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Reduced Basis Methods for parameterized partial differential equations with

stochastic influences using the Karhunen-Loève expansion∗

Bernard Haasdonk†, Karsten Urban‡, and Bernhard Wieland‡ §

Abstract. We consider parametric partial differential equations (PPDEs) with stochastic influences e.g. in
terms of random coefficients. Using standard discretizations such as finite elements, this often
amounts to high-dimensional problems. In a multi-query context, the PPDE has to be solved for
various instances of the deterministic parameter as well as the stochastic influences. To decrease
computational complexity, we derive a reduced basis (RB) method, where the uncertainty in the
coefficients is modeled using Karhunen-Loève (KL) expansions. We restrict ourselves to linear
coercive problems with linear and quadratic output functionals. A new a-posteriori error analysis is
presented that generalizes and extends some of the results by Boyaval et al. [4]. The additional KL-
truncation error is analyzed for the state, output functionals and also for statistical outputs such
as mean and variance. Error estimates for quadratic outputs are obtained using additional non-
standard dual problems. Numerical experiments for a two-dimensional porous medium demonstrate
the effectivity of this approach.
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tion, Error Estimators
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1. Introduction. Several problems in science, medicine, economy and engineering are
modeled by partial differential equations (PDE) with stochastic influences. One could think
of measurements that are uncertain or unknown spatial coefficients such as porosity. Ex-
amples include porous media flows (e.g. groundwater, Li-ion batteries or fuel cells), models
in finance or inverse problems. In addition to such uncertainties, many problems also de-
pend on a number of (deterministic) parameters, i.e., one has a parameterized PDE (PPDE).
Examples include geometry, model parameters or forces. We are particularly interested in
situations where the PPDE with stochastic influences has to be evaluated quite often for var-
ious instances of the deterministic parameters and the stochastic influences. In the stochastic
framework, such a situation occurs e.g. in Monte Carlo simulations to compute statistical
quantities such as mean, variance or other moments. For the deterministic parameters, one
might think of parameter studies or optimization. Such a multi-query situation requires the
numerical solution of the PDE for many instances of parameter and stochastic influence which
is infeasible in particular for more complex PDEs. Hence, model reduction is required.
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(USA). The authors thank Sébastien Boyaval for fruitful discussions on the topic of the paper

†University of Stuttgart, Institute of Applied Analysis and Numerical Simulation, Pfaffenwaldring 57, D-
70569 Stuttgart, Germany (haasdonk@mathematik.uni-stuttgart.de)

‡University of Ulm, Institute of Numerical Mathematics, Helmholtzstrasse 18, D-89069 Ulm, Germany
(karsten.urban@uni-ulm.de, bernhard.wieland@uni-ulm.de)

§Corresponding author: Bernhard Wieland: bernhard.wieland@uni-ulm.de

1



2 B. HAASDONK AND K. URBAN AND B. WIELAND

It should be noted that we are not concerned with stochastic PDEs involving the Itô
calculus. This is the reason why we use the term PDEs with stochastic influences, even
though this might be a bit lengthy.

The reduced basis method (RBM) has intensively been studied for the numerical solution
of PPDEs, e.g. [7, 15, 16, 20], a complete list of references would go far beyond the scope of this
paper. The basic idea is an offline-online decomposition combined with a rigorous a-posteriori
error control. In the offline stage, a reduced basis is formed by solving the complex PPDE for
certain parameter values, so-called snapshots. The selection is based upon a Greedy algorithm
using a rigorous error bound, [21]. The so formed reduced system is then used in the online
stage for a highly efficient simulation for a given new parameter.

One might think that this approach can immediately be used also for PPDEs with stochas-
tic influences, viewing the stochasticity, i.e. stochastic events or inputs, as additional param-
eters. However, unlike for deterministic parameters, we have generally no distance measure
in the probability space at our disposal, so that the ideas cannot be transferred directly. A
basic assumption of the RBM is a smooth dependence of the solution of the PPDE w.r.t. the
parameter, which can not be assured due to the lack of the distance measure. Furthermore,
the dimension of the parameter space crucially influences the efficiency of the RBM. In the
case of stochastic influences, the parameter space may be infinite-dimensional.

As a way-out, we propose to use a Karhunen-Loève (KL) expansion [12, 13, 17] of the
stochastic process and appropriately truncate it. Even though the resulting expansion coef-
ficients are still random variables, i.e. functions w.r.t. the stochastic event, we treat them
in some way as parameters that can be modeled using polynomial chaos (PC) expansions
[22, 23]. The KL truncation error of course has to be analyzed. The KL expansion shows
some resemblance to the empirical interpolation method (EIM) [2, 18] in order to obtain an
affine decomposition of random and spatial variables, where the random variables correspond
to the parameter dependent EIM coefficients. Consequently, our analysis is in some parts
similar to the EIM analysis e.g. in [18].

PDEs with stochastic influences have been widely studied in the literature, where, apart
fromMonte Carlo methods, also weak solutions in space and probability are considered. These
techniques are also known as stochastic collocation methods [1] or stochastic finite elements
[6]. For more information we refer to [5, 8, 14] and the references therein.

So far, not much work on RBM regarding stochastic problems has been done. In [4],
Boyaval et al. studied a specific problem with stochastic Robin-type boundary conditions.
However, to the best of our knowledge, the analysis presented there does not cover the case
of general stochastic influences, e.g. in terms of random spatial coefficients. In this sense, the
present paper generalizes and extends the findings in [4]. For the sake of completeness, let us
also mention [3], where an RB control variate technique for variance reduction is introduced.

In particular in the presence of stochastic influences, one is not only interested in a good
approximation of the state, i.e. the solution of the PPDE, but in accurate outputs, together
with corresponding statistical quantities such as expectation or variance. The latter requires
the computation of quadratic output functionals. Different RBMs for quadratic outputs have
been studied. These methods use expanded formulations that eliminate the nonlinearity [9],
or introduce special dual problems [10]. Due to the KL truncation effects, however, these
approaches cannot be used directly for our problem at hand. Hence, we introduce two more
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modified dual linear problems in order to derive a-posteriori error bounds also for the above
mentioned statistical quantities. These error estimates can then be used in a standard Greedy
approach [21] for the offline snapshot selection.

We are aware of the fact that the stochastic influences in general cause the underlying
problem to be high-dimensional. This leads to the necessity of solving high-dimensional prob-
lems in the offline stage which calls for the use of specific numerical methods. This aspect,
however, is not investigated in this paper, also since we consider a Monte Carlo framework
w.r.t. the stochasticity.

The remainder of the paper is organized as follows. In §2, we collect known facts on
variational problems with stochastic influences, the KL expansion and the RBM. We restrict
ourselves to linear coercive problems. Section 3 contains our a-posteriori error analysis for
the primal and dual solution as well as linear and quadratic outputs. In §4, we introduce the
error analysis for the statistical quantities such as moments and variances. Note that since the
operator has stochastic influences, we cannot derive a deterministic PDE for linear moments
such as the expectation even for linear PDEs. The offline-online decomposition is presented in
§5 as well as a method to compute coercivity lower bounds adjusted to stochastic problems.
Our numerical experiments are described in §6.

2. Preliminaries. In this section, we collect the basic features of the problem under con-
sideration.

2.1. Variational problems with stochastic influences. Let D ⊂ R
d be an open, bounded

domain, D ⊂ R
P a set of deterministic parameters and (Ω,A,P) a probability space. For some

X ⊂ H1(D) (accounting also for the corresponding boundary conditions) let a : X×X×M →
R, M := D × Ω, be a possibly nonsymmetric form that is bilinear, continuous and coercive
w.r.t. the first two arguments and let f : X ×M → R be a form with f(·;µ, ω) ∈ H−1(D),
(µ, ω) ∈ M, that is stochastically independent of a(·, ·;µ, ω) such that the variational problem

a(u, v;µ, ω) = f(v;µ, ω), v ∈ X, (2.1)

admits a unique solution u(µ, ω) = u(·;µ, ω) ∈ X for all (µ, ω) ∈ M. As an example,
think of a linear elliptic second order PDE whose coefficients and right-hand side depend
on deterministic parameters µ ∈ D and stochastic inputs ω ∈ Ω. In particular we have the
case in mind in which a coefficient function on D depends on stochastic influences modeled
by ω. A formulation of type (2.1) is also called D-weak/Ω-strong, [4], and the difference to
a variational approach w.r.t. both terms, e.g. stochastic Galerkin methods [14], should be
noted. As already mentioned in the introduction, the direct view of ω — which represents
an underlying stochastic event — as an additional parameter is not entirely possible. One
should think of it merely as an uncertainty, i.e., a(·, ·; ·, ω) is a random variable or a stochastic
process. Nevertheless, we sometimes refer to ω as the stochastic parameter.

In order to achieve computational efficiency of a RBM for (2.1), we assume both terms
in (2.1) to allow for an affine decomposition with respect to the deterministic parameter µ,
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namely

a(w, v;µ, ω) =

Qa
∑

q=1

θaq (µ)
[
āq(w, v) + aq(w, v;ω)

]
, (2.2)

f(v;µ, ω) =

Qf
∑

q=1

θfq (µ)
[
f̄q(v) + fq(v;ω)

]
, (2.3)

with Qa, Qf ≥ 1, θaq , θ
f
q : D → R, āq, aq(·, ·;ω) : X ×X → R as well as f̄q, fq(·;ω) : X → R

bounded for all ω ∈ Ω. Note that āq and f̄q denote the expectations of the terms in brackets,
aq(·, ·;ω) and fq(·;ω) denote the respective fluctuating parts. We assume that all parts aq,
fq are stochastically independent. In general, we do not require any further assumption on
these terms. However, in §5, some restrictions are introduced in order to use an alternative
method for the computation of coercivity lower bounds. In case that a and f do not allow for
a decomposition in the form of (2.2) and (2.3), respectively, a standard tool to derive affine
approximations of non-affine functions is the Empirical Interpolation Method (EIM) [2]. A
possible use of the EIM would require a technically more involved error analysis which is not
discussed here, c.f. [18].

In order to describe the well-posedness of (2.1), one usually defines the coercivity and
continuity constants, respectively

α(µ, ω) := inf
v∈X

a(v, v;µ, ω)

‖v‖2X
, γ(µ, ω) := sup

w∈X
sup
v∈X

a(w, v;µ, ω)

‖w‖X‖v‖X
. (2.4)

We assume that for some 0 < α0, γ∞ < ∞, we have

α(µ, ω) ≥ α0 > 0, (uniform coercivity), (2.5a)

γ(µ, ω) ≤ γ∞ < ∞, (uniform continuity), (2.5b)

for all (µ, ω) ∈ D × Ω. Under these assumptions, the Lax-Milgram theorem guarantees the
well-posedness of (2.1). Next, we define parameter-dependent bilinear forms and energy norms
as (µ ∈ D, ω ∈ Ω)

(w, v)µ,ω := a(w, v;µ, ω), ‖w‖2µ,ω := (w,w)µ,ω , v, w ∈ X. (2.6)

In many situations, one is not (or not only) interested in the state u(µ, ω) or the error in
the energy norm, but in some quantity of interest in terms of a linear continuous functional
` : X ×M → R. Again, we assume that ` is affine, i.e.,

`(v;µ, ω) =

Q`
∑

q=1

θ`q(µ)
[
¯̀
q(v) + `q(v;ω)

]
(2.7)
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with Q` ≥ 1, θ`q : D → R and ¯̀
q, `q(·;ω) : X → R bounded and linear for all ω ∈ Ω. It is

assumed that all parts `q are stochastically independent as well as ` is independent of a. If `
is deterministic, we set `q ≡ 0. The output s : M → R is given as

s(µ, ω) := `(u(µ, ω);µ, ω). (2.8)

If ` = f , the output coincides with the right-hand side which is called the compliant case. In the
non-compliant case, it is fairly standard to consider a dual problem of finding p(1) = p(1)(µ, ω)
such that for given (µ, ω) ∈ D × Ω one has

a(v, p(1);µ, ω) = −`(v;µ, ω), v ∈ X. (2.9)

The superscript (1) in (2.9) is motivated by the fact that we will introduce further dual
problems later on.

2.2. Karhunen-Loève expansion. As already stated in the introduction, we consider the
well-known Karhunen-Loève (KL) expansion [12, 13]. Let us briefly recall the main facts.
Let κ : D × Ω → R be a spatial stochastic process with zero mean and existing covariance
operator Covκ(x, y) := E

[
κ(x; ·)κ(y; ·)

]
, x, y ∈ D. Let (λk, κk(x)), k = 1, . . . ,∞, be the

eigenvalue/eigenfunction-pairs of the covariance operator, then the KL expansion reads

κ(x;ω) =

∞∑

k=1

√

λk ξk(ω)κk(x), (2.10)

where ξk : Ω → R are uncorrelated random variables with zero mean and variance 1. The
eigenvalues are ordered λ1 ≥ λ2 ≥ · · · ≥ 0 and for numerical purposes, we assume a fast
decay. One of the main reasons why we consider the KL expansion is now obvious since the
above equation allows for a separation of the stochastic and the spatial terms. This is very
similar to an affine expansion of a form with respect to a deterministic parameter as common
in RBM. Here, we can use the deterministic, purely space-dependent terms for calculations
in the offline phase so that the stochastic influences only enter through the coefficients in the
KL expansion and are thus scalar quantities.

Since the KL expansion requires zero-mean random variables, the affine decompositions
in (2.2), (2.3) and (2.7) are made by a separation into the deterministic expectation āq, f̄q, ¯̀q
and the zero-mean stochastic parts. We apply the KL expansion to the factors aq, fq, and `q.
For b ∈ {a, f, `}, we get (using the correct arguments of course and our assumptions regarding
stochastic independence)

b(·;µ, ω) =

Qb
∑

q=1

θbq(µ)

[

b̄q(·) +
∞∑

k=1

ξbq,k(ω) bq,k(·)

]

, (2.11)

where for notational convenience bq,k also contain
√

λb
q,k from the spectral decomposition of

the corresponding covariance operator.
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For numerical purposes, one usually restricts the infinite sum by some K b
q < ∞. It is

well-known that the KL approximation is optimal in a certain sense, [12, 13]. For b ∈ {a, f, `}
we obtain the truncated forms

bK(·;µ, ω) :=

Qb
∑

q=1

θbq(µ)

[

b̄q(·) +

Kb
q∑

k=1

ξbq,k(ω) bq,k(·)

]

. (2.12)

Here and in the following, an index K indicates that the expression is or is derived from a
truncated form. We do not distinguish the dependencies on K b

q , q = 1, ..., Qb, b ∈ {a, f, `}.
The truncated primal and dual problem read for (µ, ω) ∈ M

aK(uK(µ, ω), v;µ, ω) = fK(v;µ, ω), v ∈ X, (2.13)

aK(v, p
(1)
K (µ, ω);µ, ω) = −`K(v;µ, ω), v ∈ X, (2.14)

with solutions uK = uK(µ, ω) and p
(1)
K = p

(1)
K (µ, ω), respectively.

2.3. Reduced basis approximation. We consider a Reduced Basis (RB)-approximation
w.r.t. our parameters (µ, ω) ∈ M. To this end, we first consider the detailed approximation
of the primal and dual problem e.g. by a finite element discretization on a sufficiently fine
grid. The corresponding spaces are usually again denoted by X indicating that the detailed
approximation and the exact solution are (numerically) indistinguishable. We assume that
dim(X) = N , where N is assumed to be ‘large’. Consequently, as typical in the RB methods,
the error analysis will only address the error of the reduced to the detailed solution.

The primal and dual RB spaces are then appropriate subspaces

XN ⊂ X,dim(XN ) = N � N , X̃
(1)
N ⊂ X,dim(X̃

(1)
N ) = Ñ (1) � N .

Here and in following, an index N indicates that the expression denotes or is based on re-
duced systems. We do not explicitly indicate the dependencies on the different dimensions

of the reduced systems, e.g. the dimensions of XN and X̃
(·)
N defined below may be dif-

ferent. We obtain a truncated primal-dual RB formulation. For (µ, ω) ∈ M, determine

uN,K = uN,K(µ, ω) ∈ XN , p
(1)
N,K = p

(1)
N,K(µ, ω) ∈ X̃

(1)
N such that

aK(uN,K , v;µ, ω) = fK(v;µ, ω), v ∈ XN , (2.15)

aK(v, p
(1)
N,K ;µ, ω) = −`K(v;µ, ω), v ∈ X̃

(1)
N . (2.16)

We will comment later on the specific construction of XN and X̃
(1)
N .

3. A-posteriori error analysis. Now, we focus on the introduction of a-posteriori error
bounds for the primal and dual problem as well as for (linear and quadratic) output functionals.
We will partly follow similar considerations as in [18].
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3.1. Notation. We start by fixing some notation for the subsequent analysis. In many
cases, where it should be clear from the setting, we will omit the parameter (µ, ω) for notational
convenience. Let

eRB(µ, ω) := uK(µ, ω)− uN,K(µ, ω), ẽ
(1)
RB(µ, ω) := p

(1)
K (µ, ω)− p

(1)
N,K(µ, ω), (3.1)

be the primal and dual RB error, respectively, where again uK and p
(1)
K denote the solution

of (2.13) and (2.14), respectively. The corresponding residuals read

rRB(v;µ, ω) := fK(v;µ, ω)− aK(uN,K , v;µ, ω) = aK(eRB(µ, ω), v;µ, ω), (3.2a)

r̃
(1)
RB(v;µ, ω) := −`K(v;µ, ω)− aK(v, p

(1)
N,K ;µ, ω) = aK(v, ẽ

(1)
RB(µ, ω);µ, ω). (3.2b)

Assuming the availability of a computable lower bound 0 < αLB(µ, ω) ≤ α(µ, ω) of the
coercivity constant, it is fairly standard to derive RB error bounds in terms of the following
quantities

∆RB(µ, ω) :=
1

αLB
sup
v∈X

rRB(v)

‖v‖X
, ∆̃

(1)
RB(µ, ω) :=

1

αLB
sup
v∈X

r̃
(1)
RB(v)

‖v‖X
. (3.3)

Following the arguments of standard RB a-posteriori error analysis [15], the terms ∆RB and

∆̃
(1)
RB account for the error caused by restricting X to XN or X̃

(1)
N (i.e., the RB error) given

the truncated KL forms in (2.13, 2.14). Next, we investigate the KL truncation error. In view
of the definition of aK , fK and `K we see that any truncation error depends on the random
variable ω and thus on the particular realization. This dependency is somehow unsatisfactory
since all derived bounds would depend on a realization of a random variable. Thus, we propose
to replace the random variables ξbq,k(ω), k > Kb

q , b ∈ {a, f, `}, by some ω-independent quantity.
If the probability density functions of the random variables have finite support or the problem
that underlies the PDE restricts their variations, we can use rigorous upper bounds ξ bUB, i.e.,
|ξbq,k(ω)| ≤ ξbUB, b ∈ {a, f, `} for all ω ∈ Ω. In many cases, however, it is also appropriate to

use quantiles, instead. For some 0 < ρ < 1, we define ξbUB such that |ξbq,k(ω)| ≤ ξbUB holds
with probability 1 − ρ, where ρ should be sufficiently small to be negligible in the following
analysis. Hence, we can define the error terms for the primal and dual problem as

δKL(v;µ, ω) :=

Qa
∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(uN,K(µ, ω), v)|, (3.4a)

δ̃
(1)
KL(v;µ, ω) :=

Qa
∑

q=1

|θaq (µ)|
∞∑

k=Ka
q+1

ξaUB |aq,k(v, p
(1)
N,K(µ, ω))|, (3.4b)

as well as for the right-hand sides b ∈ {f, `}

δbKL(v;µ) :=

Qb
∑

q=1

|θbq(µ)|
∞∑

k=Kb
q+1

ξbUB |bq,k(v)|. (3.4c)
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Note, that δKL and δ̃
(1)
KL still depend on ω via the RB solutions uN,K and p

(1)
N,K . The right-

hand side terms δfKL and δ`KL are deterministic and thus only depend on µ ∈ D. For numerical
realizations, the terms in (3.4) are usually truncated at some Kmax, where Kb

q < Kmax �
N < ∞. In a similar fashion as for the RB error, we set

∆KL(µ, ω) :=
1

αLB
sup
v∈X

δKL(v)

‖v‖X
, ∆̃

(1)
KL(µ, ω) :=

1

αLB
sup
v∈X

δ̃
(1)
KL(v)

‖v‖X
, (3.5)

as well as

∆b
KL(µ, ω) :=

1

αLB
sup
v∈X

δbKL(v)

‖v‖X
, b ∈ {f, `}. (3.6)

3.2. Primal and dual error. We start by estimating primal and dual errors involving both
KL and RB truncation, i.e.,

e(µ, ω) := u(µ, ω)− uN,K(µ, ω), ẽ(1)(µ, ω) := p(1)(µ, ω)− p
(1)
N,K(µ, ω), (3.7)

where u and p denote the detailed primal and dual solution of (2.1) and (2.9), respectively.
For a better readability and for notational compactness, we omit the parameters µ and ω in
the following whenever it does not affect the understanding.

Proposition 3.1. Setting ∆(µ, ω) := ∆RB(µ, ω) + ∆KL(µ, ω) + ∆f
KL(µ, ω), we get

‖e(µ, ω)‖X ≤ ∆(µ, ω) for all (µ, ω) ∈ M.
Proof. We have for any v ∈ X that

a(e, v) = a(u, v) − a(uN,K , v)

=
(
f(v)−fK(v)

)
+

(
aK(uN,K , v)−a(uN,K , v)

)
+
(
fK(v)−aK(uN,K , v)

)
.

The last term coincides with aK(eRB, v) = rRB(v). Testing with v = e yields

‖e‖X ≤ αLB
−1 a(e, e)

‖e‖X

≤
|f(e)− fK(e)|

αLB ‖e‖X
+

|aK(uN,K , e)− a(uN,K , e)|

αLB ‖e‖X
+

|fK(e)− aK(uN,K , e)|

αLB ‖e‖X

≤ ∆f
KL +∆KL +∆RB

by standard RB estimates.

Corollary 3.2. Setting ∆̃(1)(µ, ω) = ∆̃(1) := ∆̃
(1)
RB + ∆̃

(1)
KL + ∆`

KL yields the estimate
‖ẽ(1)(µ, ω)‖X ≤ ∆̃(1)(µ, ω) for all (µ, ω) ∈ M.

Proof. In a similar way as above we get for any v ∈ X that

a(v, ẽ(1)) = a(v, p(1))− a(v, p
(1)
N,K)

=
(
`K(v)−`(v)

)
+

(
aK(v, p

(1)
N,K)−a(v, p

(1)
N,K)

)
−

(
`K(v)+aK(v, p

(1)
N,K)

)

and using v = ẽ(1) yields the desired estimate.
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The next step is to investigate the effectivities of the above estimators. To this end, we
define the Riesz representations of primal and dual residual by

(
ERB(µ, ω), v

)

X
= rRB(v;µ, ω),

(
Ẽ
(1)
RB(µ, ω), v

)

X
= r̃

(1)
RB(v;µ, ω), v ∈ X, (3.8)

for µ ∈ D and ω ∈ Ω. Since ERB is the Riesz representation, we have that ‖ERB(µ, ω)‖X =
‖rRB(µ, ω)‖X′ and thus by definition

‖ERB(µ, ω)‖X = αLB(µ, ω)∆RB(µ, ω), (3.9a)

‖Ẽ
(1)
RB(µ, ω)‖X = αLB(µ, ω) ∆̃

(1)
RB(µ, ω). (3.9b)

Analogously, we define the Riesz representations of the KL residuals by

(
EKL(µ, ω), v

)

X
= r(v;µ, ω)− rRB(v;µ, ω), (3.10a)

(
Ẽ
(1)
KL(µ, ω), v

)

X
= r̃(v;µ, ω)− r̃

(1)
RB(v;µ, ω), (3.10b)

where the detailed residuals are defined as

r(v;µ, ω) := f(v;µ, ω)− a(uN,K , v;µ, ω), (3.11a)

r̃(v;µ, ω) := −`(v;µ, ω)− a(v, p
(1)
N,K ;µ, ω). (3.11b)

We obtain that

‖EKL‖X = ‖r − rRB‖X′ = ‖f − a(uN,K , ·)− fK + aK(uN,K , ·)‖X′

≤ ‖f−fK‖X′ + ‖a(uN,K , ·)−aK(uN,K , ·)‖X′ = αLB(µ, ω)(∆
f
KL+∆KL)

and similarly ‖Ẽ
(1)
KL‖X ≤ αLB(∆

`
KL + ∆̃

(1)
KL). Finally, in order to estimate the effectivities

η(µ, ω) :=
∆(µ, ω)

‖e(µ, ω)‖X
, η̃(1)(µ, ω) :=

∆̃(1)(µ, ω)

‖ẽ(1)(µ, ω)‖X
, (3.12)

we define the following quantities

c(µ, ω) :=
∆KL(µ, ω) + ∆f

KL(µ, ω)

∆RB(µ, ω)
, (3.13a)

c̃(1)(µ, ω) :=
∆̃

(1)
KL(µ, ω) + ∆`

KL(µ, ω)

∆̃
(1)
RB(µ, ω)

. (3.13b)

Proposition 3.3. If c(µ, ω) ∈ [0, 1), we get

η(µ, ω) ≤
γUB(µ, ω)

αLB(µ, ω)

1 + c(µ, ω)

1− c(µ, ω)
,

where γUB(µ, ω) ≥ γ(µ, ω) is an upper continuity bound.
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Proof. It is straightforward to see that for v ∈ X we have

a(e, v) = r(v;µ, ω) = r(v;µ, ω)− rRB(v;µ, ω) + rRB(v;µ, ω)

= (EKL(µ, ω), v)X + (ERB(µ, ω), v)X = (EKL(µ, ω) + ERB(µ, ω), v)X ,

thus, with v = ERB − EKL

a(e, ERB − EKL) = (EKL + ERB, ERB − EKL)X = ‖ERB‖
2
X − ‖EKL‖

2
X ,

hence

‖ERB‖
2
X − ‖EKL‖

2
X = a(e, ERB − EKL) ≤ γUB ‖e‖X (‖ERB‖X + ‖EKL‖X)

= γUB ‖e‖X
‖ERB‖2X − ‖EKL‖2X
‖ERB‖X − ‖EKL‖X

,

i.e., by the above estimates

‖e‖X ≥
1

γUB
(‖ERB‖X − ‖EKL‖X) ≥

αLB

γUB
(∆RB −∆KL −∆f

KL).

This finally implies that

η =
∆

‖e‖X
≤

γUB

αLB

∆RB +∆KL +∆f
KL

∆RB −∆KL −∆f
KL

=
γUB

αLB

1 + c

1− c
,

which proves the claim.

Completely analogously we can estimate the dual effectivity as follows.

Corollary 3.4. If c̃(1)(µ, ω) ∈ [0, 1), we get

η̃(1)(µ, ω) ≤
γUB(µ, ω)

αLB(µ, ω)

1 + c̃(1)(µ, ω)

1− c̃(1)(µ, ω)
.

Finally, for later reference, we note another result. Defining

η0(µ, ω) :=

√

γUB(µ, ω)

αLB(µ, ω)

(
1 + c(µ, ω)

1− c(µ, ω)

)

, (3.14)

we get the following estimate for the effectivity w.r.t. the energy norm.

Corollary 3.5. If c(µ, ω) ∈ [0, 1), we get

√

αLB(µ, ω)∆(µ, ω)

‖e(µ, ω)‖µ,ω
≤ η0(µ, ω).

Proof. In the proof of Proposition 3.3, we replace ‖e‖X by ‖e‖µ,ωγUB
−1/2.
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3.3. Output error. Now we consider the approximation `K(uN,K ;µ, ω) to the output
`(u;µ, ω) = s(µ, ω). As already known from the RB a-posteriori error analysis of linear
output functionals, [15], we add a correction term and consider

sN,K(µ, ω) := `K(uN,K ;µ, ω)− rRB(p
(1)
N,K ;µ, ω) (3.15)

and define the output error estimator by

∆s(µ, ω) := αLB∆∆̃(1) + δKL(p
(1)
N,K) + δfKL(p

(1)
N,K) + δ`KL(uN,K). (3.16)

Then, we obtain the following estimate.

Theorem 3.6. It holds |s(µ, ω)− sN,K(µ, ω)| ≤ ∆s(µ, ω) for all µ ∈ D and ω ∈ Ω.

Proof. By standard arguments, we get (omitting the argument (µ, ω))

s− sN,K = `(u)− `K(uN,K) + rRB(p
(1)
N,K)

= `(u)− `K(uN,K) + fK(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)

= [`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)]

+[`(u)− `K(u)]− [f(p
(1)
N,K)− fK(p

(1)
N,K)].

For the first term on the right-hand side, we have

`K(u)− `K(uN,K) = −aK(u, p
(1)
K ) + aK(uN,K , p

(1)
K ) = −aK(e, p

(1)
K ).

Using f(p
(1)
N,K) = a(u, p

(1)
N,K), we get for the first two terms

[`K(u)− `K(uN,K)] + [f(p
(1)
N,K)− aK(uN,K , p

(1)
N,K)] =

= −aK(e, p
(1)
K ) + a(u, p

(1)
N,K)− aK(uN,K , p

(1)
N,K)

= −aK(e, p
(1)
K ) + aK(u− uN,K , p

(1)
N,K) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

= −aK(e, ẽ
(1)
RB) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)]

= −r̃
(1)
RB(e) + [a(u, p

(1)
N,K)− aK(u, p

(1)
N,K)].

Using `(u) − `K(u) = `(e + uN,K) − `K(e + uN,K) and a(u, p
(1)
N,K) − aK(u, p

(1)
N,K) = a(e +

uN,K , p
(1)
N,K)− aK(e+ uN,K , p

(1)
N,K), and putting all this together yields

s− sN,K =− r̃
(1)
RB(e) + [a(e, p

(1)
N,K)− aK(e, p

(1)
N,K)] + [`(e) − `K(e)]

+ [`(uN,K)− `K(uN,K)] − [f(p
(1)
N,K)− fK(p

(1)
N,K)]

+ [a(uN,K , p
(1)
N,K)− aK(uN,K , p

(1)
N,K)].

(3.17)
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Using the triangle inequality, we estimate the first 3 terms separately, i.e.,

|r̃
(1)
RB(e;µ, ω)| ≤ ‖e‖X sup

v∈X
(r̃

(1)
RB(v)/‖v‖X )≤ αLB∆∆̃

(1)
RB,

|a(e, p
(1)
N,K)− aK(e, p

(1)
N,K)| ≤ ‖e‖X sup

v∈X
(δ̃

(1)
KL(v)/‖v‖X )≤ αLB∆∆̃

(1)
KL,

|`(e) − `K(e)| ≤ ‖e‖X sup
v∈X

(δ`KL(v)/‖v‖X )≤ αLB∆∆`
KL,

by Proposition 3.1. Furthermore, |`(uN,K)−`K(uN,K)| ≤ δ`KL(uN,K), |f(p
(1)
N,K)−fK(p

(1)
N,K)| ≤

δfKL(p
(1)
N,K) and |a(uN,K , p

(1)
N,K) − aK(uN,K , p

(1)
N,K)| ≤ δKL(p

(1)
N,K). We put everything together

which yields the desired result.
The above analysis shows two effects. First of all, the RB and KL error terms ∆RB,

∆KL, ∆
f
KL and ∆̃

(1)
RB, ∆̃

(1)
KL, ∆

`
KL appear in pairwise products in the first term of (3.16). In

order to obtain the full order of approximation, RB and KL error terms should thus be
of comparable sizes. Secondly, as opposed to the deterministic case, we obtain the addi-

tional additive terms δKL(p
(1)
N,K), δfKL(p

(1)
N,K) and δ`KL(uN,K) as we see from the estimates of

|a(u, p
(1)
N,K)− aK(u, p

(1)
N,K)|, |f(p

(1)
N,K)− fK(p

(1)
N,K)| and |`(u)− `K(u)|.

Finally, we investigate the effectivity of the output error bound for the special case of
a compliant output, i.e., ` = f , and symmetric bilinear form a. For this case, we have

p
(1)
N,K = −uN,K , Ñ (1) = N and ∆s = αLB ∆2 + δcomp

KL , δcomp
KL := δKL(uN,K) + 2δfKL(uN,K).

Proposition 3.7. In the compliant case and with symmetric bilinear form a and for η0(µ, ω)
from (3.14), we assume that αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)

2δcomp

KL (µ, ω). Then, the effectivity

ηs(µ, ω) := ∆s(µ,ω)
|s(µ,ω)−sN,K (µ,ω)| is bounded by

ηs(µ, ω) ≤ η0(µ, ω)
2 αLB(µ, ω)∆(µ, ω)2 + δcomp

KL (µ, ω)

αLB(µ, ω)∆(µ, ω)2 − η0(µ, ω)2δ
comp

KL (µ, ω)
. (3.18)

Proof. Following the proof of Theorem 3.6 yields for ` = f and p
(1)
N,K = −uN,K that

s− sN,K=f(u)− 2 fK(uN,K) + aK(uN,K , uN,K)

=a(u, u) + 2[f(uN,K)− fK(uN,K)]− 2f(uN,K) + a(uN,K , uN,K)

−[a(uN,K , uN,K)− aK(uN,K , uN,K)]

=a(e, e) + 2[f(uN,K)− fK(uN,K)]− [a(uN,K , uN,K)− aK(uN,K , uN,K)],

Using Corollary 3.5, we get

αLB

η20
∆2 ≤ ‖e‖2µ,ω = a(e, e) ≤ |s− sN,K|+ δcomp

KL .

This yields ∆s

|s−sN,K | ≤
αLB∆

2+δcomp
KL

αLB
η2
0

∆2−δcomp
KL

which proves the claim.

The assumption αLB(µ, ω)∆(µ, ω)2 ≥ η0(µ, ω)
2δcomp

KL (µ, ω) is rather restrictive and can
be validated only a-posteriori. It requires either the energy norm error effectivity η0 or the
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KL truncation error δcomp
KL to be small. However, the effectivity bound is consistent with

the deterministic case in the sense that for large K, it converges to the energy norm error
effectivity bound η20 as provided in Corollary 3.5, where c is approaching zero at the same
time.

3.4. Quadratic output. As a next step, we consider quadratic output functions of the
form

s2(µ, ω) := [`(u(µ, ω);µ)]2,

where ` is a ω-independent linear functional. If ` would be stochastic itself, the subsequently
constructed error bounds would include terms depending on the size of s which is independent
of N and K. Also, it is readily seen that just squaring the output sN,K from (3.15) is not
sufficient. In fact, since

s2 − (sN,K)2 = (s− sN,K)(s+ sN,K) ≤ ∆s · (s+ sN,K), (3.19)

the right-hand does not have the desirable “square” effect, as typical in RB methods. Hence,
we follow a different path by introducing an additional dual problem, namely determine

p
(2)
K (µ, ω) ∈ X such that

aK(v, p
(2)
K (µ, ω);µ, ω) = −2 sN,K(µ, ω) · `(v;µ) =: −`(2)(v;µ, ω), v ∈ X. (3.20)

Of course, the solution of (3.20) reads p
(2)
K = 2 sN,K p

(1)
K , which, however, is useless in the RB

context since we have a different parameter-dependent right-hand side and thus different RB

spaces. Hence, we consider an RB space X̃
(2)
N ⊂ X, dim(X̃

(2)
N ) = Ñ (2) and determine some

p
(2)
N,K(µ, ω) ∈ X̃

(2)
N such that

aK(v, p
(2)
N,K(µ, ω);µ, ω) = −`(2)(v;µ, ω), v ∈ X̃

(2)
N . (3.21)

We can apply the analysis performed in §3.2 and just need to adjust the notation.

The dual error reads ẽ
(2)
RB := p

(2)
K − p

(2)
N,K , the residual r̃

(2)
RB(v) := aK(v, ẽ

(2)
RB) and the RB

bounds as ∆̃
(2)
RB := αLB

−1 supv∈X
(
r̃
(2)
RB(v)/‖v‖X

)
. The KL truncation term δ̃

(2)
KL is defined

analogously to (3.4b) by replacing p
(1)
N,K by p

(2)
N,K, and analogously to (3.5),

∆̃
(2)
KL := αLB

−1 supv∈X
(
δ̃
(2)
KL(v)/‖v‖X

)
. The terms δ`

(2)

KL (v;µ) and ∆`(2)

KL (µ, ω) vanish since `
is deterministic. Then, Proposition 3.1 and Corollary 3.2 yield the following estimate for

ẽ(2) := p(2) − p
(2)
N,K , namely

‖ẽ(2)(µ, ω)‖X ≤ ∆̃(2)(µ, ω) := ∆̃
(2)
RB(µ, ω) + ∆̃

(2)
KL(µ, ω). (3.22)

We consider the approximation [`(uN,K(µ, ω);µ, ω)]2. Similar to the definition of sN,K in
§3.3, we add correction terms and consider

s
[2]
N,K(µ, ω) := (`(uN,K))2 −

(

rRB(p
(1)
N,K)

)2
− rRB(p

(2)
N,K). (3.23)
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It is important to keep in mind that we distinguish the squared approximation (sN,K)2 =

sN,K · sN,K from the approximation s
[2]
N,K of the square of s. In fact, it is easy to see that we

can also write s
[2]
N,K in terms of sN,K = `(uN,K)− rRB(p

(1)
N,K),

s
[2]
N,K(µ, ω) = (sN,K)2 + 2sN,K · rRB(p

(1)
N,K)− rRB(p

(2)
N,K), (3.24)

i.e., we have two additional correction terms. For X̃
(2)
N = X̃

(1)
N , the correction terms would

cancel out. We define the quadratic output error bound

∆s2(µ, ω) := (∆s)2 + αLB∆∆̃(2) + δKL(p
(2)
N,K) + δfKL(p

(2)
N,K) (3.25)

and obtain the following result.

Theorem 3.8. It holds
∣
∣
∣s2(µ, ω)− s

[2]
N,K(µ, ω)

∣
∣
∣ ≤ ∆s2(µ, ω) for all µ ∈ D, ω ∈ Ω.

Proof. With (3.24), the output error is given by

s2 − s
[2]
N,K = s2 − (sN,K)2 − 2sN,K rRB(p

(1)
N,K) + rRB(p

(2)
N,K)

= (s− sN,K)2 + 2sN,K(s− sN,K)− 2sN,K rRB(p
(1)
N,K) + rRB(p

(2)
N,K).

Using sN,K = `(uN,K)− rRB(p
(1)
N,K) yields

2sN,K(s− sN,K) = 2sN,K

(

`(u)− `(uN,K) + rRB(p
(1)
N,K)

)

.

Together, replacing 2sN,K` by `(2), we have

s2 − s
[2]
N,K = (s− sN,K)2 + `(2)(u)− `(2)(uN,K) + rRB(p

(2)
N,K). (3.26)

From Theorem 3.6, we know that (s − sN,K)2 ≤ (∆s)2. The second part of (3.26) can be
estimated analogously to Theorem 3.6 by replacing ` by `(2) and p(1) by p(2). Since ` = `K ,
we obtain

`(2)(u)− `(2)(uN,K) + rRB(p
(2)
N,K)

= − r̃
(2)
RB(e) + [a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)]

− [f(p
(2)
N,K)− fK(p

(2)
N,K)] + [a(uN,K , p

(2)
N,K)− aK(uN,K , p

(2)
N,K)].

(3.27)

which can be bounded by αLB∆∆̃
(2)
RB + αLB∆∆̃

(2)
KL + δfKL(p

(2)
N,K) + δKL(p

(2)
N,K).

If ∆s is already small, the first part of the error bound ∆s2 will be comparatively negligible.
The second part of the error bound is of the same form as ∆s in (3.16). Hence, we can hope
that ∆s2 is approximately of the same order than ∆s.
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4. Statistical output error analysis. In this section, we consider first and second moments
of the linear output functional s(µ, ω) = `(u(µ, ω);µ),

M1(µ) := E [s(µ, ·)] , M2(µ) := E
[
s2(µ, ·)

]
, V(µ) := M2(µ)− (M1(µ))

2 .

We assume again that the functional ` is deterministic, i.e., there is no explicit dependence
on the stochastic parameter ω but the randomness of the output functional s is only through
u. We start with the following lemma.

Lemma 4.1. Assuming independency of a and f as stated in §2.1, we have

E

[

a(uN,K , p
(i)
N,K)− aK(uN,K , p

(i)
N,K)

]

= 0, E

[

f(p
(i)
N,K)− fK(p

(i)
N,K)

]

= 0,

i = 1, 2, 3, where p
(3)
N,K(µ, ω) is given in (4.4) and ` is assumed to be deterministic.

Proof. Since uN,K and p
(i)
N,K depend only on truncated forms, they depend only on

the random variables
{
ξaq,k

}k=1,...,Ka
q

q=1,...,Qa and
{
ξfq,k

}k=1,...,Kf
q

q=1,...,Qf . Since ξbq,k and ξb
′

q′,k′ are uncorre-

lated for (q, k, b) 6= (q′, k′, b′), both uN,K and p
(i)
N,K are uncorrelated to

{
ξaq,k

}k>Ka
q

q=1,...,Qa and
{
ξfq,k

}k>Kf
q

q=1,...,Qf . We thus obtain

E

[

a(uN,K , p
(i)
N,K)− aK(uN,K , p

(i)
N,K)

]

=

= E





Qa
∑

q=1

∞∑

k=Ka
q+1

θaq (µ)ξ
a
q,k(·)aq,k(uN,K , p

(i)
N,K)





=

Qa
∑

q=1

∞∑

k=Ka
q+1

θaq (µ)E
[

ξaq,k(·)
]

︸ ︷︷ ︸

=0

E

[

aq,k(uN,K , p
(i)
N,K)

]

= 0

and analogously, E[f(p
(i)
N,K)− fK(p

(i)
N,K)] = 0.

4.1. First and second moment. The straightforward estimate for the first moment M1(µ)
is given by M1,NK(µ) := E [sN,K(µ, ·)] and we define the error bound

∆M1(µ) := E

[

αLB∆∆̃(1)
]

. (4.1)

Corollary 4.2. It holds |M1(µ)−M1,NK(µ)| ≤ ∆M1(µ) for all µ ∈ D.
Proof. Equation (3.17), Lemma 4.1 and ` = `K yield

M1 −M1,NK = E

[

−r̃
(1)
RB(e) + a(e, p

(1)
N,K)−aK(e, p

(1)
N,K)

]

+ E

[

a(uN,K , p
(1)
N,K)−aK(uN,K , p

(1)
N,K)

]

− E

[

f(p
(1)
N,K)−fK(p

(1)
N,K)

]

= E

[

−r̃
(1)
RB(e) + a(e, p

(1)
N,K)−aK(e, p

(1)
N,K)

]

.
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Following the proof of Theorem 3.6, we obtain the desired result.
Analogously, the straightforward estimate for the second moment M2(µ) is given by

M2,NK(µ) := E

[

s
[2]
N,K(µ, ·)

]

and we define the error bound

∆M2(µ) := E

[

(∆s)2 + αLB∆∆̃(2)
]

. (4.2)

Corollary 4.3. It holds |M2(µ)−M2,NK(µ)| ≤ ∆M2(µ) for all µ ∈ D.
Proof. Equations (3.26), (3.27), Lemma 4.1 and ` = `K yield

M2 −M2,NK = E
[
(s− sN,K)2

]
− E

[

r̃
(2)
RB(e) + a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)

]

− E[f(p
(2)
N,K)−fK(p

(2)
N,K)] + E[a(uN,K , p

(2)
N,K)−aK(uN,K , p

(2)
N,K)]

= E
[
(s− sN,K)2

]
− E

[

r̃
(2)
RB(e) + a(e, p

(2)
N,K)− aK(e, p

(2)
N,K)

]

.

Following the proof of Theorem 3.8, we obtain the desired result.

4.2. Squared first moment. In order to get an estimation of the variance, it remains to
find an estimation for the the squared first moment. We follow the same approach as in §3.4
and introduce a third dual problem with right-hand side `(3)(v;µ) := 2M1,NK(µ) `(v;µ). The
dual and the corresponding reduced system are then given by

aK(v, p
(3)
K ;µ, ω) = −`(3)(v;µ), v ∈ X, (4.3)

aK(v, p
(3)
N,K ;µ, ω) = −`(3)(v;µ), v ∈ X̃

(3)
N , (4.4)

respectively, where X̃
(3)
N ⊂ X denotes the RB space of dimension dim(X̃

(3)
N ) = Ñ (3). The

error analysis is now mainly straightforward, following §3.4. We denote the new dual error

by ẽ
(3)
RB := p

(3)
K − p

(3)
N,K and the residual by r̃

(3)
RB(v) := aK(v, ẽ

(3)
RB) to define the RB bound

∆̃
(3)
RB := αLB

−1‖r̃
(3)
RB‖X′ . The KL truncation term δ̃

(3)
KL is defined analogously to (3.4b) by

replacing p
(1)
N,K by p

(3)
N,K, and analogously to (3.5), ∆̃

(3)
KL := αLB

−1 ‖δ̃
(3)
KL‖X′ . Then, Proposition

3.1 and Corollary 3.2 yield the following estimate for ẽ(3) := p(3) − p
(3)
N,K ,

‖ẽ(3)(µ, ω)‖X ≤ ∆̃(3)(µ, ω) := ∆̃
(3)
RB(µ, ω) + ∆̃

(3)
KL(µ, ω). (4.5)

We define the approximation of the squared first moment adding some correction terms.
Analogously to (3.24), we consider

M
[2]
1,NK(µ) = (M1,NK)2 + 2M1,NK · E

[

rRB(p
(1)
N,K)

]

− E

[

rRB(p
(3)
N,K)

]

. (4.6)

Note the distinction between the squared approximation (M1,NK)2 = M1,NK ·M1,NK and the

direct approximation M
[2]
1,NK of the squared first moment. The error bound is given by

∆M2
1(µ) := (∆M1)2 + E

[

αLB∆∆̃(3)
]

. (4.7)
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Theorem 4.4. It holds
∣
∣M

2
1(µ)−M

[2]
1,NK(µ)

∣
∣ ≤ ∆M2

1(µ) for all µ ∈ D.
Proof. Analogously to Theorem 3.8, the output error is given by

M
2
1 −M

[2]
1,NK = (M1 −M1,NK)2 + E

[

`(3)(u)− `(3)(uN,K) + rRB(p
(3)
N,K)

]

From Corollary 4.2, we know that (M1 −M1,NK)2 ≤ (∆M1)2. Analogously to Theorem 3.6,
using ` = `K and replacing ` by `(3) and p(1) by p(3), we obtain

E

[

`(3)(u)− `(3)(uN,K) + rRB(p
(3)
N,K)

]

=

= E

[

−r̃
(3)
RB(e) + a(e, p

(3)
N,K)−aK(e, p

(3)
N,K)

]

− E

[

f(p
(3)
N,K)−fK(p

(3)
N,K)

]

+ E

[

a(uN,K , p
(3)
N,K)−aK(uN,K , p

(3)
N,K)

]

= E

[

−r̃
(3)
RB(e) + a(e, p

(3)
N,K)−aK(e, p

(3)
N,K)

]

,

where the last equation is obtained by Lemma 4.1. The result can be bounded analogously

to Theorem 3.6 by E[αLB∆∆̃
(3)
RB + αLB∆∆̃

(3)
KL].

4.3. Variance. It is straightforward to define

VNK(µ) := M2,NK(µ)−M
[2]
1,NK(µ) (4.8)

and it is furthermore clear that |V − VNK | ≤ E[∆s2 ] + ∆M2
1 is an upper bound for the

error. However, we can derive more precise error bounds. Denoting r̃
(2−3)
RB (v) := aK(v, ẽ

(2)
RB −

ẽ
(3)
RB) and ∆̃

(2−3)
RB := αLB

−1 supv∈X
(
r̃
(2−3)
RB (v)/‖v‖X

)
as well as defining the KL truncation

term δ̃
(2−3)
KL by (3.4b), replacing p

(1)
N,K by (p

(2)
N,K − p

(3)
N,K), and analogously to (3.5), ∆̃

(2−3)
KL :=

αLB
−1 supv∈X

(
δ̃
(2−3)
KL (v)/‖v‖X

)
, we obtain ‖ẽ(2) − ẽ(3)‖X ≤ ∆̃(2−3) := ∆̃

(2−3)
RB + ∆̃

(2−3)
KL and

the variance error bound

∆V(µ) := E
[
(∆s)2

]
+ (∆M1)2 + E

[

αLB∆∆̃(2−3)
]

(4.9)

Theorem 4.5.It holds that |V(µ)− VNK(µ)| ≤ ∆V(µ) for all µ ∈ D.
Proof. From Theorems 3.8 and 4.4 we know

V− VNK = E
[
(s− sN,K)2

]
− (M1 −M1,NK)2

+ E

[

`(2)(u)− `(2)(uN,K) + rRB(p
(2)
N,K)

]

− E

[

`(3)(u)− `(3)(uN,K) + rRB(p
(3)
N,K)

]

and the first two terms can be bounded by E
[
(∆s)2

]
and (∆M1)2, respectively. From Equation

(3.27), Lemma 4.1 and Theorem 4.4, we have for i = 2, 3

E

[

`(i)(u)− `(i)(uN,K)+rRB(p
(i)
N,K)

]

= E

[

−r̃
(i)
RB(e) + a(e, p

(i)
N,K)−aK(e, p

(i)
N,K)

]

.
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We subtract the two expressions and follow again the proof of Theorem 3.6. The claim follows
directly using the definitions from above.

In our numerical experiments, we have observed that it is sufficient to use the same

reduced space for the two additional dual problems (3.21) and (4.4), i.e. X̃
(2)
N = X̃

(3)
N . Then,

it holds that p
(3)
N,K(µ, ω) = p

(2)
N,K(µ, ω)M1,NK(µ)/sN,K(µ, ω) and it is sufficient to solve only

one additional dual problem. Hence, we consider

aK(v, p
(4)
N,K(µ, ω);µ, ω) = −2`(v;µ), v ∈ X̃

(2)
N (4.10)

such that p
(2)
N,K = sN,K ·p

(4)
N,K and p

(3)
N,K = M1,NK ·p

(4)
N,K . For a faster evaluation of the variance

error bound (4.9), we could use p
(2)
N,K − p

(3)
N,K = (sN,K−M1,NK) p

(4)
N,K. Furthermore, defining

δ̃
(4)
KL, ∆̃

(4)
KL, ∆̃

(4)
RB and ∆̃(4) analogously to δ̃

(1)
KL, ∆̃

(1)
KL, ∆̃

(1)
RB and ∆̃(1), respectively, we obtain e.g.

∆̃
(2−3)
RB = |sN,K−M1,NK | ∆̃

(4)
RB. Analogously, we can construct the error terms δ̃

(i)
KL, ∆̃

(i)
KL, ∆̃

(i)
RB

and ∆̃(i), i ∈ {2, 3, 2 − 3}. Still, it is possible to use two different RB spaces such that both
dual problems (3.21) and (4.4) have to be solved. The theory does not change for that case.

5. Offline-online decomposition. In this section, we describe the offline and online pro-
cedures and provide corresponding run-time and storage complexities. We start with the de-
scription of a method to evaluate lower bounds for the coercivity constant. For this method,
we assume the bilinear form a to be parametrically coercive with respect to the deterministic
parameter, i.e. θaq (µ) > 0 for all µ ∈ D and āq(v, v)+ aq(v, v;ω) ≥ 0, v ∈ X, for all ω ∈ Ω and
1 ≤ q ≤ Qa.

5.1. The coercivity lower bound. From the deterministic case, we know the following
methods to determine lower bounds αLB(µ, ω) for α(µ, ω), the “min-θ” approach [15] and the
“Successive Constraint Method” (SCM) [11]. The latter approach is less restrictive and could
be directly applied to the stochastic parameter case. However, it requires much more effort,
online as well as offline. The “min-θ” approach requires the bilinear form a to be parametrically
coercive with respect to the deterministic and stochastic parameter. Therefore, the extension
of the method to our case is not possible. We would require ξq,k(ω) to be positive.

To partially maintain the advantage of the “min-θ” approach, we propose a combination
of both methods. We fix some parameter µ̄ ∈ D and get the inequality

α(µ, ω) = inf
v∈X

a(v, v;µ, ω)

‖v‖2X
≥ inf

v∈X

a(v, v;µ, ω)

a(v, v; µ̄, ω)
· inf
v∈X

a(v, v; µ̄, ω)

‖v‖2X
. (5.1)

If a is parametrically coercive, we apply the “min-θ” approach on the first term, i.e., for
θmin(µ) := min1≤q≤Qa{θaq (µ)/θ

a
q (µ̄)}, we obtain ω-independent lower bounds

a(v, v;µ, ω)

a(v, v; µ̄, ω)
≥ θmin(µ), ∀v ∈ X, ∀(µ, ω) ∈ M

analogously to [15]. For the approximation of the second term, we first apply the SCM to the
truncated form and obtain µ-independent lower bounds

aK(v, v; µ̄, ω)

‖v‖2X
≥ αK

SCM(ω), ∀v ∈ X, ∀ω ∈ Ω.
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To take the truncation error into account, we consider the parameter independent truncation
error

∆α
KL := sup

v∈X





Qa
∑

q=1

θaq (µ̄)

Kmax∑

k=K+1

ξUB
aq,k(v, v)

‖v‖2X



 (5.2)

such that −∆α
KL‖v‖

2
X ≤ a(v, v; µ̄, ω)−aK(v, v; µ̄, ω). Hence, we define αSCM(ω) := αK

SCM(ω)−
∆α

KL and obtain the coercivity lower bound αLB(µ, ω) := θmin(µ) · αSCM(ω). It is essential
that K is large enough to obtain a positive αSCM.

Both αSCM(ω) and θmin(µ) can be evaluated independently. Therefore, it might be useful
to store αSCM for many random realizations and reuse these values in combination with
different µ. This is possible if the same random realizations can be used for several parameters.
Then αLB(µ, ω) can be evaluated very fast in the online stage.

5.2. Online procedure. We first summarize the run-time complexity to solve a reduced
system and evaluate the corresponding outputs and bounds. Assuming the availability of all
necessary terms, the complexity is the same for all primal and dual problems. For notational
compactness, we do not distinguish between Qb, Kb, Kb

max for b ∈ {a, f, `}, but just use Q, K
and Kmax, respectively. In the same way, we just use N instead of N , Ñ (1), Ñ (2) and Ñ (3).

The complexity to assemble a reduced system for a new parameter pair reads O(QKN 2),
the solution is then obtained in O(N 3) operations. For the output evaluation, we need to
assemble some additional matrices and vectors — again with complexity O(QKN 2) — to
evaluate the residuals. The actual evaluation is then of complexity O(N 2). For the er-
ror bounds, we first evaluate the coercivity lower bound. The complexity depends on the
chosen method, optimally O(Q). For the ∆KL- and ∆RB-error bounds, we use the previ-
ously evaluated and stored Riesz representator inner products and compute the bounds in
O(Q2(Kmax − K)2N2) and O(Q2K2N2), respectively. For the δKL-error bounds, we just
need O(Q(Kmax −K)) matrix-vector and vector-vector multiplications, the total complexity
is therefore O(Q(Kmax −K)N2).

Suppose we useM random realizations to evaluate the Monte Carlo estimates for any given
deterministic parameter, the overall run-time complexity for the computation of the statistical
outputs is given by O(M(N 3 + Q2K2

maxN
2)), including the complexity for the evaluation of

the error bounds.
If we are interested in both second moment and variance, the online procedure works as

follows. We solve the primal and first dual problem for M realizations and some fixed µ. For
all realizations, we store sN,K that is later used to solve the second and third dual problem

(3.21) and (4.4). For the quadratic output evaluations, we additionally store rRB(p
(1)
N,K) as

well as the primal solutions uN,K that is needed for the computation of the respective last
terms in (3.24) and (4.6). Furthermore, for the corresponding error bounds (3.25) and (4.9),
we store ∆ and ∆s. Hence, the overall storage complexity is O((N + 4)M).

Using the same reduced space for the second and third dual problems (3.21) and (4.4), it
is possible to evaluate all statistical outputs with storage complexity O(M). For some fixed
µ, the basic concept is to solve (4.10) for each random realization at the same time as the

primal and first dual problem (2.15) and (2.16). It is clear that the evaluation of s
[2]
N,K in
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(3.24) and the second moment M2,NK = E[s
[2]
N,K] as well as its error bounds ∆s2 from (3.25)

and ∆M2 = E[∆s2 ] can be obtained with storage complexity O(1). As a consequence of the

use of (4.10), we have E[rRB(p
(3)
N,K)] = M1,NKE[rRB(p

(4)
N,K)] and the evaluation of M

[2]
1,NK in

(4.6) is of storage complexity O(1), too, and hence the evaluation of VNK = M2,NK −M
[2]
1,NK .

Analogously, E[αLB∆∆̃(3)] = |M1,NK | · E[αLB∆∆̃(4)] and hence the storage complexity to

evaluate ∆M
2
1 in (4.7) is constant. Therefore, using only the the less precise variance error

bound |V−VNK | ≤ ∆M2 +∆M
2
1 , it would even be possible to solve all problems with storage

complexity O(1). However, for the variance error bound presented in (4.9), we additionally
store sN,K and αLB∆∆̃(4) for each realization with storage complexity O(M) to enable the
evaluation of E[αLB∆∆̃(2−3)] = E

[
|sN,K −M1,NK | · αLB∆∆̃(4)

]
.

5.3. Greedy basis selection. To generate the bases of the reduced spaces, we perform a
Greedy algorithm as it is well known in the RB context, [21, 15]. For a training parameter
set Ξtrain ⊂ M and some initial basis, given by an arbitrary single snapshot, we solve the
reduced primal and dual problems (2.15), (2.16), (3.21), (4.4) and evaluate the error bounds
for the desired outputs. For each problem, we select the parameter pair for which the RB
error part of the desired output error bound is maximal and add the corresponding solution
of the unreduced problem to the respective basis. We iterate the procedure until the error
bounds fall below an intended tolerance for all training parameters.

Next, we are going to describe how to specify the KL truncation, precisely the numbers
of affine terms used for the approximation, K b, b ∈ {a, f, `}, and the number of terms used
to estimate the truncation error, K b

max, b ∈ {a, f, `}. We integrate the specification into the
Greedy algorithm. For different truncation lengths and very large Kmax values, we solve the
reduced system and evaluate the KL error bounds for all training parameters. K b, b ∈ {a, f, `},
are chosen as the minimal numbers such that the KL error bounds do not exceed a given
tolerance, respectively. This tolerance should be rather small compared to the allowed output
errors. Similarly, we adjustK b

max, b ∈ {a, f, `}, as small as possible such that we underestimate
the KL error bounds only negligible small. Since the KL truncation errors do not depend on
the dimension of the RB spaces, K b and Kb

max, b ∈ {a, f, `}, are likely to be appropriate for
all reduced spaces and can be fixed for all further computations. However, it would also be
possible to do further adjustments during the Greedy algorithm.

Suppose that Ξtrain consists of ntrain deterministic parameters and Mtrain random realiza-
tions for each of the parameters. Then, the Greedy complexity is O(Nntrain) times the online
complexity to find the “optimal” parameters in each iteration, i.e. O(NntrainMtrain(N

3 +
Q2K2

maxN
2)), plus O(QKmaxNN ) to solve for the corresponding detailed solutions. Fur-

thermore, the construction of the reduced system matrices and vectors is of complexity
O(QKmaxN

2N ) and the evaluation of the used Riesz representators and the pairwise inner
products O(Q2K2

maxN
2N ).

We store these RB system matrices and vectors as well as the Riesz representator inner
products that are used to construct the ∆KL- and ∆RB-error bounds. Hence the total storage
complexity is O(Q2K2

maxN
2).

Especially for stochastic problems, it is not clear if the parameter range is sufficiently
covered by the random training set Ξtrain. However, since we evaluate a-posteriori error
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bounds, we detect such cases in the online stage and could still extend both Ξtrain and the
basis.

6. Numerical realization and experiments. In this section, an example of a two-dim-
ensional porous medium is chosen to illustrate the different aspects of the proposed methods.
We consider heat transfer in a wet sandstone with porosity modeled by a random function
κ(x;ω) that represents the rate of pore space within some control volume. We construct
κ generating N standard normally distributed random variables and applying a Gaussian
smoothing filter of the form exp (−‖x− y‖2/σ2), where σ = 1/5. Additionally, we perform
a Wiener process-like algorithm on the N new variables. Hence, κ(·;ω) is (at least) almost
surely everywhere continuous and hence κ(·;ω) ∈ L2(D). Furthermore, our model depends on
a deterministic parameter µ ∈ D = [0.01, 1] that denotes the global water saturation in the
pores. Hence, the proportion of air in the pores is given by (1−µ). Let cs = 2.40 be the heat
conductivity constant of pure (theoretically imporous) sandstone and cw = 0.60, ca = 0.03
the respective heat conductivity constants of water and air. With these notations, the total
heat conductivity of a wet sandstone is assumed to be

c(x;µ, ω) = cs · (1− κ(x;ω)) + (µcw + (1 − µ)ca)κ(x;ω)

= cs + (−cs + µcw + (1− µ)ca)κ(x;ω).
(6.1)

We consider a domain D = [0, 1]2 and impose homogeneous Dirichlet boundary conditions on
some boundary part ΓD and non-homogeneous Neumann boundary conditions on the opposite
“output” boundary Γout, where the right-hand side of the boundary condition is a random
function g(ω) : [0, 1] → R, stochastically independent of κ, representing some random loss
of heat at the output boundary and modeled by a smoothed Wiener bridge process. On the
other boundaries, we impose homogeneous Neumann conditions, representing isolated parts
of the sandstone. For a given µ ∈ D and some random realization of κ, we are interested in
the average temperature at the “output” boundary Γout, denoted by s(µ, ω).

Now, the PDE reads as follows: for given (µ, ω) ∈ M, find u(µ, ω) such that







−∇ ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 in D,

u(µ, ω) = 0 on ΓD,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= 0 on ΓN,

n ·
(
c(µ, ω) ∇u(µ, ω)

)
= g(ω) on Γout.

(6.2)

In the weak form, we compute u(µ, ω) ∈ X such that a(u(µ, ω), v;µ, ω) = f(v;ω) for all
v ∈ X, where a(w, v;µ, ω) =

∫

D c(µ, ω)∇w · ∇v and f(v;ω) =
∫

Γout
g(ω)v. For the functional

`(v) =
∫

Γout
v, the non-compliant output is given by

s(µ, ω) := `(u(µ, ω)) =

∫

Γout

u(µ, ω).

The affine decomposition of the bilinear form a in µ is straightforward. Let κ̄(x) denote
the mean of κ(x; ·) and κ̃(x;ω) := κ(x;ω) − κ̄(x) its stochastic part with zero mean. We
define θ1(µ) :≡ cs and θ2(µ) := −cs + µcw + (1 − µ)ca. Then, using the notation of (2.2),
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Sample 1 Sample 2 Sample 3 Sample 4

Figure 6.1. Four random realizations of κ

First Mode Second Mode Third Mode Fourth Mode

Figure 6.2. First four modes of κ̃

ā1(w, v) =
∫

D ∇w · ∇v whereas a1(w, v;ω) ≡ 0 vanishes. For the second affine term, we have
ā2(w, v) =

∫

D κ̄∇w · ∇v and a2(w, v;ω) =
∫

D κ̃(ω)∇w · ∇v. In the same way, we denote by
ḡ(x) the mean of g(x; ·) and g̃(x;ω) its stochastic part and define f̄1(v) =

∫

Γout
ḡv as well as

f1(v;ω) =
∫

Γout
g̃(ω)v, where θf1 = 1. Using KL expansions of κ̃ and g̃, we directly obtain

affine decompositions of a2 and f1 in ω, respectively. Since ` is independent of µ and ω, we
put all forms into the framework of (2.11) with Qa = 2, Qf = 1 and Q` = 1, where ξa1,k(ω) = 0
for all k ≥ 1 and therefore Ka

1 = 0 in (2.12).

Figure 6.1 shows four random realizations of κ and Figure 6.2 the first four eigenmodes
of the KL expansion of κ̃. Its eigenvalues are provided in Figure 6.5(a). The expectation of κ
is supposed to be constant in space, κ̄(x) ≡ 0.33. We assume the random coefficients ξa2,k(ω)
to be standard normally distributed. Since κ(x;ω) is restricted to [0, 1] whereas ξa2,k(ω) are
unbounded, we dismiss realizations that do not satisfy the physical constraints. However, this
can be done easily online and this happens with a probability of less than 2.5 · 10−6 in our
model. Then, c(x;µ, ω) > µcw + (1 − µ)ca > 0.0357 > 0 and the PDE is uniformly coercive.
Figure 6.3 shows four random realizations of g and Figure 6.4 the first four eigenmodes of
the KL expansion of g̃. Its eigenvalues are provided in Figure 6.5(b). The expectation of g

is constant in space, ḡ(x) = 1. The random coefficients ξf1,k(ω) are assumed to be standard
normally distributed. Here, we do not restrict g to a certain interval. However, negative
values of g are very unlikely.

For the detailed approximations, we choose a finite element (FE) space X with linear
Lagrange elements and N = 4841 degrees of freedom. Furthermore, we use K a

detail = 78 and

Kf
detail = 18 terms to assemble the detailed forms a and f , respectively. These numbers of

terms are already precise enough compared to the FE error.
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Figure 6.4. First four modes of g̃

The bilinear form a with the affine decomposition introduced before is not parametrically
coercive since θa2(µ) < 0. However, since ā2(·) = 0.33 · ā1(·), resorting the affine terms to

a(·;µ, ω) = θa1(µ)
(
ā1(·)− ā2(·) − a2(·;ω)

)
+ (θa1(µ) + θa2(µ))

(
ā2(·) + a2(·;ω)

)

leads to a decomposition that fulfills the requirements of the method proposed in §5.1 to
evaluate coercivity lower bounds. I.e., we first create several random samples of the sandstone
in the online stage and store the respective αSCM. Then, for all water saturations µ ∈ D, we
use the same samples and can reuse αSCM.

Using the initial basis of the Greedy algorithm, we specify the KL truncation as described
in §5.3. For a relative error tolerance tol = 10−3, we choose a Ka and Kf such that the
respective truncation errors, especially the δKL-parts, do not exceed 0.1tol. This leads to
Ka = 23, Ka

max = 31, Kf = 11 and Kf
max = 15, as marked in Figures 6.5(a) and 6.5(b).

For the KL error bounds, we use the upper bound ξUB := 5.2 such that |ξq,k| > ξUB with a
probability of less than 2.5 · 10−7.

As mentioned, we use the same space for the second and third dual space, X̃
(2)
N = X̃

(3)
N , and

solve only the additional dual problem (4.10). Figure 6.6(a) shows the decay of the maximal
relative error bounds of the primal and dual solutions u and p(1), and of the difference of the
additional dual solutions p(2)−p(3) that is used for the construction of the variance. In Figure
6.6(b) we provide the decay of the error bounds of the desired outputs. We omit the δKL-
parts since they do not decrease with the number of basis functions and could therefore have a
negative effect on the basis selection procedure. It turns out that (N, Ñ (1), Ñ (2)) = (16, 11, 16)
is sufficient for relative error below the tolerance for all outputs.

On our reference system, a 3.06 GHz Intel Core 2 Duo processor, 4 GB RAM, we used
Comsol 3.5.0.608 (3.5a) to construct and store the FE system components and Matlab 7.8.0
(R2009a) to implement and run both the detailed and reduced model. For the solutions,
we used the Matlab mldivide function which automatically adapts to the structure of the
system, e.g. sparsity patterns. Solving the detailed problem with N = 4841 degrees of
freedom, we needed about 0.211 seconds per sample on average whereas the reduced problem
could be solved in about 0.00603 seconds per sample, including the solution of all primal
and dual problems and the evaluation of all outputs and error bounds. Hence, we gain a
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Figure 6.5. Eigenvalues and truncation values of the Karhunen-Loève expansions
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Figure 6.6. Greedy error decay

speedup by a factor of about 35. To show that the number of reduced basis functions is
independent of the degrees of freedom of the detailed problem, we started another Greedy
algorithm using N = 19121. Again, the error bounds fell below the desired error tolerance
for (N, Ñ (1), Ñ (2)) = (16, 11, 16). On average, the computation of the larger detailed problem
needed about 0.837 seconds per sample. Since the size of the reduced system did not change,
we gain a speedup by a factor greater than 138.

The result of the reduced computation is shown in Figure 6.7(a). For each parameter of
a test set of 30 logarithmically distributed values of µ, we evaluated the output s, its mean,
and the variance V using 10000 random samples. In Figure 6.7(a), we plotted the mean and
standard deviation of sN,K as well as 100 random samples for each parameter of the test set.

In Figure 6.8, we show the errors and error bounds for the output s for two values of µ
and 200 random samples each. The samples are sorted according to ∆s. We see that the error
bound is effective. The average effectivity ∆s/|s− sN,K | is about 200. We furthermore sepa-
rated the error bound in its different parts. One can see that the δKL-part hardly varies since
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Figure 6.8. Error bound ∆s, splitted in its δKL- and ∆-part, and actual output error for 200 random
samples and two values of µ

it is not directly dependent on the current random realization. While for µ = 0.01, αLB∆∆̃(1)

contributes most to ∆s, the δKL-parts contribute most for µ = 1.00. Hence, adaptive choices
of Ka and Kf could improve the error bounds and reduce the run-time and will be a part of
future work.

In Figure 6.9 we compare our variance evaluation method and corresponding error bounds
with two other evaluation procedures based upon the use of the sample variance E[(sN,K)2]−
(ENK)2. For the “direct” bound, we follow (3.19) and replace s by (s− sN,K) + sN,K which
can be estimated by ∆s + |sN,K |. Analogously, we obtain |M1| ≤ ∆M1 + |M1,NK | which leads
us to the “direct” variance error bound

|V− VNK | ≤ E[∆s(∆s + 2|sN,K |)] + ∆M1(∆M1 + 2|M1,NK |).

For the “sophisticated” bound, we refer to [4]. We see that our variance approximations and
the corresponding error estimates give in fact sharper bounds. The direct error bound is about
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Figure 6.9. Different relative error bounds for variance V(µ)

160 times larger, the sophisticated error bound still is about 12 times larger in average.

Compared to the deterministic problems, the effectivity bound η(µ, ω) from (3.12) contains
an additional factor of the form (1+c)/(1−c), where c is given by (3.13). Figure 6.7(b) shows
the average factor, its standard deviation, and 100 random samples for each parameter of the
test set. We can see that the additional factor takes an average value of about 2.4. Hence,
compared to the deterministic case, the effectivity upper bound increases only moderately in
most cases. However there are cases where c(µ, ω) ≈ 1 and the effectivity bound becomes
inappropriate or, for c(µ, ω) > 1, even nonexistent. This can be avoided using larger K.

7. Conclusions and outlook. We presented a general reduced basis framework for lin-
ear coercive parametric partial differential equations with stochastic influences. Efficient a-
posteriori error bounds have been developed for the state and output functionals, also dealing
with additional KL-truncation errors. We furthermore introduced a new error analysis for
special quadratic and statistical outputs such as second moment and variance using addi-
tional non-standard dual problems. We showed that parts of the KL-truncation errors vanish
for such outputs.

The current framework can easily be adapted to non-coercive inf-sup stable problems.
Furthermore, we already extended the work on quadratically nonlinear problems [19]. Addi-
tionally, it is planned to include adaptive choices of K and N in the online stage to improve
the error bounds.
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