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Abstract. Reduced basis methods are an efficient tool for significaptlycing the computational complexity
of solving parametrized partial differential equations.igbrally introduced for elliptic equations, they have been
generalized during the last decade to various types otielliparabolic and hyperbolic systems. In this article, we
extend the reduction technique to parametrized variatimgjualities. Firstly, we propose a reduced basis varia-
tional inequality scheme in a saddle-point form and proveterice and uniqueness of the solution. We state some
elementary analytical properties of the scheme such as negtiod of solutions, a-priori stability with respect to
the data and Lipschitz-continuity with respect to the pataense Secondly, we provide rigorous a-posteriori error
bounds. An offline/online decomposition guarantees an efficassembling of the reduced scheme, which can be
solved by constrained quadratic programming. The reductiberse is applied to a one-dimensional obstacle prob-
lem with a two-dimensional parameter space. The numericaltsesenfirm the theoretical ones and demonstrate
the efficiency of the reduction technique.
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1. Introduction. We consider efficient solution strategies for parametrizadational
inequalities. Such problems can be obtained from variatifermulations with additional
constraints, e.g., for any given paramgtee P C R? we are interested in finding a solution
u(p) of the following minimization problem:

1
L alu,u; p) = flu; 1) (1.1)
for X(u) C V a closed convex nonempty set in a separable Hilbert space-,-; 1) a
symmetric, continuous and coercive bilinear form, gitd ) a continuous linear form. For
X (p) = V the above is a standard unconstrained variational opttioizproblem. Then,
the first order optimality condition yields a simple linegis®em of equations for the solution
u(w). However, if X (p) is not a subspace df, the solution cannot be obtained from a
simple system of equations. Quite often, the convex set eacthbracterized in terms of a
dual coneM. Then (1.1) can be reformulated as a saddle point formulatibich can be
solved by primal-dual active set methods. For a backgrounehaational optimization with
constraints and some applications, we refer to the monbgrgp 10, 12, 13, 23, 25, 27] and
the references therein. Assume now that the above problestirasolved in a multi-query or
real-time context, i.e., the computation of the solutioreiguired to be extremely fast and/or
has to be done for many parameters. For standard PDEs irtioagbform, reduced basis
methods [3, 35] provide efficient tools for problem-speaifimensionality reduction. More
precisely, instead of the full problem, which is typicalhfinite or rather high-dimensional,
a low-dimensional model is generated which can consequbatbkolved significantly faster
for varying parameters. Many types of partial differenéquations have been treated by this
reduction technique during the last decade ranging froiptiell[35] to parabolic [14, 33]
and hyperbolic equations [16, 17]. So far, all results astricted to equation systems and
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no additional inequality constraints are taken into actoulve are interested in adapting
these techniques to a class of variational inequality gl To start we reformulate our
variational inequality as a saddle-point problem that h@ses similar components as the
Stokes system which has already been successfully tredttededuced basis methods, e.g.,
[34, 32]. We refer to [7, 29] for an abstract saddle-poinbtiyeand the important role of the

supremizer operator.

The article is structured as follows. In the next section give the elementary notation
and definitions of the full and reduced problem in a saddietgormulation, its discrete for-
mulation and an offline/online decomposition. In Sectiom8,show consistency, bounded-
ness with respect to the data and Lipschitz-continuity wagpect to the parameter. Section 4
is devoted to rigorous a-posteriori error estimation baseequality and inequality residuals.
We comment in Section 5 on various computational aspecfiite element discretizations
with biorthogonal dual bases for the constraints. Finall{section 6, we consider as a model
problem a one-dimensional obstacle-type inequality. Nicakresults illustrate the perfor-
mance of the proposed method and the influence of the twordiimeal parameter space.

2. Reduced basis (RB) formulation of a variational inequaliy. This section is de-
voted to the derivation of a general RB formulation for a dtd variational inequality.

2.1. Notations. We briefly introduce the notation and assumptions which kéllused
throughout the paper. By, W we denote two separable Hilbert spaces with inner products
)y (-» )y and induced norm§-||,, , ||-||;,- The setM C W is assumed to be a closed
convex cone. We assumg-, -; 1) to be a uniformly continuous and elliptic bilinear form
onV x Vforall u € P, whereP C RP,p € N is the parameter domain. More precisely,
the parameter-dependent coercivitfy) and continuityy, () constants can be bounded for
allp € Pby0 < @ < a(p) andv,(n) < 7, < oo, respectively. Moreover, we assume
thata(-,-; p) is Lipschitz-continuous with respect jo, i.e., for a suitable constadt, > 0
we have|a(u, v; ) — a(u,v; )| < La ||ully |[v]ly ([ — /|| for all p, " € Pou,v € V.
Here|| - || denotes a norm oR?, e.g., the Euclidean norm. We assume that the parameter-
dependent linear formp(-; u) € V', g(-; u) € W' are uniformly continuous i, i.e., there
exist constantg¢, 7, > 0 with || f(-; )|y, < 37 and|lg(; p)|ly < 74 for all p € P.
Furthermore f(-; u) andg(-; u) are supposed to be Lipschitz-continuous with respegt, to
i.e., for suitable constants;, L, > 0 it holds || f(-;u) — f(;')|lv: < Ly||p — p'|| and
(s 1) —g (5 1) |lwr < Ly|p—p' || forall i, g’ € P. Finally, b(-, -) stands for a continuous
bilinear form onV' x W with continuity constant;, > 0, which is inf-sup stable, i.e., there
exists@ > 0 such that

inf sup b(v. )

— > 03>0.
neW yev ”vHV ”n”W

We assume a separable parameter-dependende, inu), f(-; ) andg(-; ), i.e., the ex-
istence of parameter-dependent scalar functtihhs P — R for x € {a, f,g}, and of
parameter-independent components, i.e., continuougehiliformsa?(-, -) and linear func-
tionals f9(-) € V', g%(-) € W' forq = 1,...,Q, for reasonably small),,Q,Q,, such
that

Q.

CL(’LL,’U;/J,) = Zeg(“’)aq(uav)a (21)
(gf Q.q

flospm) = 04w '), glnipm) =Y 02(mw)g"(n)- (2.2)
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As we will see, the cas@,, = 1 is of special interest. In that situation, we haye, v; ) =

0L (p)at(u,v) with 61 (n) > 0 andal(-,-) being symmetric and coercive. Moreover, the
coercivity constanty,: and the continuity constant,: of the bilinear forma!(-,-) satisfy
g1 /v = a(p)/v.(p), and the ratio is independent af We then introduce the operators
A:V' - VandB,B': W — V by

a'(Alv) =L(v), ve, a'(B'n,v) = b(v,n) = (Bn,v)y, veV.

2.2. Detailed problem definition. We continue with the full parametrized variational
problem in a saddle point formulation which is to be appraatied by our RB-scheme.

DEFINITION 2.1 (Variational Saddle Point Problesi®(y)).

Givenp € P, find (u(p), A()) € V x M such that

a(u(p), v; p) + b(v, AM(p)) = f(v; ), veV
blu(p),n —A(p)) < gn—Ap);p), neM.

This formulation can be obtained from (1.1) by the specialcttiral assumptioX (p) =
{veV|blv,n) < g(n;u),n € M}. The proofs of existence and uniqueness are well-known,
see, e.g., [12]. For completeness, we give them in the appeddc. A.4. A notable and
frequently used property of the solutién(u), A()) is

blu(p), A(p)) = g(A(p); 1), (2:3)

which is obtained by using = 0 andn = 2\(u) as test functions it P(w). Note that
the problemSP(u) can be the analytical problem in infinite dimensional spaxebe dis-
cretized problem in finite dimensional spaces of high dirmms In our numerical tests,
we use conforming finite elements for and for W, which results in spaces of the same
dimension. In the case of finite dimensional spates= span{«;,i = 1,..., Hy} and
W = span{x;,i = 1,..., Hy }, we denote byH, and Hy, the dimension o and W,
respectively.

2.3. Reduced problem definition. We now derive from the saddle point formulation
of Def. 2.1 a corresponding RB-method. L&t= {u,,...,uy } C P denote a finite
parameter sample set &fs parameters an€u(u;), A(p;)) € V x M the corresponding
solutions of SP(u,), the so calledsnapshots Define Wy := span{\(u,)}Ys C W as

a reduced basis space with dimensigy, := dim Wy and basis{gi}fV:V{. Then, My =
{Eévjl ai ()| > 0} is a closed convex cone and in particuldy C M. This choice

implies in particular thak(u,) € My foralli = 1,..., Ng. Note that we do not explicitly
require linear independence of théu,), but also accept possibly linearly dependent snap-
shots. In this case, elementsmpE My may have multiple different equivalent expansions
as linear combination of snapshots.
For formulating the reduced scheme, it remains to give a itiefinof the reduced space
Vi for the primal variable. For this space, we will considefetiént choices.
1. Pure snapshots: The naive choice for the reduced priraaksp given by

Vi = span{u(p,)}5 C V. (2.4)
2. Enrichment by supremizers: This choice is motivated iy [3

V]£,2) = span{u(ui),ij}NS’NW cV (2.5)

ij=1
3



3. Enrichment by a-priori solutions: @, = 1, an attractive alternative option is

Vi3 = span{u(p,), A9 c v (2.6)

i,q=1

4. Enrichment by unconstrained solutions@if = 1, we can also set
V= spanfu(p,), @(p,) ) V2N c v, (2.7)

whereu(p,) € V satisfiesu(a(p;), v; ;) = f(o; ), v € V.

We neglect quite often the upper ind@y, | = 1,2, 3,4, setNy := dim Vy and denote the
basis ofVy by {goi}i]i"l. We point out that the subscript does not stand for the dimension,
but only indicates that the quantity is connected teducedproblem. We have by construc-
tion dim Wy < Ng. In the following, we use the following notation: given a t@cw,
we denote its coefficient vectors iy when dealing with the reduced basis anduoyhen
considering its representation in the high (finite-)dimenal spaces. Moreover from time to
time, we omit theu-dependence, e.g., in the proof of Prop. 3.2.

The goal of a reduced basis scheme is the computation of péeaaiependent solutions
un(p) € Vi, An () € Wi by solving a saddle point problem of low complexity.

DEFINITION 2.2 (Reduced Basis Saddle Point Problgiy (1)).

For p € P find (uny (), An (1)) € Vv x My such that

a(un(p),vn; p) +o(on, An (i) = f(un; ), vy €V
blun(p),nn — AN () < gy — An(p); ), nn € My.

The following proposition shows that the pairit®, Wy ) inherits its inf-sup constant
from the pairing(V, W), and thusS Py (u) has a unique solution fdry = V]E,i), i =2,3,4.
Therefore, these cases are of special interest.

PrROPOSITION2.3 (Existence and Uniqueness$Py (w)). If the reduced primal space
Vi is chosen as in2.5}12.7), then the pairing(Vy, Wy) is inf-sup stable with inf-sup
constantsy > G for Vy = V]5,2) andfy > B/ aq/va for Vy = V]f,i), 1=3,4.

Proof We consider the casgy = V,” and the case¥y = V.» or vy = V"
separately. LeVy = VZSIQ), then by constructio®n € Vi for all ny € Wy and thus

b B
By := inf sup —(UN’nN) = inf sup {n, Bin)y

weWn vyevy [onlly vl mveWn ovevy llonlly I llu
Bnn, B Bn, B B
mf BBy e BBy e @By g
v eWn || Binlly v lly — new [|Bally [nllw — neW vev [lvlly Inlly
If Vy = VJE,?’) and@, = 1, we obtain by the fact that«(p;), A(,)) solvesSP(u,)

a' (B'A(ky),v) = b(v, Mk;) = b (p;)a" (u(p;), v) — f (o3 ;).

Then, the definition (2.6) and the decomposition (2.2) yibkdt

Qr
B'A(;) = (e;mi)u(u,») -3 e}(m)qu) e vy,
qg=1
If Vy = VY andQ, = 1, we get thatB' \(p,) € V") since

at(B'A (1), v) = b(v, A1) = 0 (k)" (u(p;), 0) — 05 (p;)at (@(p;), v).
4



By linearity, this implies thatB'ny € V(i), 1 = 3,4 for all ny € Wy. Then, the norm

equivalence ol gives

b 1 B!

By:= inf  sup blown) inf  sup a (on, Bin)

neWn onevy [onlly vl aveWn oyevy lonlly Innllw

aa ra' (vn, B'nw) agia' (B'ny, B'ny)
> inf sup = in
INEW eV Var(on,on) Innlly — weWs \/al(Biny, Bloy) [y |l
B! N/ b S Ve
g1 inf  sup o’ (v, Bnw) > VYT i sup (v, ) 5.
nNEWN vEV ,/al ,U v ”nNHW m NINEWN yeV HU”V HUN”W \/'YT

0

No stability statement can be given for the chotq%}) (2.4). One can even explicitly
construct pathological cases, where the uniqueness isafidt VAssume a simple example
of Ng =1, u; € P andg(-;u,) = 0. Then, the solutions(x,), A(p,) areb-orthogonal,
i.e., b(u(py), A(peq)) = 0, which is obtained from (2.3). If we assume a definition of re-
duced spaces without supremizer, i¥éy, := span{u(u;)}, My = {sA\(pt;),s € R{} C
Wi = span{A(u4)}, this implies two conceptional problems: First, the saloticy (z;)
of SPx () is not constrained in any way, hence we solve an ordinary nstcained PDE.
Second, we lose the uniqueness of solutions, due to the Fttiednf-sup stability. Any
(un, An) = (u(py), sA\(py)) for s € RY is a solution ofS Py (p,). Still, in practice the
choice (2.4) may lead to an inf-sup stable scheme, but theupfstability constants can
possibly be arbitrarily small.

REMARK 2.4. If Q, = 1, the choiceq2.6) and (2.7) are possibly computationally
attractive alternatives t¢2.5). Firstly in the case ofVyy > Q, the Qs a-priori solutions
for the enrichment in(2.6) are considerably less costly than th&; supremizer functions
in (2.5). Secondly, the constrained solution is often calculatet@tims of an iterative solver
which uses as initial guess the soluti@fy,) of the unconstrained system. Thus no additional
cost at all is then required i(2.7). Itis easy to see that(u;) = u(u;) — a; B* A (u;) € Vlff’)
with ;' := 61 (p,) and thusV\Y c V¥, Moreover, if additionallya (-, -) = o (-, -}y with
o > 0,thenB = ¢B' and BA(i;) € VJS,B) and thusV](Vz) C VJS,S), and the dimension is at
MOStNg + Q.

2.4. Algebraic formulation. In order to formulate a discrete matrix inequality problem,
we introduce matrices and vectors

An(w) = (alps, 05 1)1, € RNVNY, (2.8)
By = (b(pi, Apy)), 0y € RNV NS, (2.9)
Inlw) = (f(%u))NV eRM, (2.10)
In (1) = (9(A () )5 € RYS. (2.11)

We then obtain the following algebraic form 6Py (p):

LEMMA 2.5 (Algebraic Reduced Basis Saddle Point Prob$\Py (1)). The solu-
tion (un(p), An(w)) of the reduced saddle point proble$tPy (1) expanded as  (pt)
SV Tnips and Ay () == SN Ay () wherety (p) = (uyi)Y4 € RNV and
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Av(p) = (O, Z) 5, € RVs is equivalently characterized by the matrix inequalityteys

An (p)un(p) + BNAn(p) = fn(w) (2.12)
An(p) >0 (2.13)

n (1) — Bylin (1) > 0 (2.14)

v (1) (Gx (1) — Bytn () =0 (2.15)

Proof. (2.12)—(2.14) is easy to verify in terms of the definitiortieé reduced dual cone
My. By settingn = An (@) £ Ay, iAn(p;), we get the component-wise complementarity
condition

_ T .
)‘N,i(gN(u’)iBNﬂN(p‘))i =0, i=1,...,Ng, (216)

where(gy (1) — BayTn(p)); is thei-th coefficient of the vectoy (i) — By (1) and
thus (2.15)0

We point out thati () is unique, whereas the uniqueness\@f(x) cannot be guaran-
teed due to the possible linear dependence of the snapsfiots However, all solutions of
the coefficient vectoh (1) represent the same solution functidg (p) € My.

2.5. Offline/online decomposition. The parameter-dependencew, -; ), f(-; ) and
g(+; ) introduced in the previous section transfers into an offtinkne decomposition of
DSPy(p) as follows:

Offline-phase. We compute the parameter-independent matrices

Ay = (a"(cpgwpz)),] JERMNV g =1...Q,
By = (b, AMmy))), 77 € RNV,

I = (e ))1 16RNV, g=1,...,Q;

Th = (0 \m)isy €RYS, g=1,...,Q,.

Online-phase. We assemble the parameter-dependent matrices and righsiuhes

Qg
qg=1

and solve the discrete reduced problBx Py (). In particular, we remark that all matrices
and vectors involved in the online-phase are low-dimeradiorlence, all operations in the
online-phase are independent of the dimension¥,df. Typically, in practice we have
Hy,Hy > Ny, Nw, Ng, hence the reduced online-phase will be considerablyrfésie
the high-dimensional problem solution.

3. Theoretical results. In this section, we comment on some analytical aspects, lgame
a consistency result, stability and Lipschitz-continuity

3.1. Reproduction of solutions. Here we state a consistency result which shows that
detailed solutions are recovered by the reduced scheme idiresponding snapshots are
contained in the reduced spaces. This could also be foretuka$ a corollary of the a-
posteriori error analysis of Section 4, but a direct proaohe elegant and elementary.
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PropPosITION3.1 (Reproduction of Solutions)Let Vi be given by2.5) or (2.6) or
(2.7). If for somep € P we haveu(u) € Vy and\(p) € My, thenuy(p) = u(p) and
An (1) = Ap).

Proof. Forvy € Vi we directly obtain

a(u(p),vn; ) + b(un, M) = f(onsp)
asVy C V and(u(p), A(pe)) solvesSP(p). Similarly, forny € My we directly obtain

b(u(p),ny — M) < gy — A(p); p)

asMy C M and(u(p), A(p)) solvesSP (). Consequently(u(ge), A(pe)) solvesS P ().
Due to the uniqueness from Prop. 2.3, we conclude(ihgi), \(1t)) = (un (), An (). O

3.2. BoundednessNext, we show that the solutions are bounded by the dataifursct
of the saddle point problem:

ProOPOSITION3.2 (A-priori Stability Estimates).Let Vy = VJS,Z), i = 2,3,4 given
by (2.5112.7). Then, the solutiofuy (xt), Ax () of SPx(pe) is uniformly bounded with
respect tou:

1 — '_Ya _ 1 _ '_Va _ ? '_Yg_f _
Wy < — (7 + 225, ) 41/ = (5, + 225,) +22% —.5,, 31

A

()l < %N s + FuTa) = . (3.2)

Proof. We start with the proof of (3.2). A¥-, ) is inf-sup stable oy x Wy, andVy
is finite dimensional, there existag, € Vi such that

B oy Iy ANl < b(oay, An) = foay) — alun, vay)
< s loaw Iy +a llun iy lloanlly
where the last inequality follows from the uniform contityuf f(-; 1) anda(-, -; ). Hence
r .
ANl < 2= (3 +Ta lunlly) (3.3)
Bn
and (3.2) follows as soon as (3.1) is established. The comepliarity (2.3) also holds for the
reduced solution, i.eb(uy, Ax) = g(An). In terms of coercivity and continuity, we get
allunlly < a(un,un) = f(un) = b(uy, Ay)
= f(un) = 9(An) <37 lunlly + 3 AN Iy -
Inserting (3.3) and rearranging the terms, we conclude with
2 1/ ;)’g'?a 7g;Yf
— — < 0.
funt? = 5 (3 + 22¢) vl - 22 <0
—_— —— N——
=:p =q

We observe that, ¢ > 0, the quadratic equatiar? — pz — ¢ = 0 has real roots; < x5 and
|un|ly € [21,22] such that we finally obtain (3.1):

p _
+ — +q="Yu-

p
< = -
||U’N||V > T2 9 4



3.3. Lipschitz-continuity. In this section, we are interested in some regularity result
of the solutions with respect to the parameter. As we willgHdpschitz-continuity of the
reduced solutions holds under the assumption of Lipsaut#inuity of the data with respect
to .

PROPOSITIONS3.3 (Lipschitz-continuity with respect {@). Let Vi be given by2.5)or
(2.6)or (2.7). Then, the solutiotfux (1), An () of SPy(p) is Lipschitz-continuous with
respect tou, i.e., for all i, 1’ holds

Jun () = un ()l < Lullp — /], (3.4)
AN (1) = AN (1) [l < Lallpe — |, (3.5)

with constants independent af 1’

1
L,:=Cy+ \/m, Ly:= By (Lf + LaVu + YaLlu) ;

1 (Lg7a _ L, _
=5z L Loy 5 =z L LaYu) -

C, 2a<ﬁN+f+ 7) Cy aﬁN(f+ Yu)

HereL,, Ly, L, are the Lipschitz-constants ef-, -; i), f(; ) andg(-; u), andy,, is defined

by (3.1).

Proof. We assumgu, u’ € P and introduce some abbreviations (with slight abuse of
notation) to facilitate the readabilityu := un(p), v’ = un(p’), A = An(p), N =
AN(H/);Q('; ) = a('a ';/J')aa/('v ) = a’('v ';M/),f(') = f(’/'l')af/() = f(';“/)ag(') =
g(; ), g'(-) :==g(-; ’). Then, obviously we have

a(u,v) +b(v,\) = f(v), veVy, (3.6)
a'(u',v) +bv,\) = f'(v), veVy. (3.7)

Due to the inf-sup stability foh — ' € Wy there exists a € Vi with

BN l[vlly A = Ny < b(v, A = X') =b(v,A) = bv, \)
= f(’U) - a(uvv) - f/(U) + a’(u',v) + a(u/a U) - a(ul7v)
< Ly lvlly e = w1+ La llW'lly vl e =0+ a llw =l o]l -

Using the boundedness of due to Prop. 3.2, we obtain

1 _ _
IA =Nl < 2= ((Lf + LaVu) e = #'l| + Fa lu = u'l],)- (3:8)
B

Now, the inequality of the saddle point problem yields
b(u—u', N —X) =blu, N — ) +b(u', A = \)
<SgN =N +g' A=XN) < Lg [N = Ay [l — #/]l-
Moreover, we find fow € Vy
a(u —u',v) = a(u,v) —a(u,v)
= —b(v,\) + f(v) —a(u,v) + d' (v, v) + bv,\) — f'(v)

<b(w, N =) + Ly [olly [l = 'l + La [y Dol [l — /]l
8



Then, the coercivity in combination with= « — v’ guarantees

64Hufu'||%, <a(u—u',u—u)
< Lo [|A = My [l = /]l
Ly llu =l I = 'l + La [0/l lu—ally e = /]l

Using the boundedness of this simplifies to
2 1 _
lu=lly < =llp = WL 1IN = My + (Ly + Lau) llu = 'ly)
Inserting (3.8) and rearranging the terms gives

2 1 Lg:)/a
u—u'ly, — =
=y - & (L

I +Lm) e = /) ot =

Lg
— | =2 (Ly + Lau —|*<o.
(4 2w ) = )
We argue as in the proof of Prop. 3.2: using that the left hatelis of the formz? —2C1 || —
p'||z — Co||p — p'||* and has real roots; < x», we conclude thatu — «/||,, < z» which
proves (3.4). Inserting the last result in (3.8) finally gi\8.5).0

4. A-posteriori error analysis. In this section, we focus on the efficient control of the
reduction error by a-posteriori error estimators. Adaptiechniques based on a-posteriori
error estimators play an important role in enhancing théoperance of finite element dis-
cretizations, see, e.g., the monographs [1, 19, 31, 36] lamdeferences therein. For ab-
stract variational inequalities in the context of finiteraknts, we refer to [2, 5, 28], whereas
obstacle-type problems are considered in [6, 21, 24, 3030 At RB-methods, a-posteriori
error bounds can be applied in adaptive basis enrichmeetrse$, such as the Greedy algo-
rithm [37, 9, 15, 4].

4.1. Preliminaries. We start by introducing suitable functionals, which chéeeze the
error of the reduced solution. First, we define the equadisjdual-(-; ) € V'’ by

r(v: ) = f(v3 1) — alun (), v; ) — Do, Ay (), v E V. (4.1)

Next, we quantify the inequality error by an inequality te&ls(-; u) € W’ with
s(n;p) == b(un(p),n) —g(nip), neWw. (4.2)

The residuat(-; u) represents the right hand side of the error-equation, i.e.,
a(u(p) —un(p),v;p) +b(v, () — An(p)) =r(vip), veEV. (4.3)

Equality and inequality residuals can be quantified@nand My by
rlon; ) =0, vy €Vy and s(ny;p) <0, ny € My. (4.4)

Moreover, we point out that for the special case:@f() = u(p) andAy () = M) we
haver(v;u) = 0 ands(n; u) < 0 forallv € V,nn € M. Hence, the deviation from this
equality/inequality gives information about the error aresds to be controlled. In order to
quantify the error, we first introduce the Riesz-repressnig() € V,ns(pn) € W of the
residuals

<U7UT(/1,)>V = T(U§M)a S ‘/7 <7]7779(/1’)>W = 5(777#)7 n € W



Additionally, we denotej;(u) € W to be the Riesz-representer of the detailed inequality
functional defined by

(M1s (), My = b(u(p),n) — g(m; p), n€W. (4.5)
We require a projection : W — M which we assume to be an orthogonal projection with
respect to a scalar-produgt-)  on W endowed with the induced norim||» := /(n,n),.

being equivalent to thé/-norm viac,||nllw < ||nll= < Cx|nllw for suitable constants
0 < ¢ < C,. Moreover, we assume thatsatisfies the following properties:

(n—n(n),n" )y <0, neW,n eM, (4.6)
(1) =0, 4.7)
(n.7s), <0, neM. (4.8)

For example, these conditions are met by standard orthbgwogctions with(-,-) =
(-,-)w - Other problem specific choices will be given in Section 5wieer, note that such
a projection operator will in general be non-linear. Weestatonnection between the primal
and dual error, which will be used for the a-posteriori egstimators.

LEMMA 4.1 (Primal/Dual Error Relation)or anyu € P the dual error can be bounded
by the primal error as

M) = An ()l < % (G )llys +va(p) [Julp) = un ()lly) 5 (4.9)

Proof. The inf-sup stability ob(-, ) guarantees the existence ofarc V,v # 0 such
that with (4.3)
Bllvlly A = Anlly < bv, A = An) =r(v) + alun — u,v)
<ol lIrlly: +yallolly llu —unlly
and the result followdl

4.2. A-posteriori error estimators. We can now present a-posteriori error bounds.
PrRoOPOSITION4.2 (Upper A-Posteriori Error Boundjror any p we define the residual
estimators

or(p) = [lrCs)llve = lloe(p)llv (4.10)
Gs1 () == || (ns ()l wr (4.11)
ds2(p) := (An (), m(ns (1)) - (4.12)

Then, the reduced basis errors can be bounded by

[u(pe) —un(p)lly < Au(p) = c1(p) + Ver(p)? + c2(p), (4.13)

IA() = Aw ()l < Ax(p) = % (1) + (@A), (414)

with constants

er(p) = 1 (5r(u)+(ww>’ ea(p) = 1 (651(H)5r(ﬂ)+552(u)>.




Proof. We note that (4.14) is a direct consequence of (4.13) a®). (Hence, it remains
to show (4.13). Using coercivity, the error-equation (48), A\x — \) < g(Ax — A), the
definitions of the residuals and, n, — 7(n))y, < 0lead to

allu — uN||%, <a(u—un,u—uyny)=r(u—uny)—blu—un,A— An)
<6 ||lu—unlly +0(u, An — X) + b(un, A — An)
<O llu—unlly +9(An = A) +5(A = An) + g(A = An)
=6 lu—unlly + A7)y + A ms = 7(0s))
<o llu—unlly + A = An, 7(10s)) g + 052
<0 lu —unlly + A = Anllwdst + dsa-

Inserting (4.9) yields

1 8s51%a 1 (6510,
o=l = 2 (6, + 222 ) Ju = ully - 2 (257 46 <.

Using the same argumentation as in previous proofs, i.emndiag the error by the largest
root of the corresponding quadratic polynomial, gives therid (4.13)0

We briefly comment on the different terms in the upper bound.the ideal case of
un(p) = u(p), An(p) = A(p) we obtaind,(p) = ds1(p) = ds2(p) = 0 by (4.7).
Then, the error bounds also yield, (1) = Ax(pn) = 0, identifying exact approximation
a-posteriori, i.e., in the online-phase.

Let us assume an unconstrained casgfp) = 0 andb(uy (i), n) < g(n; ) for all
n € M. Then, itis easy to see théf; (1) = ds2(p) = 0, and we perfectly reproduce the

tight a-posteriori bound for elliptic equations of [33k, (1) = %

Let us now comment on a difference of the above procedure tefRB estimation for
the Stokes problem [32]. There, the resids@ 1) is involved in an equality constraint, and
hence, the deviation can simply be computed by takKisig,,, as an error estimator compo-
nent. In our case we cannot do that. We obviously would ctiyrpenalize ifs(n; p) > 0 for
somen € M as desired, but we would also penaliZe; ;1) < 0 which is not necessary. Our
approach involving the projection operator is one way ofqadéely measuring the reduced
basis inequality violation.

An interesting fact is that the equality residual can be plekto vanish in certain situ-
ations.

PropPosITION4.3 (Vanishing Equality Residuall.et @, = 1 and the reduced primal
spaceVy be chosen ag.6). Then, we obtaim(-; u) = 0.

Proof. Recallinga(-,;u) = 61(u)a'(-,-), then the definition of the equality residual
and of the operatord and B! yield

Qy
r(vi 1) = 3 04 ()a’ (AF7 ) — O3 ()a (un (). ) — a* (B'An (). v) = a'(z,0)

with z := Z;;):fl 0% () Af? — 03 (p)un(p) — B'An (1) € V. Asr(-; ) vanishes oV,
we obtain

0=r(zp) =a'(z21) > a(p) =

Thereforez = 0, and consequently(v) = a'(0,v) = 0,v € V. O
11



The residuals do not only provide an upper bound for the émrBrop. 4.2 but also yield
lower bounds.

PROPOSITION4.4 (Lower A-Posteriori Error Bounds)For any i € P the following
lower bounds for the reduction error hold:

G (1) < va(p) llu(p) — un ()l + 76 M) = An ()l » (4.15)
S () < 7 ) — ()l (4.16)
o) < 2T ) — ()l (@.17)

Proof. Thanks to the error-equation (4.3), we obtain with the Riepresentation, €
VofreV’

Ya() lw = unlly lvrlly + % A = Anllw lvrlly 2 a(u = un, ve) + b(or, A = An)
=r(vr) = (U, vp)y = ”vr”%/v
which gives (4.15).

We note that orthogonal projections on convex sets havechifisconstant one. Thus
(4.7) and the norm-equivalence dhguarantee

5 1 5 1 N C -
ds1 = [|m(ns) — 7(7s)[lw < ;||W(n5) =7 (7s)l= < ?H”s - nus < f”ns - USHW'
U U

T

For the last term we continue with

_ b(un,n) —g(n) —b(u,n) +g(n bluy —u,n
ns — isllw = sup ( ) —9(n) —b(u,n) +9(n) _ sup ( )
new HUHW new ||77||W
< sup Dolluw — ullv lInllw < wllun —ullv (4.18)
new HUHW

from which we can conclude (4.16).

The bound (4.17) follows from (4.16) and the observation #ha< 7, ||7(1,)||w. O

REMARK 4.5. A closer look on the lower and upper bounds given in Propmsii4.4
and 4.2 reveals a gap. In the upper bound the tgffy; enters, whereas in the lower bound
the termds, appears. This results from the variational inequality isett

REMARK 4.6. We point out that the lower bounds strongly depend on thetantss:;
andC. If chosing(-, ) := (-, -); these are independent of the discretization= ¢, = 1,
but then the evaluation of has the same complexity as the original problem. To reduee th
computational cost, alternative scalar products can beesteld, but therC /¢, possibly
depends on the high dimensidfy;, and is possibly quite large. In that case, the lower
bounds are not very informative.

5. Implementational aspects.In this section, we comment on computational aspects
that are required for the realization of the reduced schardeoar experiments. Quite often
W is the dual space of a finite dimensioriédlwhich simplifies some computations, as the
dimensions coincide, and the inner products are related.

5.1. Solution of the detailed and reduced problem.In practice it is quite common
to choose the basis 6% and the bilinear fornb so that the matrix associated &0, -) has
a simple diagonal form, this property is often referred asthbgonality. This makes the

12



use of a primal-dual active set strategy for the high-dirfmrad problem associated with the
shapshots computationally attractive cf. [18, 20, 26].

For the reduced problem (2.12-2.15), different solverdaaginterior point methods,
SQP and penalty technigques can be applied. Here, we do nateex special biorthogo-
nalization of the basis oFy with respect to the vectors spannind,. Hence, we accept
that the matrixB y is now possibly dense. It is easy to show that the solutio? 8%y (1)
is equivalent to the solution of a constrained convex quadogptimization problem, cf. the
variational minimization problem (1.1).

REMARK 5.1 (Discrete Quadratic PrograiQ Py (1)). The solution vectorsuy (p),
An () of DS Py () are equivalently obtained as solution of a constrained eamuadratic
optimization problem. In particulaf (1) is the unique minimizer of

R e _ — _
min o} Ay (1)ox — v (1) 0n (5.1)
st Byoy <ax(w), (5.2)

and Ay (p) is a non-negative vector of Lagrange multipliers in the optin, i.e., Axuy +
By = fyandiy, =0 if (Byiiny — gy )i < 0.

Hence, any off-the-shelf quadratic optimization routirséng Lagrange multipliers can
be used to computéy (1) and Ay (u). Note that we did not assume linear independence of
the dual snapshots in the construction of the reduced cdmerefore, the inequality system
may have linearly dependent rows. As mentioned above, thislead to a non-unique vector
A, but a unique function y (ut).

5.2. Choice of the projection for the caséV = V’. For the special case 6% = V'
we could use the-, -),,, inner product and the corresponding orthogonal projedborithe
error estimators. Here, for computational simplicity we asdifferent projection. First, we
make some further assumptions on the problem. We suppaské/timendowed with a basis
{x:}: such that)M can be written as:

Hy
M= {Zﬁix,q 8, > o} .
i=1

For obstacle type problems this is natural to hold in thedirlement setting, sin({%}ﬂl"
can be chosen as a dual basis@@f}fivl. We then havély = Hy, =: H with the inner prod-
uct matrices\ ¥ := ((¢3,1;),,) 7.y andM" = ((xi, x;) ) —1. These matrices allow
to compute inner products and norms as required in the a&posterror bounds. For in-
stance, for any, ’ € W with coefficient vectors, ' € RY we have(n, ')y, = n" M" 1.
In the case of¥’ = V' one can even verify, that/"V' = (M")~'. If M" is anM-matrix,
which is typical for finite element discretization spacese @an even guarantee, thet"’
has non-negative entries. Details on these aspects argl@dowm Section A.2. We define
w: W — M as follows:

H
m(n) = ZL‘X% = (z)L, = ") M ), (5.3)

with [-] denoting the component-wise positive part of a vector. Aamenty € W is in
M if and only if n, =20 for all indicesi. Hence, withaz" being anM -matrix, we obtain

M"Yy > 0fory > 0. Thus fory € M, we have[M" ], = My andr(n) = n. We
13



define an alternative inner product @n by
)y =" (M), (5.4)

Symmetry, bilinearity and positive definiteness are obsipinherited from the inner product
of . One can verify, thatr from (5.3) is the orthogonal projection o with respect to
this inner product (5.4), and that it satisfies the assumpt{d.6)—(4.8). Details on this are
given in the appendix in Section A.6. Thereforecan be applied in the a-posteriori error
bounds. We note that the dense mattiX" which enters formally in the definition of is
not required to evaluat®; andd,,. By definition (4.11), (4.12), we have

5 = (™) MW, () ) MY ) AL g ()

=[BT uy (1) = g(W)]EMY BT uy (p) — g(p)]+,
5sz=>w( )M (M) MY ()4

Ay ()[BT uy (1) — g(m))+-

We observe that this equivalent representatiofy pindd . shows directly that these contri-
butions are equal to zero if the reduced solutignps) € X (p), and thus these terms can be
regarded as a measure for the violation of the constraint.

5.3. Offline/online decomposition of error estimators.We now comment on the off-
line/online decomposition of the a-posteriori error estions A, (p), Ax(p). In contrast
to other RB-methods, the error estimators are currentlyyebtfully decomposable in an
offline/online fashion due to the non-linear projection.t Barts of the required components
can be decomposed. We assume the parameter-dependemint®nsty), a(p) and the
inf-sup constanti or upper/lower bounds thereof to be available (e.g., by tifotm bounds
a4, @) Oor computable (e.g., by the successive constraint metk2l) [n the online-phase.
The remaining relevant quantities, which then require 8imefonline decomposition are the
boundss, (i), ds1 () andosa(pe).

The equality residual bound & (p) = ||7(-, u)||,. Recalling the separable parameter
representations aof(-, -; ) and G w) from (2.1), (2.2), we compute in the offline-phase
the Riesz-representer§’, v%, vi € V of the parameter-independent linear foraigy;, ),
£2(+), b(-, A(s;)) for all ¢, 7 in suitable ranges. Then, in view of the definition of the desi
(4.1) and the coefficient representations(p) = Zé\;"l Un,ipi AN () = Zf\fl AN A1),
we see that the Riesz-representative= V' of r(-; ), satisfies

Qa Ns
S TRV 3 SLTRUNELES NS SR TR
qg=11i=1 i=1 qg=1
by choosing an arbitrary enumeratiop, ..., v%" of the vectorsud’, v, v with suitable

coefficient function®?(p). In particular we sef), := Qs + Nv Q. + Ns. Therefore, in the
offline-phase, we compute the inner-product matrix

_ Qr
K, = (<v$71}§ > ) € RO xQr,
V/q,q'=1

In the online-phase we determine the vedpoiu) = (61 (n),...,09 (n))T and obtain the
desired residual norm as

6r(p) = [lvr ()l = gr(l”)T?rgr(ﬂ)
14



Here, the estimator componen{ i) is fully decomposed into an offline- and online-phase.
In particular, for any nevy, this quantity can be computed »(Q?) and is independent of
the detailed dimensiondy, or Hy .

Concerning the inequality residual componefyis and §,,, we cannot provide a full
offline/online decomposition. In particular, the onlinkegse will still depend on operations
of the dimensionalityHy;,. However, a partial decomposition is possible and in theispe
case of Subsection 5.2, we observe tBdtu, () — g(u) can be computed as a trivial
embedding of a linear operator of reduced cost and someespagh dimensional matrix
vector operations.

6. Experiments. In this section, we test our approach on some obstacle tyqages
in 1D. We consider an “elastic” rope hanging over a surfaeg thay cause contact. Our
setting is as follows: The domain = (0, 1) is discretized with a uniform mesh of step size
Az := 1/K for K € N. For the discrete function spad& we use standard conforming
nodal first order finite elements := {v € Hj()|vz,, 20,1 € P1,k =0,...,K — 1} of
dimensionHy = Hy = H := K — 1 = 200 with z;, := kAxz. We associate the basis
functiony; € V with its Lagrange node; € Q, i.e.,v;(z;) = d;5,i,j = 1,...,H. The
discretization of the Lagrange multipliers is performethgsa dual finite element basis of
W = V’. The conel is defined by:

H
M = {Znixi, n, > O}.
i=1

6.1. Two-dimensional parameter spaceln a first example, the parameter domain is
P = [10,50] x [-0.05,0.5] C R? and the parameter vector consists of a pair of parameters
p = (p1, p2). The bilinear forms: andb are given by:

a(u,v;p) := /Qu(u)(m)Vu(x) -Vou(z)dr, v,ueV
b(u,n) :=—n(u), veVneW

with v(u)(x) = pilndy 1 /9(x) + volndp j2,1)(z) Which characterizes the “elasticity” of
the rope. Here we denote by:dr the characteristic function of an internvial We use the
valuery = 30.

As we use a dual finite element basis, the maBix= (b(¢;, x;)); 1=, corresponding
to the bilinear formb(-,-) is a multiple of the identity. The right-hand side functibrfa
corresponds to gravity and is defined by:

f(o; 1) = /Q V(; wyo(@)dz, veV

wherevy(z; u) := v = —1. The obstacle is given agn; u) = Zfilgih(xi;u) forn =
Zfil n,xi With a parameter-dependent barrier function

h(z; ) = —0.2 (sin(mx) — sin(37z)) — 0.5 + pox.

Examples of solutions are represented in Fig. 6.1.

In the offline-phase, we compute the snapshots, i.e., a s#dtafled solutions of our
obstacle problem corresponding to various valuesf the parameter.. The reduced basis
{gpi}ﬁvzvl is taken as an orthonormal family dfy = 15,2) given by Eqg. (2.5). In our test,
we considerNg = 25 values ofp taken on & x 5-grid composed of uniformly distributed
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FIGURE 6.1. Snapshots and obstacles corresponding to the 1D rope eraripp: the RB-parameters are
associated to the obstacle with, values uniformly distributed ifi—0.05, 0.5] and constant elasticity.; = 30.
Bottom: the RB-parameters are associated to the elastigtty..; values uniformly distributed ifi0, 50] and fixed
obstacle forue = 0.225. Left: primal solution, Right: corresponding Lagrange tipliers. Theu snapshots are
represented with black dashed lines, the obstacles witt Bght blue lines, the\ snapshots with solid black lines.

points. Thanks to a standard singular value decomposibigtine, we extract from the family
{u(p;), BA(p;)} an orthonormal basis using the eigenvectors of the correlipg correla-

tion matrix associated to eigenvalues larger than a tober&nl = 10~%. As a consequence,
Ny = 29 vectors are considered as reduced basis for the primablarisee Fig. 6.2. An

FIGURE 6.2. Eight first vectors of the reduced ba{i@i}ﬁi"l forming V.

example of the exact and reduced solutions corresponditfieténon-snapshot)-parameter
p* = (21.7157,0.1111)7 is depicted in Fig. 6.3. We see that the reduced and exactprim
solutionsu (1) andu () show almost no difference. However, we observe a differbeee
tween the reduced and exact dual solut\dp) andX y (). This is confirmed quantitatively
as|ju(p*) —un(p*)||v = 0.012961 and||A(p*) — An (*)||lw = 0.295079 corresponding to
the norms|u(p*)||v = 1.662406 and|[A(»*)|[w = 18.814451. Note, that in particular with
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a(p*) = 21.715729, By = 1, v(p*) = 30.000000 and||r|ly = 0.001111 the inequality
(4.9) can be numerically verified, despite the visual cagti@pression.
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FIGURE 6.3. Exact and reduced solutions for a non-snapshot parameter= (21.7157,0.1111)7 . Left:
primal solutions. Right: dual solutions. Solid line: exadlutions, dashed line: reduced solutions.

6.2. Efficiency of the method. Our second example aims at quantifying the efficiency
of our method. For a more expressive demonstration of thectsff we keep the previous
model but consider a simpler example with a fixed barrier fionch(z) = 52 — 10. The
parameter vector is a scalar paramgier (1) that parameterizes the elasticityu) =
through the relation

v(p)(x) = b

The parameter domain 8 := [0.2,2] C R. We keep the functionalg(-; u) andb(-,-) as
before. We first investigate the error decay with growing hanof snapshotd’s. For this,
we construct reduced bases corresponding to an equiddiaite of Ng parameters from
‘P. For the primal basis we include the supremizers, hence atewfy, = VJS,Q) according to
(2.5). For each reduced model, we determine the maximumevev a test-set of parameters
given as the vertices of a uniform 10x10 grid. The resultsdam@cted in Fig. 6.4. This nu-
merical example exhibits asymptotically an exponentiarease with respect to the number
of snapshots used to build the reduced basis.

——Log. slope error=-0.061749
- - - Log. slope a-post.=—0.047252)|

S
e

*ow
B
*
Tt Tt
N ., o T, 1
10 . wE o, * R
+
+
T
c
— Log. slope error=-0.048575 ‘

- - - Log. slope a—post.=—0.034929
107 107!

s % =
Ns

%
Ns

FIGURE 6.4. Semilog plot of the errors maxyer ([lu(p) —un(wly) (left) and
maxper (A1) — An(w)lly) (ight) and of the a-posteriori estimatorsmaxyecr Ay (p) and
max e Ax(p) with respect to the number of snapshd¥s. The numerical values are represented by
crosses for the errors and by stars for the estimators. Aalimegression of the last 5 values is represented by
the solid line for the error and by the dashed line for the atposri estimator. The slopes of the regressions are
indicated in the boxes on the top of the picture.
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Ng | B with supremizers logio(Sn) without supremizerg
5 1.000000 -2.568645
10 1.000000 -5.631370
15 1.000000 -8.623529
20 1.000000 -11.515277
25 1.000000 -14.094935
TABLE 6.1

Inf-sup constant for various values dfs.

To highlight the importance of adding the supremizers indénition of Vy, we com-
pare our results withyy = 15,1) = span{u(y;)}, i.e., the space of snapshots without enrich-
ment. In a first test, we compute for both settings the infsupstantsy for various values
of Ng, see the appendix for details on these computations. Imasirb the previous exam-
ple, a(-,; p) is proportional to the scalar product dhand@, = 1. From Remark 2.4 it
then follows that (2.5)—(2.7) yields the same space andithatompared to the naive choice
is at most enriched by one element. The results are givenlile ®&1. In this example, the
supremizers greatly improve the stability of the methodl,\&a verify the theoretical findings
of By > B =1forVy = V]Ef).

Secondly, we compare the computational cost of the solverour case, we use the
open-source octave cotgsolve.m’?, based on a standard active set method as described in
[11]. Numerically, the number of iterations required tovgothe reduced problem during the
online-phase increases linearly with respecit@n both cases, see Fig. 6.5. However, in the
case of (2.4), the slope is roughly two times bigger than éncidse of (2.5).

Iterations
8 g

FIGURE 6.5. Effect of the inclusion of supremizers. Number of iteratimguired to solve the reduced problem.
Dots: Vy = V]E,2) with supremizers, c{2.5); crosses:Vy = Vjs,l) without supremizers, c{2.4).

Let us emphasize that in this example the inclusion of theesujzer functions does not
improve the accuracy of the reduced solutions. But as itelichy Table 6.1 and in Fig. 6.5,
the inf-sup constants and the computational time indeedngodve by this space extension.

In a third test, we illustrate the performance of our redusasis scheme compared to a
parameter-wise computation of the detailed solution. VWduate the actual acceleration due
to our reduced-basis method, we measure the respectiveutatiop times of the offline- and

Ihttp://docs. uf rmd. dauphi ne. fr/ opti Numi mat / gsol ve. t xt .
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online-phases and compare them to the time required by dathmethod. More precisely,
we define:

e t1: Computation time for one fine scale solution, i.e., timeuiezd to determine
(u(ps), AM(ui)). In our case, this time is closely related to the performaofcine
primal-dual active set strategy and depends on the dimews$iz’ and V.

e to: Offline-phase computation time, i.e., time correspondmthe snapshot com-
putation, determination of the supremizers, the orthogbaﬂs(gai)ﬁivl, the matrix
componentsiy and By and the vector componenfd, andgy,.

e t3: Online-phase computation time, i.e., time required teadse the matrixd v (),
vectorsf y (1), gy (1) and to solve the reduced saddle point problem in order to de-
termine(un (1), An (1t)). In our case, this time is closely related to the performance
of the applied quadratic optimization routine.

For the example we consider in this section, we chagse= 10 as the number of snapshots
that we use to build the reduced basis. One finds the meansv@uer approximately 150
measurements obtained with an Intel Core2 Duo 2.6 GHz psocgs; = 0.095283, to =
0.956744, ts3 = 0.005902. Suppose now that one has to solve the probletimes. The
times required by our reduced-basis method scalés-&d. - t3, whereas a standard method
of L detailed simulations requires a time that scales as,. Asymptotically, we observe an
acceleration factor of about 16.

6.3. Reduced basis generation with the Greedy algorithmin a last test, we use the
Greedy algorithm [37, 9, 15, 4] for adaptive basis genenaltiased on the a-posteriori esti-
matorsA,, andA, described in Section 4 to compute a relevant basis. In tisgulure, we
sequentially enrich the current basis with the snapshaesponding to the parameter value
that maximizes an error indicatdx(u), €.9.,A(p) := w, A, + wr Ay with some weights
wu,wy € RT. The precise algorithm is the following:

ALGORITHM 1. Input: N,,,.. € N, accuracyt,,,, initial sampleu,, training setZ” C P.

1. setk:=0
2. repeat
(a) setki=k+1
(b) Compute the snapsh@i(ze;,), A(p))-
(c) defineVy and My corresponding to the snapshdt@u(p;), M) ;.
(d) defines := maxyer A(p) and py, ;= argmaxpyer A(p)
3. untile < g4y Ork > Npan
4. setNg := k and return reduced basigp; } ", and snapshot$\(p;)}v5,

Only Ng detailed problems are solved (during step 2b); all otheutgmis deal with
reduced problems of small dimension. Additional manipafe of high dimensional vectors
are done onlyNg times in Step 2c¢) to compute the orthogonal basis and in StgmwBen
computing the projection required to evaluate the a-posteriori estimaiqr( )+ A (u). In
our caséd/’ = W and this projection consists in applying component-wigectheap function
m(x) = min(0, x), cf. Section 5.3.

In our test, we use the example of Section 6.1. As initial @ale seft, = (1.1, —0.1)
which is the center value of the parameter interval. We setibights for the error estimator
A(p) asw, = wy = 1. We compare the following different basis generation pdoces.
First, B,, denotes the reduced basis associated with the coarse gfielx 5 = 25 uniformly
distributed points irP. SecondBa stands for the reduced basis resulting from the Greedy
algorithm Algorithm 1 using the a-posteriori error estioraf (p) with Ny, = 25. The
training grid7Z we use is composed of x 17 = 289 uniformly distributed points. Finally3,.
denotes the basis obtained by the Greedy algorithm usinguéerror as selection measure,
i.e. A(p) is replaced withe y (1) := wye,(p) + waexn(p) with e, = [|u(p) —un(p)|y
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FIGURE 6.6. Top: numerical values of the errary = |lu(p) — un ()|, + A1) — An ()]l When
using the reduced basis obtained by Algorithm 1 (left) aredrdduced basis obtained taking uniform coarse grid
(right). Both plots are using the fine test gfl. Bottom: numerical values of the a-posteriori estimatoy (u) +
A () obtained by Algorithm 1 plotted on the train grifl (left) and selected valugs,, - - - B In T (right).
Note that both errors and a-posteriori estimates are zeremyh corresponds to a snapshot’s parameter value, see
Prop. 3.1 and Prop. 4.4.

andey = [|[A(n) — An ()5, The latter basis generation procedure is computationaity v
expensive and not practical, but it is included as a referenethod. In all cases we obtain
Ng = 25 snapshots and determine the ers@gr on a fine test gridF of 33 x 33 = 1089
uniformly distributed points. The results are depicted ig. B.6. The primal par{y;}

of the reduced basis is of dimensioNg = 29 for B,, and of dimensionVy, = 40 for Ba.
Hence we have a small overcost of the greedy algorithm. Nesess, the maximal error
is significantly reduced when using the greedy algorithmis Thshown in Table 6.2, where
we report the maximum of the component erregse,, the errors . In this example, the

maxpycries} | maxpycr{er} | maxycr{en} | Nv

B., 0.059944 1.092896 1.146332 29

Ba 0.028021 0.836206 0.864084 40

Be 0.031795 0.485100 0.502336 42
TABLE 6.2

Size of basis and maximal test errors obtained when usingteedy algorithm, or a uniform grid for basis
generation.

accuracysy = 1.146332 is obtained using the uniform grid with Ng = 25 snapshots
and a reduced primal space of dimensiiir = 29. When using the greedy algorithm
with the a-posteriori error estimators, the same accura@ptained with roughly half the
numberNgs = 14 of required snapshots, and the corresponding l#sisontains in this case
Ny = 26 vectors. The Greedy algorithm used with the true error asceh criteria, once
again withNg = 25 snapshots, results in a ba#is of Ny, = 42 vectors. The decrease of
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the errore y and the a-posteriori estimateaxy,c7{A. (1) + Ax(n)} along the iterations
of the construction oB A is shown in Fig. 6.7. The results indicate that the greedgrétlym

10°

******

*****

FIGURE 6.7. Evolution ofmaxc7{en} (blue crosses) anthax e 7{wuAu(p) + wxAx ()} (green
stars) with respect to the number of snapsh¥ts used to assemble the reduced problem.

indeed is a procedure leading to compact bases, also in sarcfavariational inequalities.
The a-posteriori error estimators indeed seem to be goastisitbs for the true errors in the
greedy algorithm as the dimensions and accuraciésoénd 5. do not deviate too much.

7. Conclusion. We have presented a reduced basis scheme for parametriizstbwal
inequalities. We tackled the conceptional difficulty oflumting inequality constraints in the
RB-scheme and analysis. This required ingredients frorth€bry for a-posteriori error ana-
lysis by non-linear projection operators. The full offlinaline decomposition of the reduced
scheme could be obtained as in the unconstrained case. fdseriori error estimation also
yields rigorous and efficient lower and upper bounds. In@®ttto the unconstrained case,
the a-posteriori error estimators are not yet fully decosate in an offline-online fashion,
as the online-phase still slightly depends on the high dsimen This is subject to further
investigations.

Development of RB-methods is widely driven by solving manel anore complex para-
metrized PDEs. When viewed as parametrized variationalmimaition problems, another
class of possible extensions is adding more complex conttro the optimization prob-
lem. Such extensions and reduction schemes may very ligalyelthe comfortable realm of
Galerkin projections, but gain conceptional advantages oWy mention the possibilities of
Reduced Basis schemes with respect to conservation ofgqathysbperties, such as mass and
non-negativity. Such formulations are expected to be é@sténg future research directions.
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Appendix A. Details and Proofs.

In this addendum we give details on various aspects and pfoofcertain statements.
Some of the following results can be found in standard-b@dks on variational inequalities,
as listed in the introduction. For completeness, we regrediem in the finite dimensional
context. These insights were very helpful for us, and mag bés of use for the interested
reader.

A.1l. Inf-Sup Implications. The following characterization of inf-sup stability in fiai
dimensional spaces can be stated:
LEMMA A.1 (Inf-sup implications) Letb(v, ) be inf-sup-stable oy x W, i.e.,

inf sup b(v,n)/([[vlly [nlly) = 6> 0.
n#0 40

We can define the closed nonemptylget= {v € V|b(v,n) = 0¥n € W}. We define two
sets of equation systems fore V' andg € W', respectively:

bv,n) = f(v), veV (A1)

blv,n) =g(n), new (A2)

Then holds
i) Egn.(A.1) has at most one solutiope W.
i) Egn. (A.2) has at least one solutiome V.
i) Egn. (A.1) has a unique solution € W, if f(vy) = 0 for vy € V}
iv) Egn.(A.2) has a unique solution € Vj*.
Proof. The bilinear formb can be represented by a linear continuous opetatolV —
V asb(v,n) = (v, Bn),,. (This can be obtained by using Riesz-representation ¢nedor
fixed n, which uniquely defines eadn and then showing, thds is linear and continuous.)
Fori): Letn,n’ € W be two different solutions, then we have

b(v,n—n') = f(v) = f(v) =0

hence,sup, b(v,n — ') = 0 which is a contradiction to the inf-sup stability conditias
n —n' # 0. In particular this implies thaB is injective.

For ii): Let B®® : V — W be the adjoint of3 andg, € W be the Riesz-representative
of g. ¢From i) we know, thaB is injective. ThenB*? is surjective, such that fay, € W
there exists a € V with B4y = g,.. This satisfies

b(v,n) = (v, Bn)y = (B*v,m)y, = (gr )y = 9(n).

For iii): It remains to show existence, uniqueness therovedl from i). First we note,

that
Vo={veV:(v,Bn) =0vecW}=R(DB)"
where we denote the range Bfas R(B). The condition thay vanishes o}, implies for its
Riesz-representativg.:
0= f(’l)()) = <f7"7v0>V’ Yvo € Vp.

Hencef, € V4t = (R(B)+)* = R(B). Therefore there existg € W with By = f,.. This
satisfies foralb € V

b(v,n) = (v, B}y = (v, fr)y = f(v)
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For iv): Letv € V be a solution (existence due toii)) afd: V' — 1} be the orthogonal
projection, which exists, ag, is nonempty and closed. Then we define= v — Pv. We
then first note, that alseis a solution, as for alh € W we obtain

b(v,m) = b(v,n) — b(Pv,n) =g(n) — 0

asPv € V. Asw is the projection error of, it is orthogonal to the projection space, hence
v € V4. Uniqueness follows by considering a second solutien V-, hencev — o € V5.
Letd € V5- = R(B) then there exist§ € W such thatB7) = . Then we observe

<1)7’D”LA}>V - <’U*1~J,Bﬁ>v - b(vfﬂaff]) =0
as bothv and# are solutions. Hence — @ € V;. Sincev — @ € V- we concludey = @. 0

A.2. Computation of scalar products for W = V’. The scalar product ofi’ plays
a crucial role in the computation of the Riesz representeds the residual norms required
in the a-posteriori error terms. Here, we give details onfduts that were mentioned in
Section 5.2. Recall that we have denoted a bésig ¥, of V and {x;} of W where
Hy and Hy, are the dimensions of the high- but finite-dimensional d@itecispaces, e.g.,

standard finite element spaces. Then, any functien ZHV v,1; € V is characterized by

=1 =1

its coefficient vecton = (v,)/2}. The inner product matrin/" = ((¢);,4;),,)/\, then
allows to compute scalar products between any pairs of elsmeu € V by (v,u),, =
oI MV u. If the spacdV is independent of’, one can similarly obtain and compute scalar
products inWW by the given inner product matrix/""" and computingn, ')y, = QTMWQ’
with n € Rw being the coefficient vector of the functienc W. In practice, W = V’
is frequently chosen witlﬂ@xi}f’;{ being a dual basis. This implies equal dimensiép =
Hy =: H andx;(v;) = 0,; for all basis functionsy; € V,x; € Wfori,j =1,..., H.
Then, for any givem = Zfil n,xi € W with coefficient vector, = (ﬂi){il € RH its Riesz
representativé?(n) = S°1_, r,4; € V has the coefficient vector= (1)L, = (M")~y,
as for anyv = Zf;ﬂﬂf’i € V there holds

MY v = (R(n),v)y =n(v) =n"v=((M")"n)" M v.
The Riesz theorem then allows to compute scalar productstpn,, 7, € W by
(mym2)y = (R(m), R(m2))y = (MY) "' )" MY (MY) 'y, =l (MY) "',

Hence, we obtain the particular relation of the inner prodoatrices ofl” andiw: MW =
(MV)—l, which can be used in practice. Consequently/if is an/-matrix which is the
case for a low order conforming finite element stiffness irdar the Laplace operatoi/""
has non-negative entries, and thys, x;),,, >0, 4,5 =1,..., Hy.

A.3. Computation of the Inf-Sup Constant. We now provide a characterization of the
inf-sup constant, which was used for its computation in ttEeeiments section.

LEMMA A.2 (Characterization of ). The inf-sup constant of the reduced problem
SPn(p) is the smallest singular value of the matrix

~ — V. _q/9= W, _
By = (My) 1/2BN(MN) 1/2,

whereB y is given in(2.9) and we define

My = ({00030 ) s (A.3)
My = (<£¢,§j>w)f]-ﬁl. (A.4)
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Proof. We define the operatdBy : W — Vi by pointwise application of the Riesz-
representation theoretay, By ), = b(vn, ) forallvy € Vi, ny € Wx. We denote
Ty = (vn)ny € RNV andfjy = (nn:)y € RV the coordinate vector of an element
oy = M unaps € Viy andny = SN nn a6 € Wy, We seiy = (My)Y/2)7y and
N = (Mﬁ)l/zﬁl\, as suitably coordinate transformed vectors. We then obtain

b
Gy = inf  sup —ONIN)
neWn uyevy [Ny [Inn Il

= ian sup UNDNTIN =
ISR T erty \/E%MXWN \/ﬁ%ﬂj\r N
LN Y2TB V(AT -1/25
—  inf sup oy (M y) )" Bn(My ) N
v ERNW 5y eRNv \/ ONUN A TN

~T = o~
v B
= inf sup NDNTIN

N ERNW 5 cRN ST 5T
N UNERTYV W JUNUN A/ INTIN

For fixed7y the supremum of the quotient is obtained with Cauchy-Sctawadroosing the
vectorvy := By7nn. Hence

Boi T Barr B )T B
By = inf (BnTiN)” BNl — it (BNTIN) NN

~ N ~ ~ — ~ N —
R \ (BNIN )T BNTIN A/ T TN N ERT \/ TINTIN

We obtain the Rayleigh-quotient

2 n (BN BN)iN
ﬂN — lnf “T—"’
ﬁNERNW nNT]N
which implies, tha33; is the smallest eigenvalue &}T\,EN or, equivalently3y is the small-
est singular value oB . O

A.4. Existence and Uniqueness of Saddle Point Problem\\/e first define an alterna-
tive formulation:

DEFINITION A.3 (Weak Form of Parametrized Variational Inequality(u)). For p €
P findu(p) € X such that

a(u,v —u; ) > flo—uyp), veX

Under the above assumptions, due to the finite dimensign{tis] is applicable and
ensures existence of a unique solution.

The following proposition states the equivalenceé/f(n) and SP(u). The existence
and uniqueness of solutions 8P (u) then follows from the existence and uniqueness of
VI(p).

LEMMA A.4 (Equivalence o P(u) andV I(pw)). LetVI(p) andSP(u) be given with
X =X(p)={veV:b,n) <gnpn),ne M}

i) If uis the solution ofI(w), then there exists a uniquee M such that(u, A) is
the solution ofSP ().
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ii) If (u,\)is the solution ofSP(u), thenu is the solution oV I(w).

Proof. Concerning part ii): Assumeu, \) solvesSP(u), then forr € M we find that
n = A+ 7 € M, hence the inequality &5 P(u) yieldsb(u, 7) < g(7; i) which guarantees
ue X.Forn=2X€ M andn =0 € M we get

b(u, A) < g(Asp)  blu, =) < g(=A; p)

and hencé(u, \) = g(\; u). Choosev € X, thenv — u € V is an allowed test function in
the first equation o6 P (), which gives

a(u,v —uip) = f(v—u;p) —b(v —u, A)
= flv—u;p) = b(v,A) + g(A\; p)
> flv—u;p).

The last line follows, as € M andv € X.

Concerning part i):

Letu € X be the unique solution df I () then\ € T is chosen as the unique solution
of the variational equation

b(v,A) = f(v; ) —alu,v;p), veV (A.5)

Existence and uniqueness follow from Lemma A.1 iii) lass inf-sup stable,f(; u) —
a(u,;pu) € V' and for allvg € Vo = {v € V : b(v,n) = 0¥n € W} holds f(vo; 1) —
a(u,vo; ) = 0. The latter is easy to see as for sughwe find thatv := u + vy € X and
using these as test functions we conclude fiéfi{ ) thata(u, vo; ) = f(vo; p).

We now briefly prove the following equivalence:

M= M"(p)={neW:blv,n) <glnp)veX} (A.6)

Assume € M thenb(v,n) < g(n; p) forallv € X due to the definition. Henege M™* ()

and we getM C M*(u). For the other direction, we assumegZ M and lead that to a
contradiction. AsM is a closed convex cone, the separation-theorem impliesxis&ence of
ah € W' with h(n) > sup,/cp h(n') =: a. As M is a conep = 0. As b is inf-sup stable
onV x W andg + h € W', Lemma A.1 ii) gives the existence of a solutiere V' such that

b(z,n') =h(n')+g('spm) 0 €W

In particular forn’ € M we getb(z,n') < 0+ g(n'; ) hencer € X. But for the special
choice ofy above, we havé(x,n) = h(n)+g(n; u) > 0+g(n; 1) and thereforey ¢ M* ().
This provesM*(u) € M which completes statement (A.6)

Now, letv € X, which gives

b(v, A) = f(v; p) — alu, v; p)
= flv—u;p) — a(u,v — u; ) + f(u; p) — alu, u; p)
<0+ b(u, \)
<g(\;p)
Where the second-last line follows fromsolving VI(u) and (A.5), and the last line from

the fact that, € X. Consequently\ € M due to (A.6).
According to Lemma A.1 iv) there exists a unique solutior V- satisfying

b(w,n) =glm;pm) neWw
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hence in particulaw € X and als®u — w € X since
b(2u — w, n) = 2b(u,n) — b(w,n) < 29(n; p) — g(n; u) = g(n; p)
Usingw and2u — w as test-functions ifv I () yields
a(u,w —u; o) = f(w —u; ga).

The definition of\ then yields

b(w —u,\) =0,
and thus

b(u, A) = b(w, A) = g(A\; ).
Forn € M, u satisfies
b(u,n = A) =b(u,n) —g(A;p) < g(n — Ay p)

and thug(u, A) solves the saddle point problem.
O

A.5. Equivalence ofSPy(u) and DSPy (). We provide detailed arguments for the
equivalence statement of Lemma 2.5. Note, that the samemniegscan be applied for refor-
mulating the original high-dimensional FEM problef# (1) into a an algebraic formulation.

Proof. SPy(u) = DSPn(u) : Let (un, An) € Vv x My be the unique solution of
S Py () with coefficient vectora:y, Ay . Then, (2.13) is obviously satisfied by definition of
the convex cond/ . Usingyp; as test function irb Py () yields thei-th line of (2.12):

Ny Nw
(AN)@,yun + (BN) @, AN = Za(%, Yis p)un,; + Z b(wi, A1) AN,
j=1 j=1
NV NW
=a | unjeiein | +b | en Y An | Ay
j=1 j=1
= a(un, i p) + (@i, An) = f(pis ).
For proving (2.14) we usey := sA(u;),s € RT as test function in the inequality of
SPn(p):

blun, sA(1;) — An) < g(sA(p;) — Ans ).
This can be rearranged to

s(b(un, M) — g(A(1;); 1) < blun, An) — g(Ans ) (A7)

The right hand side (RHS) is independentsptherefore, the left hand side (LHS) cannot be
positive. If the LHS was positive, for sufficiently largeit would exceed the RHS, which
would be a contradiction. Hence, we have

Ny

0> blun, Mp;)) — g(A)s ) =Y b0z, Mpey))uwj — g(Mp;))
j=1
= Un(BN) (i) — 9O\ 1)) = (B) i — 9(M (1))
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which is thei-th row of (2.14).

Identical reasoning as above withy = s\y,s € RT implies, thatb(un, A\n) —
g(An;p) < 0. But settingny = 0 as test-function in the inequality & Py () gives
blun, An) — g(An; ) > 0. Hence it must be equal 0 and we conclude

0 =b(un,An) — g(Anip) = Uy BNAN — GnAN = (UNBy — Gn) AN

which is the last equation (2.15) &1S Py ().

DSPy(p) = SPn(p) : Let (un, A\y) be a solution ofDS Py (p) and (un, Ay) €
V' x W the corresponding functions obtained by the corresporitiegr combinations. Then
obviously\y € My as itis a positive combination by (2.13). Eqn. (2.12) is egleint to

a(un, pi; ) +b(vi, An) = f(pisp) Vi

Due to the linearity this also holds for arbitrary, = Z s, e,

(quvNa“)+bvN7)\N Za1 uNa@Z?“)—i_b((pl?)‘N))
= Zaif i) = f(on; p),

which is the equality o Py (u). As before, we rewrite (2.14) as
blun, A(p;)) — g(A(py); ) <0 Vi (A.8)
Hence we obtain
blun,nn) —g(nn; ) <0 =0blun,An) — g(Ans ), Vny € My,

where the first inequality follows from positive linear coimétions of (A.8) and the second
equality is due to (2.15). Resorting terms yields

blun,nnv — An) < gy — Ans ), Vv € My,

which is the inequality o Py (). O

A.6. Properties of the projection for the caselV = V’. In Section 5.2 we introduced
an alternative projectionr. For use in a-posteriori error estimation, different pmips must
be checked. We first verify thatis the orthogonal projection with respect to the inner paidu
(-,-), by showing the characterizing property

(n—mn),n' —n(n), <0, neWn eM.
This can be seen by realizing that

(n—xm),n —7m), = —o)" (M) (0 — =)
= (MW — MYl )T (MY — MYy )

= Z W= (M) )i (MY = (M )i
We always havéM "y — [MW ] )i < 0 by definition. If (M"'n — [M"5]1); <0, then

(M"n); < 0and hencg[M" ] ). = 0implying (M" ' — [M"n];); > 0asy’ € M
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andM" being an)M-matrix. Consequentlys is an orthogonal projection. Also, the norm
induced by(, -)__is trivially equivalent to thé’-norm due to the finite dimensionality. Next,
we argue on the validity of the assumptions (4.6)-(4.8).(Bd®&) we obtain withy € W, 7 €
M:

asn’ € M impliesy’ > 0, while "'y — [M"' 5], < 0. Recalling the definition of the
detailed inequality residual (4.5), we obtain for#gllle M

0> blu(p),n') = g(n') = 0 its)y = ()" M

This is equivalent to

|

s

Mwﬁs <0& () =0,
which proves (4.7). Fon € M we finally obtain
(0:70s) = (M )77 = M7} = (77,75 )

by settingy) := MWQ andn =, n,xi- Hence, for obtaining the non-positivity (4.8) it
remains to show that € M. Indeedy > 0 and by non-negativity o™ we getMWQ >0,
which meang; € M. So the projectiomr indeed satisfies all properties required for its use in
the a-posteriori error estimation.
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