coded. The resulting vectors with ���i > 0, whichwe denote as
support vectors (SVs) as usual in SVMs, aremarkedwith a bold
circle. Additionally, the normalw :¼ zþ � z� ¼

P
i yi ���i�ðxiÞ

and its reflected versionMw are indicated. The classification
boundary is the line passing through the midpoint of zþz�,
which is orthogonal (in pE sense) to w. Note that pE-
orthogonality intuitively corresponds toEuclideanorthogon-
ality after reflecting one vector with respect to the real space,
here thehorizontal axis. For separabledata, theparameter� is
set to � ¼ 1 in Fig. 1a and lowered to � ¼ 0:1 in Fig. 1b. Both
solutions separate the data very nicely, the lower � results in
more SVs. Fig. 1c illustrates that for nonseparable data with
overlapping convexhulls, theCHclassification for� ¼ 1does
not seem to be reasonable. These cases, can however, often be
solvedby reducing�until separation is possible, e.g.� ¼ 0:25
in Fig. 1d. So, both separable and nonseparable data can be
successfully discriminated by the CH classifier.

The optimization problem (CH-DU) is similar to the
�-SVM dual [24] and we similarly can set up the correspond-
ing convex hull primal optimization problem, see
Proposition 7 in the Appendix for details. The main insight
from this is, that for cases where w and Mw point to the
same side of the decision line or, equivalently, wTMw > 0,
the resulting solution will possess the nice property of
correctly classifying all non-SVs, which is illustrated in
Figs. 1a, 1b, and 1d. Fig. 1c indicates that this cannot be
guaranteed for cases where wTMw � 0. Also, intuitively
this case is problematic. The points of minimum distance (zþ

and z�) are no longer located on the Euclidean closest
boundaries. A crucial assumption of distance based classi-
fication is violated which requires “lower (squared) dis-
tance” meaning “higher similarity”: In the example, points
have negative squared distance to points from the convex
hull of the other class, but have 0 distance to themselves. So,
the requirement of wTMw > 0 for a solution is relevant for
theoretical desirable properties and a geometric suitable
interpretation.

5 INTERPRETATION OF INDEFINITE SVMs IN IRðp;qÞ

In this section, we establish the geometric interpretation of
non-cpd SVMs in pseudo-Euclidean spaces. Assuming
training data ðxi; yiÞ 2 X � f�1g for i ¼ 1; . . . ; n and a
symmetric kernel function k, the usual SVM classification
approach solves the dual optimization problem which we
will refer to as (SVM-DU)

max
�1;...;�n

X
i

�i �
1

2

X
i;j

�i�jyiyjkðxi; xjÞ

s:t: 0 � �i � C and
X
i

�iyi ¼ 0:

Here, C > 0 is a factor penalizing data fitting errors. The
classification of new patterns x is then based on the sign of

fðxÞ ¼
X
i

�iyikðxi; xÞ þ b; ð8Þ

where b is determined such that f has identical absolute
values on unbounded SVs as is identically done in the
following proposition. In the case of a cpd kernel k, this
procedure is well established and can be understood as an
optimal hyperplane classifier in a Euclidean space, e.g.,
after the kernel PCA-map [5].

In the case of arbitrary indefinite k, we can state the
primal optimization problem corresponding to (SVM-DU).
We emphasize, however, that there is no strict “duality”
between primal and dual solutions in nonconvex optimiza-
tion problems. But, we keep the notions to emphasize the
relation to the cpd case. The statement is that these SVMs in
both separable and nonseparable cases have a similar
primal target as ordinary SVMs. The proof is skipped in
this presentation since it is similar to Proposition 7
presented in the Appendix.

Proposition 2 (SVM Primal in IRðp;qÞ). Let ���� be a stationary
point of (SVM-DU) for arbitrary symmetric k, such that there
exist two nonbounded coefficients of different classes, i.e., 0 <
�k; �l < C with yk ¼ þ1 and yl ¼ �1. Let � : fxigni¼1 !
IRðp;qÞ be an isometric embedding according to Proposition 1
corresponding to the squared distance measure (1) induced by
k. Then, we obtain a stationary point w 2 IRðp;qÞ; b 2 IR, and
���� 2 IRn

þ of the primal optimization problem

min
w;b;�

1

2
wTMwþ C

X
i

�i

s:t: yiðwTM�ðxiÞ þ bÞ � 1� �i and 0 � �i

ð9Þ

by setting w ¼
P

i �iyi�ðxiÞ, b :¼ � 1
2w

TMð�ðxkÞ þ �ðxlÞÞ
and

�i :¼ 1� yiðwTM�ðxiÞ þ bÞ if �i ¼ C
0 otherwise:

�

Note that the solution is independent of the choice of k
and l as long as they satisfy the stated requirements. The
relation between this primal and the common SVM primal
is that the common squared norm and inner products are
replaced by the corresponding pE notions. If M ¼ In, we
perfectly recover the common SVM primal.

The relevance of this result is twofold. First, we recover a
findingfrom[14],whichstates thatastationarypointof (SVM-
DU) satisfies certain separability constraints, which turn out
to be equivalent to our constraints of the SVM primal. They
implythatanon-cpdSVMisareasonableclassifier in thesense
that similar to an ordinary SVM it correctly classifies the
training data with �i < C and �i ¼ C, �i < 1. Examples with
�i ¼ C, �i > 1 are wrongly classified. This also holds in the
caseofwTMw � 0, in contrast to theCHclassifier.Thesecond
important conclusion from this proposition is that we found
the regularizerwTMw. A geometrical margin can be defined
in analogy to the cpd case as 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTMw

p
, if the regularizer is

positive. This might be a starting point for learning theoretic
investigations, which could give further insights in usability
and provide a further theoretic underpinning of non-
cpd SVMs.

An important comment is appropriate at this point. We
have a notion ofmargin for a non-cpd SVM and Proposition 2
indicates that training is related tomaximizing this quantity in
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the sense that we obtain a stationary point. However, in
general, training of a non-cpd SVM is not identical to margin
maximization. The reason is that margin maximization by (9)
is, in general, not well defined.We give a separable two point
example: Take y1 ¼ þ1; y2 ¼ �1, and xi ¼ ðyi; 0ÞT 2 IRð1;1Þ.
One can easily check that w :¼ ð1; �ÞT ; b ¼ 0, and � ¼ ð0; 0ÞT
satisfy the constraints with equality, however, the optimiza-
tion value wTMw ¼ 1� �2 diverges to �1 as � increases.
This is a fundamental difference to the cpd case.

So, margin maximization is not the right interpretation of
non-cpd SVMs, instead optimal separation of convex hulls
is adequate, which will be formulated and proven in the
following. In addition to a justification for using non-cpd
SVMs, we obtain a constructive interpretation. This allows
easy understanding of SVM classification as the operation
of separating convex hulls is geometrically easily accessible.

We now present the main result, which settles the
relation between solutions of (CH-DU) and (SVM-DU) and
corresponding decision boundaries. The proposition states
that a local optimum of (SVM-DU) implies a local optimum
of (CH-DU) for certain �. The implication in the other
direction however is not valid in general.

For the cpd case the statements follow from [23], [24].
However, theirproofs explicitlyuse theEuclideanprimal and
positive definiteness, e.g., for optimality only first order
derivative conditions have to be checked. We present a
detailed proof for the case of arbitrary symmetric k. It
emphasizes that the correspondences only rely on properties

of thequadraticproblemsanddonotrequireprimalsolutions.

We useQ for the matrix with entriesQij ¼ yiyjkðxi; xjÞ.
Proposition 7 (Equivalence of CH and SVM). Let k be an

arbitrary symmetric function and d2 be the induced squared

distance as given in (1).

1. A nonzero stationary point ���� of (SVM-DU) induces a
stationary point ��������� :¼ 2����=

P
i �i of (CH-DU) with

� ¼ 2C=
P

i �i.
If additionally ���� is a local optimum, then ��������� is a

local optimum.
2. A stationary point ��������� of (CH-DU) induces a stationary

point ���� :¼ ���������=� of (SVM-DU) with C ¼ �=�, if there
are two unbounded coefficients of opposite classes, i.e.,
0 < ���k; ���l < �; yk ¼ þ1 and yl ¼ �1, such that � :¼
1
2 ���������

TQðek þ elÞ is positive.
If additionally ��������� is a local optimum, then ���� is a

local optimum in the case of Q being positive

semidefinite in all feasible directions �������� of (SVM-

DU) with 1n �Q����;�����h i ¼ 0.
3. In both Cases 1 and 2, the corresponding decision

planes defined by (7) and (8) are parallel and even
identical if ���� or ��������� are not upper bounded.

We present some examples in Fig. 2 which depicts the

classification behavior of non-cpd SVMs and the relation to

CH classification in the illustrative low-dimensional feature
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Fig. 2. Linear non-cpd SVM classification examples in IRð1;1Þ and the corresponding reduced convex hulls of the CH classifier. (a) Separable case,
(b) nonseparable case with large C, (c) nonseparable case with small C, and (d) unsuitable non-cpd SVM classification.



space IRð1;1Þ. An easy way of obtaining such a feature space is
by directly assuming X ¼ IR2 with the non-cpd kernel
function kðx;x0Þ :¼ x1x

0
1 � x2x

0
2. An isometric embedding

then is interpreting x as element of IRð1;1Þ. Since every SVM
solution has a corresponding CH classifier, we additionally
visualize the corresponding (reduced) convex hulls, the
normal w of the CH classifier, which is a scaled version of
thenormaldefinedbytheSVM,and the reflectednormalMw.

The situation presented in Fig. 1a already illustrates the
“hard margin” case: The figure not only demonstrates CH
classification, but this coincideswith the corresponding SVM
for sufficiently largeC according toProposition3,Cases 1and
2. Also, in the “soft margin” formulation, where some �i are
bounded byC the result of a non-cpd SVM is interpretable, cf.
Fig. 2a. We choose C as indicated by Proposition 3, Case 1,
such that it corresponds to� fromFig. 1b. So, the decision line
in Fig. 2a is due to Proposition 3, Case 3 not an exact CH
classification, but is slightly shifted compared to Fig. 1b.

In the previous section, we have explained that CH
classification is counterintuitive in situations where
wTMw � 0. On the other hand, every SVM decision plane
corresponds to some CH classification plane by simple
positive scaling. Therefore, the requirement of wTMw > 0
transfers identically to SVM classifiers. This can be inter-
preted as follows: For ordinary SVMs, the requirement for
successful application is that the data is reasonably separable
by a hyperplane in some implicit Hilbert-space. For non-cpd
SVMs linear separability is not enough, separability with a
hyperplane that has positive norm is required.

As an example where the SVM solution violates this
condition, we recall Fig. 1c, which demonstrates unreason-
able CH classification. This CH solution does not have a
correspondence to anySVMsolution, so this is a confirmation
that the conditions in Proposition 3, Case 2 are not super-
fluous as for the other directionCase 1. So, the question arises,
what is the result of an SVM on the data set in Fig. 1c. Fixing
some large value, e.g.,C ¼ 1010 yields the result illustrated in
Fig. 2b. The resultingw has negative squarednorm, but it still
guarantees, in contrast to the CH classifiers, that non-SVs are
correctly classified and only bounded SVs are candidates to
be misclassified. In the case of this data set, a lowering of C
results in a decision boundarywith positive squared norm of
w, cf. Fig. 2c, which seems to be reasonable, and is parallel to
the decision line of Fig. 2d. However, in other cases, e.g.,

Fig. 1d, no choice of C can produce a decision normal with
positive squared norm. The reason is that the class means
have negative squared distance. Note that this data is even
well-behaved in the sense that only positive squared
distances between training objects are at hand, which is a
realistic assumption for kernels in practice. Obviously,
constructions like convex combinations canproducenegative
squared distances, even in such realistic cases. In the Figs. 2b
and 2d examples, the objective value of the optimization
problem diverges to �1 if C ¼ 1. This has been observed
and discussed from the dual point of view in [14], as it can
happen for the sigmoid kernel if the constraint

P
i yi�i ¼ 0 is

removed.

6 UNIQUENESS OF SOLUTIONS

In this section, we want to exemplify how the presented
interpretation can serve as a basis for further theoretical
analysis. We address the question of uniqueness of non-cpd
SVMs and derive some simple statements.

An easy example in Fig. 3 illustrates that, in general,
uniqueness cannot be expected. The illustrated data set
in IRð1;1Þ obviously has two local optimal SVM/CH
decision lines. These indeed are found if using different
optimization algorithms, e.g., libsvm [15] or the QP-
solver from MATLAB, or by permuting the training set.
One can easily see that by shifting zþ0 down one can
obtain arbitrary norms of w0, so different local solutions
can have arbitrarily differing values of the optimization
function.

In this example, the points zþ and zþ0 lie on the vertices
of a line. By adding further imaginary dimensions, i.e.,
increasing q, one can easily obtain examples where the
multiple solutions zþ are located on the vertices of a square
for q ¼ 2, of a cube for q ¼ 3, etc. This is the basic idea for
the (omitted) proof of the following lemma.

Lemma 4 (Exponential Number of Local Optima). For every
q � 1 there exist kernels and points with suitable labeling,
such that the data can be embedded to IRð1;qÞ according to
Proposition 1 and the corresponding optimization problem
(SVM-DU) has 2q local optima, which all perform correct
separation.

The other extreme situation is uniqueness of solutions.
As a simple result, we refer to Fig. 1a, which demonstrates
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Fig. 3. Illustration of multiple local optima of non-cpd SVM classification. (a) Initial solution and (b) solution after training set permutation.



the uniqueness of a global optimum, local optimum and
stationary point in the case of a non-cpd SVM. This
uniqueness does not only hold in the case of this low-
dimensional example, but can be extended to IRð1;qÞ under
similar conditions. The proof can be found in the Appendix.

Lemma 5 (Uniqueness of Stationary Points). If the given
training data with a non-cpd kernel induces an isometric
embedding to IRð1;qÞ and (SVM-DU) has a stationary point ����
such that the corresponding zþ and z� have positive squared
distance, and they have positive squared distance to all points of
their corresponding convex hulls, then zþ and z� are unique.

This particularly implies that the stationary point is the
global optimum. This is an improbable situation, but a quite
remarkable result as it states uniqueness for kernel functions
which are extremelynon-cpd in the sense that their (centered)
kernel matrices have only one positive eigenvalue. This
indicates that the number of local optima may be very well
behaved under certain assumptions. More detailed investi-
gations concerning number, quality, and relation of local
optima or conditions for uniqueness might be promising.

7 PRACTICAL IMPLICATIONS

The obtained interpretation not only allows further theore-
tical investigation, but also has useful implications for
practice. We comment on implications for distance-based
classification andmainly on indicators for application of non-
cpd SVMs. The interpretation provides us with different
nontrivial criteria for checking the suitability or unsuitability
of a given kernel or a trained SVM. The feature space
interpretation additionally gives hints on possible parameter
modifications.

7.1 CH Classification

For distance-based learning, we have formulated the CH
classification procedure, which seems to be new for general
symmetric distance data d. Due to the equivalence to the
SVM, this classification procedure can be realized by using
kðx; x0Þ :¼ � 1

2 dðx; x0Þ2 in an SVM. Whether (CH-DU) or
(SVM-DU) is chosen, does not make much difference in
computation time. Both formulations can be solved effi-
ciently by available C-SVM or �-SVM implementations, e.g.,
described in [25]. A minor advantage of (SVM-DU) is that in
contrast to (CH-DU) any solution guarantees geometric
interpretation of the obtained coefficients: Only vectors with
bounded �i can be wrongly classified, all points with �i ¼ 0
are correctly classified.

7.2 SVM Training Preliminaries

Some comments on the practical solution of the nonconvex
optimization problems are in order. Algorithmically, non-
convex optimization problems are known to be NP-hard
[26]. Approaches for global optimization are much more
complex than local optimizers since the global optimizers
have to keep track of the multiple candidates for global
optima. Many such methods are branch and bound
approaches, employing branching by subdivision of the
feasible domain and bounding the optimization function on
the components of the subdivisions. This conceptionally
remarkably increased computational complexity might be
the reason for missing large scale implementations. There-
fore, practical approaches for solving such problems must
be suboptimal. We have seen in Lemma 5 that even in

extreme nonconvex optimization problems, unique solu-
tions are possible, which can be found by local solvers. So,
in practice, such optimizers that find local optima or
stationary points seem to be a good choice for real-world
problems, as is indicated by the existing experimental
results, cf. Section 2. Random initializations of the optimi-
zation algorithm as performed in [14] could be applied for
improving the objective value of local solutions.

Care has to be taken, as not all quadratic programming
algorithms can be used for the nonconvex problems. A
requirement for successful application is to use implemen-
tations, which have explicitly been designed for dealing
with nonconvex optimization problems. In particular, they
should terminate and allow some optimality statement of
the solution, as it exists for libsvm [14] and the derived
package LIBSVMTL [27]. To prevent occasional divergence
with such suitable implementations, the penalty parameter
C should be set to some finite value. Note also that many
(nicely separable) problems can also be solved with C ¼ 1.

7.3 Suitability Criteria Before SVM Training

In some situations, it is possible to predict the unsuitability
of a non-cpd SVM or kernel before training or even data-
independently.

Negated cpd kernels. A kernel matrix which is the
negative of a cpd matrix produces wTMw � 0 indepen-
dently of the yi or �i, as M will only have negative
entries. This is particularly satisfied, if k is the negative
of a cpd function. Thus, kernels like kðx;x0Þ ¼ � x;x0h i
or kðx;x0Þ ¼ �e��jjx�x0 jj2 are inadequate choices for
SVMs, independent of the given training data.

Number of negative eigenvalues. In general, an increasing
number of negative eigenvalues of the kernel matrix
makes wTMw � 0 more likely, so useful separation of
the training data is getting more difficult. Therefore, the
number of negative eigenvalues of the kernel matrix is a
rough criterion of how difficult it is to obtain a suitable
solution by training the corresponding SVM.

Squared distance of class means. A more precise indicator
for possible separability with positive wTMw � 0 can be
obtained from the class means m� :¼ 1

n�

P
yi¼�1 �ðxiÞ in

the pE feature space, where n� denotes the number of
positive/negative examples. These points lie within every
reduced convex hull of their respective point sets. So, their
squared distance is an upper bound for wTMw. If this
squared distance is negative, every CH/SVM classifier
will result in wTMw < 0. In the case of equal numbers
nþ ¼ n�, positivity of jjm� �mþjj2pE implies that there
exists a CH/SVM solution with positive wTMw if the
parameters � or C are sufficiently lowered. The computa-
tionof the squareddistanceof classmeansdoesnot require
the explicit feature space embedding, but can be obtained
by jjm� �mþjj2pE ¼ cTKc, where c is chosen as ci :¼ 1=nþ
if yi ¼ þ1 and ci ¼ �1=n� otherwise.

7.4 Suitability Criteria after SVM Training

After successful training, further criteria are available for
getting insights in the quality of the resulting classifier.
These can be obtained without performing an explicit
feature space mapping.

Bound on the training error. As we have seen in the
interpretation of the SVM primal problem following
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Proposition 2, the common interpretation of the coeffi-
cients and slack variables alsoholds in the non-cpd case. In
particular, the ratio of upper bounded coefficients is an
upper bound on the training error. So, low value of this
quantity is an indicator of a suitable (but possibly
overfitted) SVM solution.

Sign of wTMw. We have seen that a crucial property of a
suitable solution is that Mw and w of the CH classifier
point to identical sides of the decision line, which requires
wTMw > 0. This quantity can also be calculated without
explicit mapping to IRðp;qÞ by using the representation of
w as linear combination of embedded training points,
Lemma 6 in Section 1.2 and Proposition 3, Case 1:

wTMw ¼
X
i;j

���i ���jyiyj�ðxiÞTM�ðxjÞ ¼
X
i;j

���i ���jyiyjkðxi; xjÞ

¼ �
X
i;j

�i�jyiyjkðxi; xjÞ

with the positive scaling factor � ¼ 2=
P

i �i

� �2
. If wTMw is

nonpositive, the SVM performs as a counterintuitive CH
classifier. Reduction of C can then result in a solution with
positive squared norm, if the squared distance of class
means is sufficiently large.

In the case of having found an unsuitable kernel or SVM, it
is still possible toapply it.Although the interpretationasaCH
classifier is clearly counterintuitive, the obtained solution still
correctly classifies all unbounded training examples, and
might be a sparse solution, see Fig. 2b. If a non-cpd kernel
function does not produce usable solutions for any choice of
kernel parameters, modification of the kernel, like regular-
ization or other approaches have to be applied.

7.5 Experiments

We now present some toy and real-world experiments to
demonstrate the usability of the gained insights and criteria.
We start with nonlinear classification examples of non-cpd
SVMs in Fig. 4. In order to keep it illustrative, we decide for
data within the unit square of X ¼ IR2. We want to model
the situation, where some simple problem specific knowl-
edge is incorporated into a kernel. Let this toy a priori
knowledge be that the L1-distance is more suitable than
the L2-distance, which means that the diamond-shaped
L1-spheres are assumed to be more adequate than the
circular L2-spheres. Then, the kernel kðx;x0Þ ¼ e�� x�x0k k21

seems to be an appropriate choice. Note that an equally well
separation can be obtained by the standard Gaussian in
these cases. Fig. 4a demonstrates a separable problem of
68 points, where � ¼ 50 produces a centered kernel matrix
with 52 positive, 1 zero, and 15 negative eigenvalues. So, the
kernel matrix is clearly non-cpd. The squared distance of
classmeans in the corresponding pE space of dimension 67 is
positive, which guarantees the existence of an SVM solution
with positive squared norm. Indeed, the SVM with C ¼ 1
yields such a solution with good separation results. A sparse
solution of 29 SVs is produced. None of them are bounded,
so no misclassifications can occur. Fig. 4b demonstrates a
nonseparable problem consisting of 40 points drawn from
two normal distributions with identical isotropic covariance
matrices and means slightly differing along the horizontal.
So, the Bayes-optimal decision would be the vertical line
passing through the mean of the point distribution.With
� ¼ 0:005, the centered kernel matrix has 18 positive, 1 zero,
and 21 negative eigenvalues. The squared distance of
class means is positive in the embedding pE space of
dimension 39, which again guarantees the existence of a
positive squared norm solution. For C ¼ 1 this problem
diverges, but for C ¼ 2; 000 the presented solution with
positive squared norm is obtained. Twenty-five vectors end
up as SVs, many of them are bounded, as they must be
wrongly classified. All non-SVs are classified correctly as
expected.

Finally, we present some results demonstrating the pE
characteristics of real-worldproblemsand theapplicability of
non-cpd SVMs. We refined results from [17], where further
experiments can be found. The data set proteins (226 samples,
4 classes) is frequently used in the literature, cf. [18], [28], and
consists of pairwise evolutionary distances between amino
acid sequences of proteins. Thedata set cat-cortex (65 samples,
four classes) is based on a matrix S of connectivity strengths
between four cortical areas of a cat. Other experiments with
this data have also been presented in [18], [28]. Here,
we symmetrized the similarity matrix and produced a zero-
diagonal distance matrix by D :¼ 4 � 1651

T
65 � 1

2 ðSþ ST Þ. For
both problems, a kernelmatrixKwas constructed from these
distances by Kij :¼ e��D2

ij . For both data sets, we used four
different binary labelings corresponding to one-versus-rest
problems. In addition to non-cpd SVMs, we performed
experiments with two regularization methods which make
the kernel matrix positive definite as in [18], [19]. These
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Fig. 4. Nonlinear non-cpd SVM classification examples in IR2 with kernel kðx;x0Þ ¼ e�� x�x0k k21 . (a) Separable problem and (b) nonseparable problem.



methodshave in common that thenon-Euclideangeometryof
the embedding space is replaced with a Euclidean one. Both
methods center the kernel matrix and perform an eigenvalue
decomposition. One approach Cuts off contributions corre-
sponding to Negative Eigenvalues (CNE) and the second
Reflects these Negative Eigenvalue contributions (RNE).
Additionally, the best k-nearest-neighbor (k-nn) classifier
was chosen for comparisons.We computed the leave-one-out
(LOO) error of the classifiers, while logarithmically varying
theparametersC; � in a suitablegrid.Wereport thebestLOO-
error and optimal k for all data sets in the left part of Table 1.
Note that classification errors of 0.44 percent and 1.54 percent
correspond to one misclassified sample. So, the absolute
numberoferrorsvariesonlybyuptofoursamplesperdataset,
therefore only limited conclusions should be drawn. Still, the
results indicate that the non-cpd SVM may compete with or
outperform thek-nn classifier. Experiments in [17]with larger
datasets support thisconclusionconsistently.For theproteins
data, the pE embedding space turns out to be only slightly
indefinite. This explains the identical error rates of the non-
cpd and regularized SVMs. But, even in stronger indefinite
spaces, as for the cat-cortex data, regularization can not
guarantee improvements. Additionally, there are some
conceptional drawbacks of these matrix-modification meth-
ods. First, the solution depends on the specific feature space
embedding. For a given non-cpd kernel arbitrary many
embeddings are possible, which yield different solutions.
Moreover, explicit operating in the embedding feature space
is required, which impairs the complexity advantages of
applying the kernel trick. When new objects are to be
classified, the same regularization operations have to be
performed for these testingexamples [19]. Thismeans that the
embeddingofall trainingdatahas tobe retainedand involved
during classification, which nullifies the computational
advantages of the “sparsity”of the resultingSVM. In contrast,
the solution of the non-cpd SVM does not depend on the
specific embedding as it avoids explicit operations in the
feature space andmaintains the sparsity of the solutions.

In the right part of the table,we list the pE characteristics of
thenon-cpdSVMmodel trainedwith theoptimalparameters.
The signature of the implicitly defined pE space IRðp;qÞ was
computed and the squared Distance of the Class Means
(DCM) in this space was determined. In addition to these
pretraining indicators, we list the post-training quantities
wTMw, the number of support vectors (#SVs) and the
number of bounded support vectors (#bSVs), wherew is the
CH solution obtained from the SVM by scaling. We see that
the SVMs are non-cpd, as the signature of the embedding pE
spaces have several nonzero imaginary dimensions. For the

proteins, however, the negative eigenvalues of the kernel
matrices are two orders of magnitude smaller than the
positive ones, so the embeddings are only slightly indefinite.
In contrast, the cat-cortex data is strongly indefinite, the
negative eigenvalues are at the same order of magnitude as
the positive ones.

For all data sets, the squared distance of the class means
DCM in the pE space is positive which raises hope of
separation with positive squared norm. Indeed, the resulting
normsarepositive in all cases andbounded fromaboveby the
DCM. The sparsity of the solutions can be seen in the number
of SVs. For the proteins, the SVMs have zero training error, as
can be concluded from the number of bounded SVs.

8 CONCLUSION

We have shown that using SVMs with arbitrary symmetric
kernels, in particular, non-cpd kernels, is not only a
heuristic procedure, but has a reasonable interpretation as
optimal hyperplane classifiers in pE spaces. They are
minimum distance classifiers with respect to certain points
from the convex hulls of embedded training points. This
interpretation already existed in the Euclidean case, we
have extended it to the pE case. We have explained that
non-cpd SVMs, in general, cannot be seen as margin
maximizers, although a notion of margin can be defined.

The interpretation results in a constructive method to
illustrate the classification behavior of an SVM in the
corresponding pE space. We have demonstrated how the
geometric understanding can serve as a basis for further
theoretical analysis. To exemplify this, we have commented
on the uniqueness of the local solutions in certain situations.
We further have given practically relevant implications,
mainly criteria for checking whether a given non-cpd SVM
classifier ispromising.An important requirement is apositive
squared distance of the class means and a positive squared
normof the resultingnormal vectorw. For somekernels, their
unsuitability can be decided without SVM training or even
data-independently.Wehave demonstrated the applicability
of these indicators on toy and real-world data. Although
being limited, the results on these small sets are encouraging
and further experimental investigation should be performed.

With this work, we establish a sound basis for practical
application of non-cpd kernels in SVMs. In particular, for
cases where no standard kernels can be applied, indefinite
SVMsseemattractive,as in thecaseofdistancebasedlearning.

The pE spaces provide a representation of data which
only depends on a given arbitrary symmetric kernel
function. It is independent of the specific algorithm to be
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Comparison of Classification Results on Real-World Data Sets and SVM Model Details



applied to this data. We therefore expect that these spaces
provide the suitable geometry for investigating other
kernel-methods which involve non-cpd functions.
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