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Abstract. Based on Nessyahu's and Tadmor's nonoscillatory central di�erence

schemes for one-dimensional hyperbolic conservation laws [14], for higher di-

mensions, several �nite volume extensions and numerical results on structured

and unstructured grids have been presented. The experiments show the wide

applicability of these multidimensional schemes.

The theoretical arguments which support this, are some maximum-

principles and a convergence proof in the scalar linear case. A general proof of

convergence, as obtained for the original one-dimensional NT-schemes, does

not exist for any of the extensions to multidimensional nonlinear problems.

For the �nite volume extension on two-dimensional unstructured grids

introduced by Arminjon and Viallon [3] we can prove convergence for the �rst

order scheme in the case of a nonlinear scalar hyperbolic conservation law.

1. Introduction

The Nessyahu-Tadmor schemes, introduced in [14], are Godunov-type schemes

for hyperbolic conservation laws. Their characteristic property is the use of two

alternating staggered grids combined with MUSCL-type linear reconstruction and

a predictor step, which yield second order accuracy. Due to the staggering the

need of solving local generalized Riemann-problems at cell interfaces is bypassed.

Easy application to systems of hyperbolic conservation laws is possible due to

this. For these one-dimensional schemes theoretical foundation was established by

the proof of convergence to the unique entropy solution for the scalar genuinely

nonlinear case in the introductory paper of Nessyahu and Tadmor. Modi�cations

of the schemes which avoid staggered grids have been proposed in [9], [13].

The idea of the construction was extended to two-dimensional cartesian grids

by Arminjon, Stanescu, Viallon [2]. A discrete maximum-principle for a slightly

di�erent extension was obtained by Jiang and Tadmor in the scalar case [10].

A formulation of the NT-schemes by Arminjon, Viallon for two-dimensional

unstructured grids was presented, cf. [3], and convergence has been proven for the

case of a linear hyperbolic equation [4]. Recently an extension of the scheme to

three space dimensions has been proposed by Arminjon, Madrane and St-Cyr [1].
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We consider the Cauchy-problem given by the fully nonlinear scalar conser-

vation law with 
ux ~f = (f1; f2)
T and initial values u0

ut +r � ~f(u) = 0 in IR2 � [0; T ]; (1)

u(�; 0) = u0 in IR2: (2)

Our result is summed up in Theorem 4.1. We consider the basic �rst order

scheme as proposed by Arminjon and Viallon for unstructured grids, which is the

most simple NT-scheme, the staggered Lax-Friedrichs scheme.

We can show that any sequence of discrete solutions de�ned by this staggered

Lax-Friedrichs scheme converges to the unique entropy solution of the Cauchy-

problem. For this we need regularity of the data, i.e. ~f 2 C1 (IR)
2
, u0 2 L1

�
IR2

�
\

L1
�
IR2

�
, and a non-degeneracy condition on the underlying sequence of re�ning

space-time-grids. This is formulated by a CFL and inverse CFL-condition for the

time-discretization �t and by geometrical bounds for the �nite volume cells.

To obtain this result we make use of measure-valued solutions, particularly

means of DiPerna [7], which have been applied in several other convergence proofs,

e.g. [11], [6], [12]. After collecting some of these results concerning measure-valued

solutions in a general convergence theorem, Thm. 2.2, it remains to show several

properties of the sequence of numerical solutions. These properties will be given in

Section 4. Proofs however can not be given in this limited proceedings contribution,

for these we refer to our forthcoming paper [8].

2. Convergence Framework

Notation 2.1. Let Prob(K) denote the space of probability-measures on the compact

set K � IR. For all g 2 C0(IR); � 2 Prob(K) we denote

h�; gi :=

Z
K

gd�:

De�nition 2.2 (Young-measure, emv-solution). A (uniformly bounded) Young-mea-

sure is a map � : IR2 � [0; T ]! Prob(K) for some compact K � IR such that for

all g 2 C0(IR) the map h�; gi(x; t) := h�(x; t); gi is measurable.

A Young-measure � is an entropy measure-valued solution of the conserva-

tion law (1) if Z T

0

Z
IR2

�
h�; idi't + h�; ~fir'

�
= 0;

Z T

0

Z
IR2

�
h�; Ui't + h�; ~F ir'

�
� 0 (3)

are satis�ed for all entropy pairs (U; ~F ) (i.e. U 2 C2(IR) strictly convex, ~F 0 =

U 0 ~f 0) and all ' 2 C10 (IR2 � (0; T )), where in (3) we additionally assume ' � 0 .

We used the notation h�; ~fi := (h�; f1i; h�; f2i)
T .
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This notion of emv-solution naturally extends entropy solutions:

Remark 2.3. If an entropy measure-valued solution � is identical to a Dirac-

measure Æu of a function u(x; t) almost everywhere, then the de�nition exactly

states that u is an entropy solution of the conservation law.

We need several results from the theory of measure-valued solutions in our

proof, cf. Tartar [16]. The most important theorem we refer to is due to DiPerna [7].

It states that a Young-measure is identical to a Dirac-measure almost everywhere

under certain conditions. In our case this reads as follows.

Theorem 2.1 (DiPerna). Let f1; f2 2 C1 (IR), u0 2 L1
�
IR2

�
\ L1

�
IR2

�
. Let us

further assume the existence of a Young-measure � such that

a) the function h�; jidji is in L1
�
[0; T ]; L1

�
IR2

��
,

b) � is an entropy measure-valued solution to the conservation law (1),

c) � assumes the initial values in the sense that

lim
t&0

1

t

Z t

0

Z
IR2

h�x;s; jid� u0(x)jidxds = 0:

Then � is a.e. identical to the Dirac-measure Æu(x;t) associated to the unique

weak entropy solution u(x; t) of the Cauchy-problem (1), (2), i.e. h�x;t; idi =

hÆu(x;t); idi = u(x; t) almost everywhere

With these tools we obtain a general convergence theorem. This is not a new

result, it simply collects suÆcient conditions which allow to apply the powerful

tools mentioned above. By satisfying these conditions, one can prove convergence

of any approximating sequence of functions (not necessarily stemming from a nu-

merical scheme).

Theorem 2.2 (General convergence). Let f1; f2 2 C1 (IR), u0 2 L1(IR2)\L1(IR2),

T > 0, (uk)k2IN be a sequence of functions in L1
loc

�
IR2 � [0; T ]

�
, (hk)k2IN a se-

quence of nonnegative real numbers with limk!1 hk = 0.

Let nonnegative constants C1; C2; C'; CU;~F ;' and � > 0 exist, such that for all

k 2 IN the following conditions hold:

a) kukkL1(IR2�[0;T ]) � C1,

b) kuk (�; t)kL1(IR2) � C2 for all t 2 [0; T ];

c) for all ' 2 C10
�
IR2 � [0; T )

�
�����
Z T

0

Z
IR2

�
uk't + ~f (uk)r'

�
+

Z
IR2

u0'(�; 0)

����� � C'h
�
k ;

d) for all ' 2 C10
�
IR2 � (0; T )

�
, ' � 0 and all entropy pairs

�
U; ~F

�
Z T

0

Z
IR2

�
U (uk)'t + ~F (uk)r'

�
� �C

U;~F ;'
h�k ;
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e) for U(u) � 1
2
u2 and all t 2 [0; T ]Z

IR2

U (uk(�; t)) �

Z
IR2

U (u0) :

Then the sequence (uk)k2IN converges in Lqloc
�
IR2 � [0; T ]

�
for all 1 � q < 1

strongly towards the unique entropy solution of the Cauchy-problem (1), (2).

3. Scheme

Notation 3.1. Let T be a conform unstructured triangulation of IR2, that is a

partition in triangles, pairwise intersections of which are either empty, a common

vertex or a common edge.

� I denotes the set of vertices in T ,

� Ni for i 2 I denotes the set of i's neighbouring vertices,

� Mij denotes the midpoint of the edge in T which connects i; j 2 I,

� G+
ij ; (G

�

ij) denotes the center of gravity of the unique triangle in T which

has vertices i; j; k 2 I and for which this enumeration is positively (nega-

tively) oriented,

� Ci for i 2 I denotes the dual cell around i, that is the polygonal area with

boundary
S
j2Ni

G+
ijMij [G

�

ijMij,

� Lij for i 2 I; j 2 Ni denotes the quadrangular area given by the convex

hull of the vertices i; G�ij ; j; G
+
ij.

These cells Ci are taken as �nite volume cells for the �rst step of the scheme,

the cells Lij are taken for the second step.

BHAAppC1grid1.eps BHAAppL1grid1.eps

FV cells Ci for �rst step FV cells Lij for second step

We need some further notations where A(P ) denotes the area of the Polygon
P � IR2.:

Notation 3.2. For all i 2 I; j 2 Ni we de�ne

� ~�+
ij ; (~�

�

ij ) := outer scaled normal of Ci for the edge MijG
+
ij ;
�
MijG

�

ij

�
,

(that means
��~�+
ij

�� = ���MijG
+
ij

���),
� ~�ij := ~�+

ij + ~��ij , rij :=
A(Lij\Ci)

A(Ci)
.
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BHAAppnormals.eps BHAAppnormals2.eps

Normals to Ci and Lij

For our convergence proof we need a nondegeneracy-condition on the trian-

gulation.

De�nition 3.3. A conform unstructured triangulation T will be called an (a; b)-
nondegenerate triangulation, if the length of its edges are bounded, i.e. the supre-

mum h of these exists, and the areas of all triangles D 2 T are bounded by

ah2 < A(D) < bh2:

Finally we de�ne the discrete solution obtained by the staggered Lax-Fried-

richs scheme. In [3] these formulas are obtained by applying evolution-projection

ideas on the �nite volume cells Ci and Lij .

De�nition 3.4 (StgLxF-scheme). Let T be an (a; b)-nondegenerate triangulation,

�t > 0. We de�ne for all i 2 I; j 2 Ni; n 2 2IN

u0i :=
1

A (Ci)

Z
Ci

u0; (4)

un+1ij :=
1

2

�
uni + unj

�
�

�t

A (Lij)

�
~f
�
unj
�
� ~f (uni )

�
~�ij ; (5)

un+2i :=
X
j2Ni

riju
n+1
ij �

�t

A (Ci)

X
j2Ni

~f
�
un+1ij

�
~�ij : (6)

These values de�ne the numerical solution

uh(x; t) :=

�
uni for (x; t) 2 Co

i � [n�t; (n+ 1)�t)

un+1ij for (x; t) 2 Loij � [(n+ 1)�t; (n+ 2)�t)
: (7)

4. Convergence

Theorem 4.1 (Convergence of StgLxF-scheme). Let f1; f2 2 C1 (IR),
u0 2 L1

�
IR2

�
\ L1

�
IR2

�
with B := ku0kL1 and T > 0. We de�ne

L := max
u2[�B;B];i=1;2

jf 0i(u)j :
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Let further (Tk)k2IN be a sequence of uniformly (a; b)-nondegenerate triangula-

tions in the sense of Def.3.3 (a,b independent of k) with limk!1 hk = 0: Let �; 

be constants with the relation 0 < 
 < � < a

4
. Let (�tk)k2IN be a sequence of

timesteps, such that for all k 2 IN the CFL-condition �tk
hk

L � � and the lower

bound 
 � �tk
hk

L hold. (uhk)k2IN denotes the associated sequence of numerical so-

lutions de�ned by the StgLxF-scheme (4) - (7).

Then the sequence (uhk)k2IN converges in Lqloc
�
IR2 � [0; T ]

�
for all 1 � q <

1 strongly towards the unique weak entropy solution of the Cauchy-problem (1)

and (2).

Remark 4.1. The proof of the theorem provides means which not only prove the

statement, but allow to improve the convergence result to an a{priori error estimate

of Kruzhkov-type ku � uhkL1 � Ch1=4. This can be done following a paper of

Bouchut and Perthame [5]. The result can also be generalized in several further

directions. Similar to [12] convergence can be obtained for higher order schemes,

in our case the whole family of NT-schemes [3]. Extensions to the case of weakly

coupled systems [15] can be obtained with the same technique. The proof appears

to be applicable even in the case of three space-dimensions by transferring the

geometric dimension-dependent considerations. This would result in a convergence

proof for the three-dimensional NT-schemes which were introduced by Arminjon

on this conference [1].

The proof of Thm. 4.1 consists of showing that the conditions 2.2 a) to e) are

satis�ed by the sequence (uhk)k2IN . The major steps of this will now be formulated

in several propositions. As mentioned before, proofs can be found in [8]. The �rst

properties are discrete maximum-principles, which imply a L1-bound.

Proposition 4.2 (Uniform L1-bound). Let the assumptions of Thm. 4.1 be valid,

uh be an element of the sequence of numerical solutions. Then we have for all

n 2 IN; i 2 I; j 2 Ni

��u0i �� � B and

min
�
uni ; u

n
j

	
� un+1ij � max

�
uni ; u

n
j

	
; min

j2Ni

�
un+1ij

	
� un+2i � max

j2Ni

�
un+1ij

	
:

Therefore condition 2.2 a) is satis�ed by C1 := B.

Next we derive two discrete entropy inequalities.

Proposition 4.3 (Discrete entropy inequalities). Let the assumptions of Thm. 4.1

be valid, uh be an element of the sequence of numerical solutions. Then for all

n 2 IN; i 2 I; j 2 Ni and entropy pairs (U; ~F ) hold

U
�
un+1ij

�
�

1

2

�
U (uni ) + U

�
unj
��
�

�t

A (Lij)

�
~F
�
unj
�
� ~F (uni )

�
~�ij ; (8)

U
�
un+2i

�
�

X
j2Ni

rijU
�
un+1ij

�
�

�t

A (Ci)

X
j2Ni

~F
�
un+1ij

�
~�ij : (9)
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This Proposition turns out to be the most important point in the proof, as it is

fundamental for all further results. The problem of the initially unknown structure

of the entropy inequalities turns out to be perfectly solved by the inequalities

(8),(9): �rst these inequalities are actually satis�ed by the scheme and secondly

they allow to derive the further properties which are suÆcient for convergence of

the scheme. From these entropy inequalities follow uniform L1- and L2-stability.

Proposition 4.4 (Uniform L1- and L2-stability). Let the assumptions of Thm. 4.1

be valid, uh be an element of the sequence of numerical solutions. Then

kuh(�; 0)kL1(IR2) � ku0kL1(IR2) ; kuh(�; 0)kL2(IR2) � ku0kL2(IR2) � 1 and for all

0 � t1 � t2 � T

kuh(�; t2)kL1(IR2) � kuh(�; t1)kL1(IR2) ; kuh(�; t2)kL2(IR2) � kuh(�; t1)kL2(IR2)

hold. Therefore conditions 2.2 b) and e) are satis�ed by C2 := ku0kL1(IR2).

For the proof of the remaining conditions 2.2 c) and d) we need a weak BV-

estimate. This is based on a more accurate estimate of the entropy dissipation for

a quadratic entropy.

Lemma 4.5 (Entropy dissipation). Let the assumptions of Thm. 4.1 be valid. Then

there exists a constant C > 0 such that for all numerical solutions uh of the

sequence, all n 2 IN; i 2 I; j 2 Ni and entropy pairs (U; ~F ) with U(u) = u2=2
holds

U
�
un+1ij

�
�

1

2

�
U(uni ) + U

�
unj
��

+
�t

A (Lij)

�
~F
�
unj
�
� ~F (uni )

�
~�ij � �C

�
uni � unj

�2
:

Using this estimate, we derive a weak BV-estimate. This kind of estimate is

weaker than a BV-estimate, but strong enough to obtain convergence. A similar

estimate was derived in the proof for the case of the linear equation [4], called an

estimate on the weighted total variation. We denote ID := I \ D as the set of

vertices in D.

Proposition 4.6 (Weak BV-estimate). Let the assumptions of Thm. 4.1 be valid,

D � IR2 be a disc. Then there exists a constant C, such that for all numerical so-

lutions uh of the sequence and corresponding h;�t with N := maxfn 2 2IN jn�t �
Tg holds X

i2ID ;j2Ni

n22IN;n�N

h2
��uni � unj

�� � Ch�
1

2 :

With this weak BV-estimate we can show that the weak consistency estimates

Thm. 2.2 c) and d) are satis�ed by � := 1=2, cf. [8].
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