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Abstract. Reduced basis methods are an efficient tool for significantly reducing the computational complexity
of solving parametrized partial differential equations. Originally introduced for elliptic equations, they have been
generalized during the last decade to various types of elliptic, parabolic and hyperbolic systems. In this article, we
extend the reduction technique to parametrized variationalinequalities. Firstly, we propose a reduced basis varia-
tional inequality scheme in a saddle-point form and prove existence and uniqueness of the solution. We state some
elementary analytical properties of the scheme such as reproduction of solutions, a-priori stability with respect to
the data and Lipschitz-continuity with respect to the parameters. Secondly, we provide rigorous a-posteriori error
bounds. An offline/online decomposition guarantees an efficient assembling of the reduced scheme, which can be
solved by constrained quadratic programming. The reduction scheme is applied to a one-dimensional obstacle prob-
lem with a two-dimensional parameter space. The numerical results confirm the theoretical ones and demonstrate
the efficiency of the reduction technique.
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1. Introduction. We consider efficient solution strategies for parametrizedvariational
inequalities. Such problems can be obtained from variational formulations with additional
constraints, e.g., for any given parameterµ ∈ P ⊂ R

p we are interested in finding a solution
u(µ) of the following minimization problem:

min
u∈X(µ)

1

2
a(u, u;µ) − f(u;µ) (1.1)

for X(µ) ⊂ V a closed convex nonempty set in a separable Hilbert spaceV , a(·, ·;µ) a
symmetric, continuous and coercive bilinear form, andf(·;µ) a continuous linear form. For
X(µ) = V the above is a standard unconstrained variational optimization problem. Then,
the first order optimality condition yields a simple linear system of equations for the solution
u(µ). However, ifX(µ) is not a subspace ofV , the solution cannot be obtained from a
simple system of equations. Quite often, the convex set can be characterized in terms of a
dual coneM . Then (1.1) can be reformulated as a saddle point formulation which can be
solved by primal-dual active set methods. For a background on variational optimization with
constraints and some applications, we refer to the monographs [8, 10, 12, 13, 23, 25, 27] and
the references therein. Assume now that the above problem must be solved in a multi-query or
real-time context, i.e., the computation of the solution isrequired to be extremely fast and/or
has to be done for many parameters. For standard PDEs in variational form, reduced basis
methods [3, 35] provide efficient tools for problem-specificdimensionality reduction. More
precisely, instead of the full problem, which is typically infinite or rather high-dimensional,
a low-dimensional model is generated which can consequently be solved significantly faster
for varying parameters. Many types of partial differentialequations have been treated by this
reduction technique during the last decade ranging from elliptic [35] to parabolic [14, 33]
and hyperbolic equations [16, 17]. So far, all results are restricted to equation systems and
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no additional inequality constraints are taken into account. We are interested in adapting
these techniques to a class of variational inequality problems. To start we reformulate our
variational inequality as a saddle-point problem that has some similar components as the
Stokes system which has already been successfully treated with reduced basis methods, e.g.,
[34, 32]. We refer to [7, 29] for an abstract saddle-point theory and the important role of the
supremizer operator.

The article is structured as follows. In the next section, wegive the elementary notation
and definitions of the full and reduced problem in a saddle-point formulation, its discrete for-
mulation and an offline/online decomposition. In Section 3,we show consistency, bounded-
ness with respect to the data and Lipschitz-continuity withrespect to the parameter. Section 4
is devoted to rigorous a-posteriori error estimation basedon equality and inequality residuals.
We comment in Section 5 on various computational aspects forfinite element discretizations
with biorthogonal dual bases for the constraints. Finally,in Section 6, we consider as a model
problem a one-dimensional obstacle-type inequality. Numerical results illustrate the perfor-
mance of the proposed method and the influence of the two-dimensional parameter space.

2. Reduced basis (RB) formulation of a variational inequality. This section is de-
voted to the derivation of a general RB formulation for a standard variational inequality.

2.1. Notations. We briefly introduce the notation and assumptions which willbe used
throughout the paper. ByV,W we denote two separable Hilbert spaces with inner products
〈·, ·〉V , 〈·, ·〉W and induced norms‖·‖V , ‖·‖W . The setM ⊂ W is assumed to be a closed
convex cone. We assumea(·, ·;µ) to be a uniformly continuous and elliptic bilinear form
on V × V for all µ ∈ P, whereP ⊂ R

p, p ∈ N is the parameter domain. More precisely,
the parameter-dependent coercivityα(µ) and continuityγa(µ) constants can be bounded for
all µ ∈ P by 0 < ᾱ ≤ α(µ) andγa(µ) ≤ γ̄a < ∞, respectively. Moreover, we assume
thata(·, ·;µ) is Lipschitz-continuous with respect toµ, i.e., for a suitable constantLa > 0
we have|a(u, v;µ) − a(u, v;µ′)| ≤ La ‖u‖V ‖v‖V ‖µ − µ

′‖ for all µ,µ′ ∈ P, u, v ∈ V .
Here‖ · ‖ denotes a norm onRp, e.g., the Euclidean norm. We assume that the parameter-
dependent linear formsf(·;µ) ∈ V ′, g(·;µ) ∈ W ′ are uniformly continuous inµ, i.e., there
exist constants̄γf , γ̄g > 0 with ‖f(·;µ)‖V ′ ≤ γ̄f and‖g(·;µ)‖W ′ ≤ γ̄g for all µ ∈ P.
Furthermore,f(·;µ) andg(·;µ) are supposed to be Lipschitz-continuous with respect toµ,
i.e., for suitable constantsLf , Lg > 0 it holds ‖f(·;µ) − f(·;µ′)‖V ′ ≤ Lf‖µ − µ

′‖ and
‖g(·;µ)−g(·;µ′)‖W ′ ≤ Lg‖µ−µ

′‖ for all µ,µ′ ∈ P. Finally,b(·, ·) stands for a continuous
bilinear form onV ×W with continuity constantγb > 0, which is inf-sup stable, i.e., there
existsβ > 0 such that

inf
η∈W

sup
v∈V

b(v, η)

‖v‖V ‖η‖W

≥ β > 0.

We assume a separable parameter-dependence ina(·, ·;µ), f(·;µ) andg(·;µ), i.e., the ex-
istence of parameter-dependent scalar functionsθq

∗ : P → R for ∗ ∈ {a, f, g}, and of
parameter-independent components, i.e., continuous bilinear formsaq(·, ·) and linear func-
tionalsfq(·) ∈ V ′, gq(·) ∈ W ′ for q = 1, . . . , Q∗ for reasonably smallQa, Qf , Qg, such
that

a(u, v;µ) =

Qa∑

q=1

θq
a(µ)aq(u, v), (2.1)

f(v;µ) =

Qf∑

q=1

θq
f (µ)fq(v), g(η;µ) =

Qg∑

q=1

θq
g(µ)gq(η). (2.2)
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As we will see, the caseQa = 1 is of special interest. In that situation, we havea(u, v;µ) =
θ1a(µ)a1(u, v) with θ1a(µ) > 0 anda1(·, ·) being symmetric and coercive. Moreover, the
coercivity constantαa1 and the continuity constantγa1 of the bilinear forma1(·, ·) satisfy
αa1/γa1 = α(µ)/γa(µ), and the ratio is independent ofµ. We then introduce the operators
A : V ′ → V andB,B1 : W → V by

a1(Aℓ, v) = ℓ(v), v ∈ V, a1(B1η, v) = b(v, η) = 〈Bη, v〉V , v ∈ V.

2.2. Detailed problem definition. We continue with the full parametrized variational
problem in a saddle point formulation which is to be approximated by our RB-scheme.

DEFINITION 2.1 (Variational Saddle Point ProblemSP (µ)).
Givenµ ∈ P, find(u(µ), λ(µ)) ∈ V ×M such that

a(u(µ), v;µ) + b(v, λ(µ)) = f(v;µ), v ∈ V

b(u(µ), η − λ(µ)) ≤ g(η − λ(µ);µ), η ∈M.

This formulation can be obtained from (1.1) by the special structural assumptionX(µ) =
{v ∈ V |b(v, η) ≤ g(η;µ), η ∈M}. The proofs of existence and uniqueness are well-known,
see, e.g., [12]. For completeness, we give them in the appendix, Sec. A.4. A notable and
frequently used property of the solution(u(µ), λ(µ)) is

b(u(µ), λ(µ)) = g(λ(µ);µ), (2.3)

which is obtained by usingη = 0 andη = 2λ(µ) as test functions inSP (µ). Note that
the problemSP (µ) can be the analytical problem in infinite dimensional spacesor the dis-
cretized problem in finite dimensional spaces of high dimension. In our numerical tests,
we use conforming finite elements forV and forW , which results in spaces of the same
dimension. In the case of finite dimensional spacesV = span{ψi, i = 1, . . . ,HV } and
W = span{χi, i = 1, . . . ,HW }, we denote byHV andHW the dimension ofV andW ,
respectively.

2.3. Reduced problem definition. We now derive from the saddle point formulation
of Def. 2.1 a corresponding RB-method. LetS = {µ1, . . . ,µNS

} ⊂ P denote a finite
parameter sample set ofNS parameters and(u(µi), λ(µi)) ∈ V × M the corresponding
solutions ofSP (µi), the so calledsnapshots. DefineWN := span{λ(µi)}NS

i=1 ⊂ W as
a reduced basis space with dimensionNW := dimWN and basis{ξi}NW

i=1 . Then,MN :={∑NS

i=1 αiλ(µi)|αi ≥ 0
}

is a closed convex cone and in particularMN ⊂ M . This choice

implies in particular thatλ(µi) ∈ MN for all i = 1, . . . , NS . Note that we do not explicitly
require linear independence of theλ(µi), but also accept possibly linearly dependent snap-
shots. In this case, elements ofη ∈ MN may have multiple different equivalent expansions
as linear combination of snapshots.

For formulating the reduced scheme, it remains to give a definition of the reduced space
VN for the primal variable. For this space, we will consider different choices.

1. Pure snapshots: The naive choice for the reduced primal space is given by

V
(1)
N := span{u(µi)}NS

i=1 ⊂ V. (2.4)

2. Enrichment by supremizers: This choice is motivated by [34]

V
(2)
N := span{u(µi), Bξj}NS ,NW

i,j=1 ⊂ V (2.5)
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3. Enrichment by a-priori solutions: IfQa = 1, an attractive alternative option is

V
(3)
N := span{u(µi), Af

q}NS ,Qf

i,q=1 ⊂ V. (2.6)

4. Enrichment by unconstrained solutions: IfQa = 1, we can also set

V
(4)
N := span{u(µi), ũ(µj)}NS ,NS

i,j=1 ⊂ V, (2.7)

whereũ(µi) ∈ V satisfiesa(ũ(µi), v;µi) = f(v;µi), v ∈ V .
We neglect quite often the upper index(l), l = 1, 2, 3, 4, setNV := dimVN and denote the
basis ofVN by {ϕi}NV

i=1. We point out that the subscriptN does not stand for the dimension,
but only indicates that the quantity is connected to areducedproblem. We have by construc-
tion dimWN ≤ NS . In the following, we use the following notation: given a vector w,
we denote its coefficient vectors byw when dealing with the reduced basis and byw when
considering its representation in the high (finite-)dimensional spaces. Moreover from time to
time, we omit theµ-dependence, e.g., in the proof of Prop. 3.2.

The goal of a reduced basis scheme is the computation of parameter-dependent solutions
uN (µ) ∈ VN , λN (µ) ∈WN by solving a saddle point problem of low complexity.

DEFINITION 2.2 (Reduced Basis Saddle Point ProblemSPN (µ)).
For µ ∈ P find (uN (µ), λN (µ)) ∈ VN ×MN such that

a(uN (µ), vN ;µ) + b(vN , λN (µ)) = f(vN ;µ), vN ∈ VN

b(uN (µ), ηN − λN (µ)) ≤ g(ηN − λN (µ);µ), ηN ∈MN .

The following proposition shows that the pairing(VN ,WN ) inherits its inf-sup constant
from the pairing(V,W ), and thusSPN (µ) has a unique solution forVN = V

(i)
N , i = 2, 3, 4.

Therefore, these cases are of special interest.
PROPOSITION2.3 (Existence and Uniqueness ofSPN (µ)). If the reduced primal space

VN is chosen as in(2.5)–(2.7), then the pairing(VN ,WN ) is inf-sup stable with inf-sup

constantβN ≥ β for VN = V
(2)
N andβN ≥ β

√
αa1/γa1 for VN = V

(i)
N , i = 3, 4.

Proof. We consider the caseVN = V
(2)
N and the casesVN = V

(3)
N or VN = V

(4)
N

separately. LetVN = V
(2)
N , then by constructionBηN ∈ VN for all ηN ∈WN and thus

βN := inf
ηN∈WN

sup
vN∈VN

b(vN , ηN )

‖vN‖V ‖ηN‖W

= inf
ηN∈WN

sup
vN∈VN

〈vN , BηN 〉V
‖vN‖V ‖ηN‖W

= inf
ηN∈WN

〈BηN , BηN 〉V
‖BηN‖V ‖ηN‖W

≥ inf
η∈W

〈Bη,Bη〉V
‖Bη‖V ‖η‖W

= inf
η∈W

sup
v∈V

〈v,Bη〉V
‖v‖V ‖η‖W

= β > 0.

If VN = V
(3)
N andQa = 1, we obtain by the fact that(u(µi), λ(µi)) solvesSP (µi)

a1(B1λ(µi), v) = b(v, λ(µi)) = θ1a(µi)a
1(u(µi), v) − f(v;µi).

Then, the definition (2.6) and the decomposition (2.2) yieldthat

B1λ(µi) =


θ1a(µi)u(µi) −

Qf∑

q=1

θq
f (µi)Af

q


 ∈ V

(3)
N .

If VN = V
(4)
N andQa = 1, we get thatB1λ(µi) ∈ V

(4)
N since

a1(B1λ(µi), v) = b(v, λ(µi)) = θ1a(µi)a
1(u(µi), v) − θ1a(µi)a

1(ũ(µi), v).
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By linearity, this implies thatB1ηN ∈ V
(i)
N , i = 3, 4 for all ηN ∈ WN . Then, the norm

equivalence onV gives

βN := inf
ηN∈WN

sup
vN∈VN

b(vN , ηN )

‖vN‖V ‖ηN‖W

= inf
ηN∈WN

sup
vN∈VN

a1(vN , B
1ηN )

‖vN‖V ‖ηN‖W

≥ inf
ηN∈WN

sup
vN∈VN

√
αa1a1(vN , B

1ηN )√
a1(vN , vN ) ‖ηN‖W

= inf
ηN∈WN

√
αa1a1(B1ηN , B

1ηN )√
a1(B1ηN , B1ηN ) ‖ηN‖W

=
√
αa1 inf

ηN∈WN

sup
v∈V

a1(v,B1ηN )√
a1(v, v) ‖ηN‖W

≥
√
αa1

√
γa1

inf
ηN∈WN

sup
v∈V

b(v, ηN )

‖v‖V ‖ηN‖W

≥
√
αa1

√
γa1

β.

No stability statement can be given for the choiceV (1)
N (2.4). One can even explicitly

construct pathological cases, where the uniqueness is not valid: Assume a simple example
of NS = 1, µ1 ∈ P andg(·;µ1) = 0. Then, the solutionsu(µ1), λ(µ1) areb-orthogonal,
i.e., b(u(µ1), λ(µ1)) = 0, which is obtained from (2.3). If we assume a definition of re-
duced spaces without supremizer, i.e.,VN := span{u(µ1)}, MN := {sλ(µ1), s ∈ R

+
0 } ⊂

WN := span{λ(µ1)}, this implies two conceptional problems: First, the solution uN (µ1)
of SPN (µ) is not constrained in any way, hence we solve an ordinary unconstrained PDE.
Second, we lose the uniqueness of solutions, due to the lack of the inf-sup stability. Any
(uN , λN ) := (u(µ1), sλ(µ1)) for s ∈ R

+
0 is a solution ofSPN (µ1). Still, in practice the

choice (2.4) may lead to an inf-sup stable scheme, but the inf-sup stability constants can
possibly be arbitrarily small.

REMARK 2.4. If Qa = 1, the choices(2.6) and (2.7) are possibly computationally
attractive alternatives to(2.5). Firstly in the case ofNW ≫ Qf , theQf a-priori solutions
for the enrichment in(2.6) are considerably less costly than theNW supremizer functions
in (2.5). Secondly, the constrained solution is often calculated interms of an iterative solver
which uses as initial guess the solutionũ(µi) of the unconstrained system. Thus no additional

cost at all is then required in(2.7). It is easy to see that̃u(µi) = u(µi)−αiB
1λ(µi) ∈ V

(3)
N

with α−1
i := θ1a(µi) and thusV (4)

N ⊂ V
(3)
N . Moreover, if additionallya1(·, ·) = σ〈·, ·〉V with

σ > 0, thenB = σB1 andBλ(µi) ∈ V
(3)
N and thusV (2)

N ⊂ V
(3)
N , and the dimension is at

mostNS +Qf .

2.4. Algebraic formulation. In order to formulate a discrete matrix inequality problem,
we introduce matrices and vectors

AN (µ) := (a(ϕj , ϕi;µ))
NV

i,j=1 ∈ R
NV ×NV , (2.8)

BN :=
(
b(ϕi, λ(µj))

)NV ,NS

i,j=1
∈ R

NV ×NS , (2.9)

fN (µ) := (f(ϕi;µ))
NV

i=1 ∈ R
NV , (2.10)

gN (µ) := (g(λ(µi);µ))
NS

i=1 ∈ R
NS . (2.11)

We then obtain the following algebraic form ofSPN (µ):

LEMMA 2.5 (Algebraic Reduced Basis Saddle Point ProblemDSPN (µ)). The solu-
tion (uN (µ), λN (µ)) of the reduced saddle point problemSPN (µ) expanded asuN (µ) :=∑NV

i=1 uN,iϕi and λN (µ) :=
∑NS

i=1 λN,iλ(µi) whereuN (µ) := (uN,i)
NV

i=1 ∈ R
NV and
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λN (µ) := (λN,i)
NS

i=1 ∈ R
NS is equivalently characterized by the matrix inequality system

AN (µ)uN (µ) +BNλN (µ) = fN (µ) (2.12)

λN (µ) ≥ 0 (2.13)

gN (µ) −B
T

NuN (µ) ≥ 0 (2.14)

λN (µ)T (gN (µ) −B
T

NuN (µ)) = 0. (2.15)

Proof. (2.12)–(2.14) is easy to verify in terms of the definition ofthe reduced dual cone
MN . By settingη = λN (µ) ± λN,iλN (µi), we get the component-wise complementarity
condition

λN,i(gN (µ) −B
T

NuN (µ))i = 0, i = 1, . . . , NS , (2.16)

where(gN (µ) − B
T

NuN (µ))i is thei-th coefficient of the vectorgN (µ) − B
T

NuN (µ) and
thus (2.15).

We point out thatuN (µ) is unique, whereas the uniqueness ofλN (µ) cannot be guaran-
teed due to the possible linear dependence of the snapshotsλ(µi). However, all solutions of
the coefficient vectorλN (µ) represent the same solution functionλN (µ) ∈MN .

2.5. Offline/online decomposition.The parameter-dependence ofa(·, ·;µ), f(·;µ) and
g(·;µ) introduced in the previous section transfers into an offline/online decomposition of
DSPN (µ) as follows:

Offline-phase. We compute the parameter-independent matrices

A
q

N := (aq(ϕj , ϕi))
NV

i,j=1 ∈ R
NV ×NV , q = 1, . . . , Qa

BN :=
(
b(ϕi, λ(µj))

)NV ,NS

i,j=1
∈ R

NV ×NS ,

f
q

N := (fq(ϕi))
NV

i=1 ∈ R
NV , q = 1, . . . , Qf

gq
N := (gq(λ(µi)))

NS

i=1 ∈ R
NS , q = 1, . . . , Qg.

Online-phase. We assemble the parameter-dependent matrices and right hand sides

AN (µ) =

Qa∑

q=1

θq
a(µ)A

q

N , fN (µ) =

Qf∑

q=1

θq
f (µ)f

q

N , gN (µ) =

Qg∑

q=1

θq
g(µ)gq

N

and solve the discrete reduced problemDSPN (µ). In particular, we remark that all matrices
and vectors involved in the online-phase are low-dimensional. Hence, all operations in the
online-phase are independent of the dimensions ofV,W . Typically, in practice we have
HW ,HV ≫ NV , NW , NS , hence the reduced online-phase will be considerably faster than
the high-dimensional problem solution.

3. Theoretical results. In this section, we comment on some analytical aspects, namely
a consistency result, stability and Lipschitz-continuity.

3.1. Reproduction of solutions.Here we state a consistency result which shows that
detailed solutions are recovered by the reduced scheme if the corresponding snapshots are
contained in the reduced spaces. This could also be formulated as a corollary of the a-
posteriori error analysis of Section 4, but a direct proof ismore elegant and elementary.
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PROPOSITION3.1 (Reproduction of Solutions).Let VN be given by(2.5) or (2.6) or
(2.7). If for someµ ∈ P we haveu(µ) ∈ VN andλ(µ) ∈ MN , thenuN (µ) = u(µ) and
λN (µ) = λ(µ).

Proof. ForvN ∈ VN we directly obtain

a(u(µ), vN ;µ) + b(vN , λ(µ)) = f(vN ;µ)

asVN ⊂ V and(u(µ), λ(µ)) solvesSP (µ). Similarly, forηN ∈MN we directly obtain

b(u(µ), ηN − λ(µ)) ≤ g(ηN − λ(µ);µ)

asMN ⊂M and(u(µ), λ(µ)) solvesSP (µ). Consequently,(u(µ), λ(µ)) solvesSPN (µ).
Due to the uniqueness from Prop. 2.3, we conclude that(u(µ), λ(µ)) = (uN (µ), λN (µ)).

3.2. Boundedness.Next, we show that the solutions are bounded by the data functions
of the saddle point problem:

PROPOSITION 3.2 (A-priori Stability Estimates).Let VN = V
(i)
N , i = 2, 3, 4 given

by (2.5)–(2.7). Then, the solution(uN (µ), λN (µ)) of SPN (µ) is uniformly bounded with
respect toµ:

‖uN (µ)‖V ≤ 1

2ᾱ

(
γ̄f +

γ̄a

βN
γ̄g

)
+

√
1

4ᾱ2

(
γ̄f +

γ̄a

βN
γ̄g

)2

+
γ̄gγ̄f

ᾱβN
=: γ̄u, (3.1)

‖λN (µ)‖W ≤ 1

βN
(γ̄f + γ̄aγ̄u) =: γ̄λ. (3.2)

Proof. We start with the proof of (3.2). Asb(·, ·) is inf-sup stable onVN ×WN , andVN

is finite dimensional, there exists avλN
∈ VN such that

βN ‖vλN
‖V ‖λN‖W ≤ b(vλN

, λN ) = f(vλN
) − a(uN , vλN

)

≤ γ̄f ‖vλN
‖V + γ̄a ‖uN‖V ‖vλN

‖V ,

where the last inequality follows from the uniform continuity of f(·;µ) anda(·, ·;µ). Hence

‖λN‖W ≤ 1

βN
(γ̄f + γ̄a ‖uN‖V ) (3.3)

and (3.2) follows as soon as (3.1) is established. The complimentarity (2.3) also holds for the
reduced solution, i.e.,b(uN , λN ) = g(λN ). In terms of coercivity and continuity, we get

ᾱ ‖uN‖2
V ≤ a(uN , uN ) = f(uN ) − b(uN , λN )

= f(uN ) − g(λN ) ≤ γ̄f ‖uN‖V + γ̄g ‖λN‖W .

Inserting (3.3) and rearranging the terms, we conclude with

‖uN‖2
V − 1

ᾱ

(
γ̄f +

γ̄gγ̄a

βN

)

︸ ︷︷ ︸
=:p

‖uN‖V − γ̄gγ̄f

ᾱβN︸ ︷︷ ︸
=:q

≤ 0.

We observe thatp, q ≥ 0, the quadratic equationx2 − px− q = 0 has real rootsx1 ≤ x2 and
‖uN‖V ∈ [x1, x2] such that we finally obtain (3.1):

‖uN‖V ≤ x2 =
p

2
+

√
p2

4
+ q = γ̄u.
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3.3. Lipschitz-continuity. In this section, we are interested in some regularity results
of the solutions with respect to the parameter. As we will show, Lipschitz-continuity of the
reduced solutions holds under the assumption of Lipschitz-continuity of the data with respect
to µ.

PROPOSITION3.3 (Lipschitz-continuity with respect toµ). LetVN be given by(2.5)or
(2.6) or (2.7). Then, the solution(uN (µ), λN (µ)) of SPN (µ) is Lipschitz-continuous with
respect toµ, i.e., for allµ,µ′ holds

‖uN (µ) − uN (µ′)‖V ≤ Lu‖µ − µ
′‖, (3.4)

‖λN (µ) − λN (µ′)‖W ≤ Lλ‖µ − µ
′‖, (3.5)

with constants independent ofµ,µ′

Lu := C1 +
√
C2

1 + C2, Lλ :=
1

βN
(Lf + Laγ̄u + γ̄aLu) ,

C1 :=
1

2ᾱ

(
Lgγ̄a

βN
+ Lf + Laγ̄u

)
, C2 :=

Lg

ᾱβN
(Lf + Laγ̄u) .

HereLa, Lf , Lg are the Lipschitz-constants ofa(·, ·;µ), f(·;µ) andg(·;µ), andγ̄u is defined
by (3.1).

Proof. We assumeµ,µ′ ∈ P and introduce some abbreviations (with slight abuse of
notation) to facilitate the readability:u := uN (µ), u′ := uN (µ′), λ := λN (µ), λ′ :=
λN (µ′), a(·, ·) := a(·, ·;µ), a′(·, ·) := a(·, ·;µ′), f(·) := f(·;µ), f ′(·) := f(·;µ′), g(·) :=
g(·;µ), g′(·) := g(·;µ′). Then, obviously we have

a(u, v) + b(v, λ) = f(v), v ∈ VN , (3.6)

a′(u′, v) + b(v, λ′) = f ′(v), v ∈ VN . (3.7)

Due to the inf-sup stability forλ− λ′ ∈WN there exists av ∈ VN with

βN ‖v‖V ‖λ− λ′‖W ≤ b(v, λ− λ′) = b(v, λ) − b(v, λ′)

= f(v) − a(u, v) − f ′(v) + a′(u′, v) + a(u′, v) − a(u′, v)

≤ Lf ‖v‖V ‖µ − µ
′‖ + La ‖u′‖V ‖v‖V ‖µ − µ

′‖ + γ̄a ‖u− u′‖V ‖v‖V .

Using the boundedness ofu′ due to Prop. 3.2, we obtain

‖λ− λ′‖W ≤ 1

βN
((Lf + Laγ̄u)‖µ − µ

′‖ + γ̄a ‖u− u′‖V ) . (3.8)

Now, the inequality of the saddle point problem yields

b(u− u′, λ′ − λ) = b(u, λ′ − λ) + b(u′, λ− λ′)

≤ g(λ′ − λ) + g′(λ− λ′) ≤ Lg ‖λ′ − λ‖W ‖µ − µ
′‖.

Moreover, we find forv ∈ VN

a(u− u′, v) = a(u, v) − a(u′, v)

= −b(v, λ) + f(v) − a(u′, v) + a′(u′, v) + b(v, λ′) − f ′(v)

≤ b(v, λ′ − λ) + Lf ‖v‖V ‖µ − µ
′‖ + La ‖u′‖V ‖v‖V ‖µ − µ

′‖.
8



Then, the coercivity in combination withv = u− u′ guarantees

ᾱ ‖u− u′‖2
V ≤ a(u− u′, u− u′)

≤ Lg ‖λ′ − λ‖W ‖µ − µ
′‖

+Lf ‖u− u′‖V ‖µ − µ
′‖ + La ‖u′‖V ‖u− u′‖V ‖µ − µ

′‖.

Using the boundedness ofu′ this simplifies to

‖u− u′‖2
V ≤ 1

ᾱ
‖µ − µ

′‖ (Lg ‖λ′ − λ‖W + (Lf + Laγ̄u) ‖u− u′‖V ) .

Inserting (3.8) and rearranging the terms gives

‖u− u′‖2
V − 1

ᾱ

(
Lgγ̄a

βN
+ Lf + Laγ̄u

)
‖µ − µ

′‖ ‖u− u′‖V

−
(
Lg

ᾱβN
(Lf + Laγ̄u)

)
‖µ − µ

′‖2 ≤ 0.

We argue as in the proof of Prop. 3.2: using that the left hand side is of the formx2−2C1‖µ−
µ

′‖x − C2‖µ − µ
′‖2 and has real rootsx1 ≤ x2, we conclude that‖u− u′‖V < x2 which

proves (3.4). Inserting the last result in (3.8) finally gives (3.5).

4. A-posteriori error analysis. In this section, we focus on the efficient control of the
reduction error by a-posteriori error estimators. Adaptive techniques based on a-posteriori
error estimators play an important role in enhancing the performance of finite element dis-
cretizations, see, e.g., the monographs [1, 19, 31, 36] and the references therein. For ab-
stract variational inequalities in the context of finite elements, we refer to [2, 5, 28], whereas
obstacle-type problems are considered in [6, 21, 24, 30]. Also in RB-methods, a-posteriori
error bounds can be applied in adaptive basis enrichment schemes, such as the Greedy algo-
rithm [37, 9, 15, 4].

4.1. Preliminaries. We start by introducing suitable functionals, which characterize the
error of the reduced solution. First, we define the equality residualr(·;µ) ∈ V ′ by

r(v;µ) := f(v;µ) − a(uN (µ), v;µ) − b(v, λN (µ)), v ∈ V. (4.1)

Next, we quantify the inequality error by an inequality residuals(·;µ) ∈W ′ with

s(η;µ) := b(uN (µ), η) − g(η;µ), η ∈W. (4.2)

The residualr(·;µ) represents the right hand side of the error-equation, i.e.,

a(u(µ) − uN (µ), v;µ) + b(v, λ(µ) − λN (µ)) = r(v;µ), v ∈ V. (4.3)

Equality and inequality residuals can be quantified onVN andMN by

r(vN ;µ) = 0, vN ∈ VN and s(ηN ;µ) ≤ 0, ηN ∈MN . (4.4)

Moreover, we point out that for the special case ofuN (µ) = u(µ) andλN (µ) = λ(µ) we
haver(v;µ) = 0 ands(η;µ) ≤ 0 for all v ∈ V, η ∈ M . Hence, the deviation from this
equality/inequality gives information about the error andneeds to be controlled. In order to
quantify the error, we first introduce the Riesz-representers vr(µ) ∈ V, ηs(µ) ∈ W of the
residuals

〈v, vr(µ)〉V = r(v;µ), v ∈ V, 〈η, ηs(µ)〉W = s(η;µ), η ∈W.
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Additionally, we denotẽηs(µ) ∈ W to be the Riesz-representer of the detailed inequality
functional defined by

〈η̃s(µ), η〉W = b(u(µ), η) − g(η;µ), η ∈W. (4.5)

We require a projectionπ : W → M which we assume to be an orthogonal projection with
respect to a scalar-product〈·, ·〉π onW endowed with the induced norm‖η‖π :=

√
〈η, η〉π

being equivalent to theW -norm via cπ‖η‖W ≤ ‖η‖π ≤ Cπ‖η‖W for suitable constants
0 < cπ ≤ Cπ. Moreover, we assume thatπ satisfies the following properties:

〈η − π(η), η′〉W ≤ 0, η ∈W,η′ ∈M, (4.6)

π(η̃s) = 0, (4.7)

〈η, η̃s〉π ≤ 0, η ∈M. (4.8)

For example, these conditions are met by standard orthogonal projections with〈·, ·〉π =
〈·, ·〉W . Other problem specific choices will be given in Section 5. However, note that such
a projection operator will in general be non-linear. We state a connection between the primal
and dual error, which will be used for the a-posteriori errorestimators.

LEMMA 4.1 (Primal/Dual Error Relation).For anyµ ∈ P the dual error can be bounded
by the primal error as

‖λ(µ) − λN (µ)‖W ≤ 1

β
(‖r(·;µ)‖V ′ + γa(µ) ‖u(µ) − uN (µ)‖V ) , (4.9)

Proof. The inf-sup stability ofb(·, ·) guarantees the existence of anv ∈ V, v 6= 0 such
that with (4.3)

β ‖v‖V ‖λ− λN‖W ≤ b(v, λ− λN ) = r(v) + a(uN − u, v)

≤ ‖v‖V ‖r‖V ′ + γa ‖v‖V ‖u− uN‖V ,

and the result follows.

4.2. A-posteriori error estimators. We can now present a-posteriori error bounds.
PROPOSITION4.2 (Upper A-Posteriori Error Bound).For anyµ we define the residual

estimators

δr(µ) := ‖r(·;µ)‖V ′ = ‖vr(µ)‖V (4.10)

δs1(µ) := ‖π(ηs(µ))‖W (4.11)

δs2(µ) := 〈λN (µ), π(ηs(µ))〉W . (4.12)

Then, the reduced basis errors can be bounded by

‖u(µ) − uN (µ)‖V ≤ ∆u(µ) := c1(µ) +
√
c1(µ)2 + c2(µ), (4.13)

‖λ(µ) − λN (µ)‖W ≤ ∆λ(µ) :=
1

β
(δr(µ) + γa(µ)∆u(µ)) , (4.14)

with constants

c1(µ) :=
1

2α(µ)

(
δr(µ) +

δs1(µ)γa(µ)

β

)
, c2(µ) :=

1

α(µ)

(
δs1(µ)δr(µ)

β
+ δs2(µ)

)
.
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Proof. We note that (4.14) is a direct consequence of (4.13) and (4.9). Hence, it remains
to show (4.13). Using coercivity, the error-equation (4.3), b(u, λN − λ) ≤ g(λN − λ), the
definitions of the residuals and〈λ, ηs − π(ηs)〉W ≤ 0 lead to

α ‖u− uN‖2
V ≤ a(u− uN , u− uN ) = r(u− uN ) − b(u− uN , λ− λN )

≤ δr ‖u− uN‖V + b(u, λN − λ) + b(uN , λ− λN )

≤ δr ‖u− uN‖V + g(λN − λ) + s(λ− λN ) + g(λ− λN )

= δr ‖u− uN‖V + 〈λ, π(ηs)〉W + 〈λ, ηs − π(ηs)〉W
≤ δr ‖u− uN‖V + 〈λ− λN , π(ηs)〉W + δs2

≤ δr ‖u− uN‖V + ‖λ− λN‖W δs1 + δs2.

Inserting (4.9) yields

‖u− uN‖2
V − 1

α

(
δr +

δs1γa

β

)
‖u− uN‖V − 1

α

(
δs1δr
β

+ δs2

)
≤ 0.

Using the same argumentation as in previous proofs, i.e., bounding the error by the largest
root of the corresponding quadratic polynomial, gives the bound (4.13).

We briefly comment on the different terms in the upper bound. In the ideal case of
uN (µ) = u(µ), λN (µ) = λ(µ) we obtainδr(µ) = δs1(µ) = δs2(µ) = 0 by (4.7).
Then, the error bounds also yield∆u(µ) = ∆λ(µ) = 0, identifying exact approximation
a-posteriori, i.e., in the online-phase.

Let us assume an unconstrained case ofλN (µ) = 0 andb(uN (µ), η) ≤ g(η;µ) for all
η ∈ M . Then, it is easy to see thatδs1(µ) = δs2(µ) = 0, and we perfectly reproduce the

tight a-posteriori bound for elliptic equations of [35]:∆u(µ) =
‖r‖V ′

α(µ) .
Let us now comment on a difference of the above procedure to RB-error estimation for

the Stokes problem [32]. There, the residuals(·;µ) is involved in an equality constraint, and
hence, the deviation can simply be computed by taking‖s‖W ′ as an error estimator compo-
nent. In our case we cannot do that. We obviously would correctly penalize ifs(η;µ) > 0 for
someη ∈M as desired, but we would also penalizes(η;µ) < 0 which is not necessary. Our
approach involving the projection operator is one way of adequately measuring the reduced
basis inequality violation.

An interesting fact is that the equality residual can be observed to vanish in certain situ-
ations.

PROPOSITION4.3 (Vanishing Equality Residual).LetQa = 1 and the reduced primal
spaceVN be chosen as(2.6). Then, we obtainr(·;µ) = 0.

Proof. Recallinga(·, ·;µ) = θ1a(µ)a1(·, ·), then the definition of the equality residual
and of the operatorsA andB1 yield

r(v;µ) =

Qf∑

q=1

θq
f (µ)a1(Afq, v) − θ1a(µ)a1(uN (µ), v) − a1(B1λN (µ), v) = a1(z, v),

with z :=
∑Qf

q=1 θ
q
f (µ)Afq − θ1a(µ)uN (µ) − B1λN (µ) ∈ VN . As r(·;µ) vanishes onVN ,

we obtain

0 = r(z;µ) = a1(z, z;µ) ≥ α(µ)‖z‖2.

Therefore,z = 0, and consequentlyr(v) = a1(0, v) = 0, v ∈ V .
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The residuals do not only provide an upper bound for the errorin Prop. 4.2 but also yield
lower bounds.

PROPOSITION4.4 (Lower A-Posteriori Error Bounds).For any µ ∈ P the following
lower bounds for the reduction error hold:

δr(µ) ≤ γa(µ) ‖u(µ) − uN (µ)‖V + γb ‖λ(µ) − λN (µ)‖W , (4.15)

δs1(µ) ≤ γbCπ

cπ
‖u(µ) − uN (µ)‖V , (4.16)

δs2(µ) ≤ γ̄λγbCπ

cπ
‖u(µ) − uN (µ)‖V . (4.17)

Proof. Thanks to the error-equation (4.3), we obtain with the Riesz-representationvr ∈
V of r ∈ V ′

γa(µ) ‖u− uN‖V ‖vr‖V + γb ‖λ− λN‖W ‖vr‖V ≥ a(u− uN , vr) + b(vr, λ− λN )

= r(vr) = 〈vr, vr〉V = ‖vr‖2
V ,

which gives (4.15).
We note that orthogonal projections on convex sets have Lipschitz-constant one. Thus

(4.7) and the norm-equivalence onV guarantee

δs1 = ‖π(ηs) − π(η̃s)‖W ≤ 1

cπ
‖π(ηs) − π(η̃s)‖π ≤ 1

cπ
‖ηs − η̃s‖π ≤ Cπ

cπ
‖ηs − η̃s‖W .

For the last term we continue with

‖ηs − η̃s‖W = sup
η∈W

b(uN , η) − g(η) − b(u, η) + g(η)

‖η‖W
= sup

η∈W

b(uN − u, η)

‖η‖W

≤ sup
η∈W

γb‖uN − u‖V ‖η‖W

‖η‖W
≤ γb‖uN − u‖V (4.18)

from which we can conclude (4.16).
The bound (4.17) follows from (4.16) and the observation that δs2 ≤ γ̄λ‖π(ηs)‖W .
REMARK 4.5. A closer look on the lower and upper bounds given in Propositions 4.4

and 4.2 reveals a gap. In the upper bound the term
√
δs2 enters, whereas in the lower bound

the termδs2 appears. This results from the variational inequality setting.
REMARK 4.6. We point out that the lower bounds strongly depend on the constantscπ

andCπ. If chosing〈·, ·〉π := 〈·, ·〉W these are independent of the discretizationCπ = cπ = 1,
but then the evaluation ofπ has the same complexity as the original problem. To reduce the
computational cost, alternative scalar products can be selected, but thenCπ/cπ possibly
depends on the high dimensionHW and is possibly quite large. In that case, the lower
bounds are not very informative.

5. Implementational aspects.In this section, we comment on computational aspects
that are required for the realization of the reduced scheme and our experiments. Quite often
W is the dual space of a finite dimensionalV which simplifies some computations, as the
dimensions coincide, and the inner products are related.

5.1. Solution of the detailed and reduced problem.In practice it is quite common
to choose the basis ofW and the bilinear formb so that the matrix associated tob(·, ·) has
a simple diagonal form, this property is often referred as biorthogonality. This makes the
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use of a primal-dual active set strategy for the high-dimensional problem associated with the
snapshots computationally attractive cf. [18, 20, 26].

For the reduced problem (2.12–2.15), different solvers such as interior point methods,
SQP and penalty techniques can be applied. Here, we do not require a special biorthogo-
nalization of the basis ofVN with respect to the vectors spanningMN . Hence, we accept
that the matrixBN is now possibly dense. It is easy to show that the solution ofDSPN (µ)
is equivalent to the solution of a constrained convex quadratic optimization problem, cf. the
variational minimization problem (1.1).

REMARK 5.1 (Discrete Quadratic ProgramDQPN (µ)). The solution vectors(uN (µ),
λN (µ)) ofDSPN (µ) are equivalently obtained as solution of a constrained convex quadratic
optimization problem. In particular,uN (µ) is the unique minimizer of

min
1

2
vT

NAN (µ)vN − fN (µ)T vN (5.1)

s.t. B
T

NvN ≤ gN (µ), (5.2)

andλN (µ) is a non-negative vector of Lagrange multipliers in the optimum, i.e.,ANuN +

BNλN = fN andλN,i = 0 if (B
T

NuN − gN )i < 0.
Hence, any off-the-shelf quadratic optimization routine using Lagrange multipliers can

be used to computeuN (µ) andλN (µ). Note that we did not assume linear independence of
the dual snapshots in the construction of the reduced cone. Therefore, the inequality system
may have linearly dependent rows. As mentioned above, this may lead to a non-unique vector
λN , but a unique functionλN (µ).

5.2. Choice of the projection for the caseW = V ′. For the special case ofW = V ′

we could use the〈·, ·〉W inner product and the corresponding orthogonal projectionfor the
error estimators. Here, for computational simplicity we use a different projection. First, we
make some further assumptions on the problem. We suppose that W is endowed with a basis
{χi}i such thatM can be written as:

M =

{
HW∑

i=1

β
i
χi| βi

≥ 0

}
.

For obstacle type problems this is natural to hold in the finite element setting, since{χi}HW

i=1

can be chosen as a dual basis of{ψi}HV

i=1. We then haveHV = HW =: H with the inner prod-
uct matricesMV := (〈ψi, ψj〉V )H

i,j=1 andMW := (〈χi, χj〉W )H
i,j=1. These matrices allow

to compute inner products and norms as required in the a-posteriori error bounds. For in-
stance, for anyη, η′ ∈W with coefficient vectorsη, η′ ∈ R

H we have〈η, η′〉W = ηTMW η′.

In the case ofW = V ′ one can even verify, thatMW = (MV )−1. If MV is anM -matrix,
which is typical for finite element discretization spaces, one can even guarantee, thatMW

has non-negative entries. Details on these aspects are provided in Section A.2. We define
π : W →M as follows:

π(η) =

H∑

i=1

πiχi, π = (πi)
H
i=1 := (MW )−1[MW η]+ (5.3)

with [·]+ denoting the component-wise positive part of a vector. An elementη ∈ W is in
M if and only if η

i
≥ 0 for all indicesi. Hence, withMV being anM -matrix, we obtain

MW η ≥ 0 for η ≥ 0. Thus forη ∈ M , we have[MW η]+ = MW η andπ(η) = η. We
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define an alternative inner product onW by

〈η, η′〉π := ηT (MW )2η′. (5.4)

Symmetry, bilinearity and positive definiteness are obviously inherited from the inner product
of W . One can verify, thatπ from (5.3) is the orthogonal projection onM with respect to
this inner product (5.4), and that it satisfies the assumptions (4.6)–(4.8). Details on this are
given in the appendix in Section A.6. Therefore,π can be applied in the a-posteriori error
bounds. We note that the dense matrixMW which enters formally in the definition ofπ is
not required to evaluateδs1 andδs2. By definition (4.11), (4.12), we have

δ2s1 =
(
(MW )−1[MW η

s
(µ)]+

)T

MW (MW )−1[MW η
s
(µ)]+

= [BTuN (µ) − g(µ)]T+M
V [BTuN (µ) − g(µ)]+,

δs2 = λN (µ)TMW (MW )−1[MW η
s
(µ)]+

= λN (µ)T [BTuN (µ) − g(µ)]+.

We observe that this equivalent representation ofδs1 andδs2 shows directly that these contri-
butions are equal to zero if the reduced solutionuN (µ) ∈ X(µ), and thus these terms can be
regarded as a measure for the violation of the constraint.

5.3. Offline/online decomposition of error estimators.We now comment on the off-
line/online decomposition of the a-posteriori error estimators∆u(µ),∆λ(µ). In contrast
to other RB-methods, the error estimators are currently notyet fully decomposable in an
offline/online fashion due to the non-linear projection. But parts of the required components
can be decomposed. We assume the parameter-dependent constantsγa(µ), α(µ) and the
inf-sup constantβ or upper/lower bounds thereof to be available (e.g., by the uniform bounds
γ̄a, ᾱ) or computable (e.g., by the successive constraint method [22]) in the online-phase.
The remaining relevant quantities, which then require an offline/online decomposition are the
boundsδr(µ), δs1(µ) andδs2(µ).

The equality residual bound isδr(µ) = ‖r(·,µ)‖V ′ . Recalling the separable parameter
representations ofa(·, ·;µ) andf(·;µ) from (2.1), (2.2), we compute in the offline-phase
the Riesz-representersvq,i

a , vq
f , v

i
b ∈ V of the parameter-independent linear formsaq(ϕi, ·),

fq(·), b(·, λ(µi)) for all q, i in suitable ranges. Then, in view of the definition of the residual
(4.1) and the coefficient representationsuN (µ) =

∑NV

i=1 uN,iϕi, λN (µ) =
∑NS

i=1 λN,iλ(µi),
we see that the Riesz-representativevr ∈ V of r(·;µ), satisfies

vr(µ) =

Qf∑

q=1

θq
f (µ)vq

f −
Qa∑

q=1

NV∑

i=1

θq
a(µ)uN,iv

q,i
a −

NS∑

i=1

λN,iv
i
b =:

Qr∑

q=1

θq
r(µ)vq

r (5.5)

by choosing an arbitrary enumerationv1
r , . . . , v

Qr
r of the vectorsvq,i

a , vq
f , v

i
b with suitable

coefficient functionsθq
r(µ). In particular we setQr := Qf +NV Qa +NS . Therefore, in the

offline-phase, we compute the inner-product matrix

Kr :=
(〈
vq

r , v
q′

r

〉

V

)Qr

q,q′=1
∈ R

Qr×Qr .

In the online-phase we determine the vectorθr(µ) = (θ1r(µ), . . . , θQr
r (µ))T and obtain the

desired residual norm as

δr(µ) = ‖vr(µ)‖V =

√
θr(µ)TKrθr(µ).

14



Here, the estimator componentδr(µ) is fully decomposed into an offline- and online-phase.
In particular, for any newµ, this quantity can be computed inO(Q2

r) and is independent of
the detailed dimensionsHV orHW .

Concerning the inequality residual componentsδs1 and δs2, we cannot provide a full
offline/online decomposition. In particular, the online-phase will still depend on operations
of the dimensionalityHW . However, a partial decomposition is possible and in the special
case of Subsection 5.2, we observe thatBTuN (µ) − g(µ) can be computed as a trivial
embedding of a linear operator of reduced cost and some sparse high dimensional matrix
vector operations.

6. Experiments. In this section, we test our approach on some obstacle type examples
in 1D. We consider an “elastic” rope hanging over a surface that may cause contact. Our
setting is as follows: The domainΩ = (0, 1) is discretized with a uniform mesh of step size
∆x := 1/K for K ∈ N. For the discrete function spaceV , we use standard conforming
nodal first order finite elementsV := {v ∈ H1

0 (Ω)|v|[xk,xk+1] ∈ P1, k = 0, . . . ,K − 1} of
dimensionHV = HW = H := K − 1 = 200 with xk := k∆x. We associate the basis
functionψi ∈ V with its Lagrange nodexi ∈ Ω, i.e.,ψi(xj) = δij , i, j = 1, . . . ,H. The
discretization of the Lagrange multipliers is performed using a dual finite element basis of
W = V ′. The coneM is defined by:

M =

{
H∑

i=1

η
i
χi, ηi

≥ 0

}
.

6.1. Two-dimensional parameter space.In a first example, the parameter domain is
P := [10, 50] × [−0.05, 0.5] ⊂ R

2 and the parameter vector consists of a pair of parameters
µ = (µ1, µ2). The bilinear formsa andb are given by:

a(u, v;µ) :=

∫

Ω

ν(µ)(x)∇u(x) · ∇v(x)dx , v, u ∈ V

b(u, η) := −η(u), u ∈ V, η ∈W

with ν(µ)(x) = µ1Ind[0,1/2](x) + ν0Ind[1/2,1](x) which characterizes the “elasticity” of
the rope. Here we denote byIndΓ the characteristic function of an intervalΓ. We use the
valueν0 = 30.

As we use a dual finite element basis, the matrixB = (b(ψi, χj))
H,H
i,j=1 corresponding

to the bilinear formb(·, ·) is a multiple of the identity. The right-hand side functional f
corresponds to gravity and is defined by:

f(v;µ) =

∫

Ω

γ(x;µ)v(x)dx, v ∈ V

whereγ(x;µ) := γ0 = −1. The obstacle is given asg(η;µ) =
∑H

i=1 ηi
h(xi;µ) for η =

∑H
i=1 ηi

χi with a parameter-dependent barrier function

h(x;µ) = −0.2 (sin(πx) − sin(3πx)) − 0.5 + µ2x.

Examples of solutions are represented in Fig. 6.1.
In the offline-phase, we compute the snapshots, i.e., a set ofdetailed solutions of our

obstacle problem corresponding to various valuesµi of the parameterµ. The reduced basis
{ϕi}NV

i=1 is taken as an orthonormal family ofVN = V
(2)
N given by Eq. (2.5). In our test,

we considerNS = 25 values ofµ taken on a5 × 5-grid composed of uniformly distributed
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FIGURE 6.1. Snapshots and obstacles corresponding to the 1D rope example. Top: the RB-parameters are
associated to the obstacle withµ2 values uniformly distributed in[−0.05, 0.5] and constant elasticityµ1 = 30.
Bottom: the RB-parameters are associated to the elasticitywith µ1 values uniformly distributed in[10, 50] and fixed
obstacle forµ2 = 0.225. Left: primal solution, Right: corresponding Lagrange multipliers. Theu snapshots are
represented with black dashed lines, the obstacles with solid light blue lines, theλ snapshots with solid black lines.

points. Thanks to a standard singular value decomposition routine, we extract from the family
{u(µi), Bλ(µi)} an orthonormal basis using the eigenvectors of the corresponding correla-
tion matrix associated to eigenvalues larger than a toleranceTol = 10−8. As a consequence,
NV = 29 vectors are considered as reduced basis for the primal variable, see Fig. 6.2. An
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FIGURE 6.2. Eight first vectors of the reduced basis{ϕi}
NV
i=1 formingVN .

example of the exact and reduced solutions corresponding tothe (non-snapshot)-parameter
µ

⋆ = (21.7157, 0.1111)T is depicted in Fig. 6.3. We see that the reduced and exact primal
solutionsuN (µ) andu(µ) show almost no difference. However, we observe a differencebe-
tween the reduced and exact dual solutionλ(µ) andλN (µ). This is confirmed quantitatively
as‖u(µ∗)−uN (µ∗)‖V = 0.012961 and‖λ(µ∗)−λN (µ∗)‖W = 0.295079 corresponding to
the norms‖u(µ∗)‖V = 1.662406 and‖λ(µ∗)‖W = 18.814451. Note, that in particular with
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α(µ∗) = 21.715729, βN = 1, γ(µ∗) = 30.000000 and‖r‖V = 0.001111 the inequality
(4.9) can be numerically verified, despite the visual contrary impression.
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FIGURE 6.3. Exact and reduced solutions for a non-snapshot parameterµ
∗ = (21.7157, 0.1111)T . Left:

primal solutions. Right: dual solutions. Solid line: exactsolutions, dashed line: reduced solutions.

6.2. Efficiency of the method.Our second example aims at quantifying the efficiency
of our method. For a more expressive demonstration of the effects, we keep the previous
model but consider a simpler example with a fixed barrier function h(x) = 5x − 10. The
parameter vector is a scalar parameterµ = (µ) that parameterizes the elasticityν(µ) = µ
through the relation

ν(µ)(x) = µ.

The parameter domain isP := [0.2, 2] ⊂ R. We keep the functionalsf(·;µ) andb(·, ·) as
before. We first investigate the error decay with growing number of snapshotsNS . For this,
we construct reduced bases corresponding to an equidistantchoice ofNS parameters from
P. For the primal basis we include the supremizers, hence computeVN = V

(2)
N according to

(2.5). For each reduced model, we determine the maximum error over a test-set of parameters
given as the vertices of a uniform 10x10 grid. The results aredepicted in Fig. 6.4. This nu-
merical example exhibits asymptotically an exponential decrease with respect to the number
of snapshots used to build the reduced basis.
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FIGURE 6.4. Semilog plot of the errors maxµ∈F

`

‖u(µ) − uN (µ)‖
V

´

(left) and
maxµ∈F

`

‖λ(µ) − λN (µ)‖
W

´

(right) and of the a-posteriori estimatorsmaxµ∈F ∆u(µ) and
maxµ∈F ∆λ(µ) with respect to the number of snapshotsNS . The numerical values are represented by
crosses for the errors and by stars for the estimators. A linear regression of the last 5 values is represented by
the solid line for the error and by the dashed line for the a-posteriori estimator. The slopes of the regressions are
indicated in the boxes on the top of the picture.
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NS βN with supremizers log10(βN ) without supremizers
5 1.000000 -2.568645
10 1.000000 -5.631370
15 1.000000 -8.623529
20 1.000000 -11.515277
25 1.000000 -14.094935

TABLE 6.1
Inf-sup constant for various values ofNS .

To highlight the importance of adding the supremizers in thedefinition ofVN , we com-
pare our results withVN = V

(1)
N = span{u(µi)}, i.e., the space of snapshots without enrich-

ment. In a first test, we compute for both settings the inf-supconstantβN for various values
of NS , see the appendix for details on these computations. In contrast to the previous exam-
ple, a(·, ·;µ) is proportional to the scalar product onV andQa = 1. From Remark 2.4 it
then follows that (2.5)–(2.7) yields the same space and thatVN compared to the naive choice
is at most enriched by one element. The results are given in Table 6.1. In this example, the
supremizers greatly improve the stability of the method, and we verify the theoretical findings
of βN ≥ β = 1 for VN = V

(2)
N .

Secondly, we compare the computational cost of the solver. In our case, we use the
open-source octave code’qsolve.m’1, based on a standard active set method as described in
[11]. Numerically, the number of iterations required to solve the reduced problem during the
online-phase increases linearly with respect toN in both cases, see Fig. 6.5. However, in the
case of (2.4), the slope is roughly two times bigger than in the case of (2.5).
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FIGURE 6.5.Effect of the inclusion of supremizers. Number of iterations required to solve the reduced problem.

Dots: VN = V
(2)
N

with supremizers, cf.(2.5); crosses:VN = V
(1)
N

without supremizers, cf.(2.4).

Let us emphasize that in this example the inclusion of the supremizer functions does not
improve the accuracy of the reduced solutions. But as indicated by Table 6.1 and in Fig. 6.5,
the inf-sup constants and the computational time indeed do improve by this space extension.

In a third test, we illustrate the performance of our reducedbasis scheme compared to a
parameter-wise computation of the detailed solution. We evaluate the actual acceleration due
to our reduced-basis method, we measure the respective computation times of the offline- and

1http://docs.ufrmd.dauphine.fr/optiNum/mat/qsolve.txt.
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online-phases and compare them to the time required by a standard method. More precisely,
we define:

• t1: Computation time for one fine scale solution, i.e., time required to determine
(u(µi), λ(µi)). In our case, this time is closely related to the performanceof the
primal-dual active set strategy and depends on the dimension of V andW .

• t2: Offline-phase computation time, i.e., time correspondingto the snapshot com-
putation, determination of the supremizers, the orthogonal basis(ϕi)

NV

i=1, the matrix
componentsA

q

N andBN and the vector componentsf
q

N andgq
N .

• t3: Online-phase computation time, i.e., time required to assemble the matrixAN (µ),
vectorsfN (µ), gN (µ) and to solve the reduced saddle point problem in order to de-
termine(uN (µ), λN (µ)). In our case, this time is closely related to the performance
of the applied quadratic optimization routine.

For the example we consider in this section, we chooseNS = 10 as the number of snapshots
that we use to build the reduced basis. One finds the mean values (over approximately 150
measurements obtained with an Intel Core2 Duo 2.6 GHz processor): t1 = 0.095283, t2 =
0.956744, t3 = 0.005902. Suppose now that one has to solve the problemL times. The
times required by our reduced-basis method scales ast2 + L · t3, whereas a standard method
of L detailed simulations requires a time that scales asL · t1. Asymptotically, we observe an
acceleration factor of about 16.

6.3. Reduced basis generation with the Greedy algorithm.In a last test, we use the
Greedy algorithm [37, 9, 15, 4] for adaptive basis generation based on the a-posteriori esti-
mators∆u and∆λ described in Section 4 to compute a relevant basis. In this procedure, we
sequentially enrich the current basis with the snapshot corresponding to the parameter value
that maximizes an error indicator∆(µ), e.g.,∆(µ) := ωu∆u + ωλ∆λ with some weights
ωu, ωλ ∈ R

+. The precise algorithm is the following:
ALGORITHM 1. Input:Nmax ∈ N, accuracyεtol, initial sampleµ1, training setT ⊂ P.
1. setk := 0
2. repeat

(a) set k:= k+1
(b) Compute the snapshot(u(µk), λ(µk)).
(c) defineVN andMN corresponding to the snapshots{(u(µi), λ(µi))}k

i=1.
(d) defineε := maxµ∈T ∆(µ) andµk+1 := arg maxµ∈T ∆(µ)

3. until ε < εtol or k ≥ Nmax

4. setNS := k and return reduced basis{ϕi}NV

i=1 and snapshots{λ(µi)}NS

i=1

Only NS detailed problems are solved (during step 2b); all other solutions deal with
reduced problems of small dimension. Additional manipulations of high dimensional vectors
are done onlyNS times in Step 2c) to compute the orthogonal basis and in Step 2d) when
computing the projectionπ required to evaluate the a-posteriori estimator∆u(µ)+∆λ(µ). In
our caseV ′ = W and this projection consists in applying component-wise the cheap function
πc(x) = min(0, x), cf. Section 5.3.

In our test, we use the example of Section 6.1. As initial value, we setµ1 = (1.1,−0.1)
which is the center value of the parameter interval. We set the weights for the error estimator
∆(µ) asωu = ωλ = 1. We compare the following different basis generation procedures.
First,Bu denotes the reduced basis associated with the coarse gridC of 5×5 = 25 uniformly
distributed points inP. Second,B∆ stands for the reduced basis resulting from the Greedy
algorithm Algorithm 1 using the a-posteriori error estimator ∆(µ) with Nmax = 25. The
training gridT we use is composed of17×17 = 289 uniformly distributed points. Finally,Be

denotes the basis obtained by the Greedy algorithm using thetrue error as selection measure,
i.e. ∆(µ) is replaced withεN (µ) := ωueu(µ) + ωλeλ(µ) with eu = ‖u(µ) − uN (µ)‖V
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FIGURE 6.6. Top: numerical values of the errorεN = ‖u(µ) − uN (µ)‖
V

+ ‖λ(µ) − λN (µ)‖
W

when
using the reduced basis obtained by Algorithm 1 (left) and the reduced basis obtained taking uniform coarse grid
(right). Both plots are using the fine test gridF . Bottom: numerical values of the a-posteriori estimator∆u(µ) +
∆λ(µ) obtained by Algorithm 1 plotted on the train gridT (left) and selected valuesµ1, · · · , µNS

in T (right).
Note that both errors and a-posteriori estimates are zero whenµ corresponds to a snapshot’s parameter value, see
Prop. 3.1 and Prop. 4.4.

andeλ = ‖λ(µ) − λN (µ)‖W The latter basis generation procedure is computationally very
expensive and not practical, but it is included as a reference method. In all cases we obtain
NS = 25 snapshots and determine the errorεN on a fine test gridF of 33 × 33 = 1089
uniformly distributed points. The results are depicted in Fig. 6.6. The primal part{ϕi}NV

i=1

of the reduced basis is of dimensionsNV = 29 for Bu and of dimensionNV = 40 for B∆.
Hence we have a small overcost of the greedy algorithm. Nevertheless, the maximal error
is significantly reduced when using the greedy algorithm. This is shown in Table 6.2, where
we report the maximum of the component errorseu, eλ, the errorεN . In this example, the

maxµ∈F{eu} maxµ∈F{eλ} maxµ∈F{εN} NV

Bu 0.059944 1.092896 1.146332 29
B∆ 0.028021 0.836206 0.864084 40
Be 0.031795 0.485100 0.502336 42

TABLE 6.2
Size of basis and maximal test errors obtained when using theGreedy algorithm, or a uniform grid for basis

generation.

accuracyεN = 1.146332 is obtained using the uniform gridC with NS = 25 snapshots
and a reduced primal space of dimensionNV = 29. When using the greedy algorithm
with the a-posteriori error estimators, the same accuracy is obtained with roughly half the
numberNS = 14 of required snapshots, and the corresponding basisB∆ contains in this case
NV = 26 vectors. The Greedy algorithm used with the true error as selection criteria, once
again withNS = 25 snapshots, results in a basisBe of NV = 42 vectors. The decrease of
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the errorεN and the a-posteriori estimatemaxµ∈T {∆u(µ) + ∆λ(µ)} along the iterations
of the construction ofB∆ is shown in Fig. 6.7. The results indicate that the greedy algorithm
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FIGURE 6.7. Evolution ofmaxµ∈T {εN} (blue crosses) andmaxµ∈T {ωu∆u(µ) + ωλ∆λ(µ)} (green
stars) with respect to the number of snapshotsNS used to assemble the reduced problem.

indeed is a procedure leading to compact bases, also in our case of variational inequalities.
The a-posteriori error estimators indeed seem to be good substitutes for the true errors in the
greedy algorithm as the dimensions and accuracies ofB∆ andBe do not deviate too much.

7. Conclusion. We have presented a reduced basis scheme for parametrized variational
inequalities. We tackled the conceptional difficulty of including inequality constraints in the
RB-scheme and analysis. This required ingredients from VI-theory for a-posteriori error ana-
lysis by non-linear projection operators. The full offline-online decomposition of the reduced
scheme could be obtained as in the unconstrained case. The a-posteriori error estimation also
yields rigorous and efficient lower and upper bounds. In contrast to the unconstrained case,
the a-posteriori error estimators are not yet fully decomposable in an offline-online fashion,
as the online-phase still slightly depends on the high dimension. This is subject to further
investigations.

Development of RB-methods is widely driven by solving more and more complex para-
metrized PDEs. When viewed as parametrized variational minimization problems, another
class of possible extensions is adding more complex constraints to the optimization prob-
lem. Such extensions and reduction schemes may very likely leave the comfortable realm of
Galerkin projections, but gain conceptional advantages. We only mention the possibilities of
Reduced Basis schemes with respect to conservation of physical properties, such as mass and
non-negativity. Such formulations are expected to be interesting future research directions.
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Appendix A. Details and Proofs.
In this addendum we give details on various aspects and proofs for certain statements.

Some of the following results can be found in standard-text-books on variational inequalities,
as listed in the introduction. For completeness, we reproduce them in the finite dimensional
context. These insights were very helpful for us, and may also be of use for the interested
reader.

A.1. Inf-Sup Implications. The following characterization of inf-sup stability in finite
dimensional spaces can be stated:

LEMMA A.1 (Inf-sup implications).Let b(v, η) be inf-sup-stable onV ×W , i.e.,

inf
η 6=0

sup
v 6=0

b(v, η)/(‖v‖V ‖η‖W ) ≥ β > 0.

We can define the closed nonempty setV0 := {v ∈ V |b(v, η) = 0∀η ∈ W}. We define two
sets of equation systems forf ∈ V ′ andg ∈W ′, respectively:

b(v, η) = f(v), v ∈ V (A.1)

b(v, η) = g(η), η ∈W (A.2)

Then holds
i) Eqn. (A.1) has at most one solutionη ∈W .

ii) Eqn. (A.2) has at least one solutionv ∈ V .
iii) Eqn. (A.1) has a unique solutionη ∈W , if f(v0) = 0 for v0 ∈ V0

iv) Eqn.(A.2) has a unique solutionv ∈ V ⊥
0 .

Proof. The bilinear formb can be represented by a linear continuous operatorB : W →
V asb(v, η) = 〈v,Bη〉V . (This can be obtained by using Riesz-representation theorem for
fixedη, which uniquely defines eachBη and then showing, thatB is linear and continuous.)
For i): Letη, η′ ∈W be two different solutions, then we have

b(v, η − η′) = f(v) − f(v) = 0

hence,supv b(v, η − η′) = 0 which is a contradiction to the inf-sup stability conditionas
η − η′ 6= 0. In particular this implies thatB is injective.

For ii): LetBad : V → W be the adjoint ofB andgr ∈ W be the Riesz-representative
of g. ¿From i) we know, thatB is injective. ThenBad is surjective, such that forgr ∈ W
there exists av ∈ V with Badv = gr. This satisfies

b(v, η) = 〈v,Bη〉V =
〈
Badv, η

〉
W

= 〈gr, η〉W = g(η).

For iii): It remains to show existence, uniqueness then follows from i). First we note,
that

V0 = {v ∈ V : 〈v,Bη〉V = 0∀η ∈W} = R(B)⊥

where we denote the range ofB asR(B). The condition thatf vanishes onV0 implies for its
Riesz-representativefr:

0 = f(v0) = 〈fr, v0〉V , ∀v0 ∈ V0.

Hencefr ∈ V ⊥
0 = (R(B)⊥)⊥ = R(B). Therefore there existsη ∈ W with Bη = fr. This

satisfies for allv ∈ V

b(v, η) = 〈v,Bη〉V = 〈v, fr〉V = f(v)
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For iv): Let v̄ ∈ V be a solution (existence due to ii)) andP : V → V0 be the orthogonal
projection, which exists, asV0 is nonempty and closed. Then we definev := v̄ − P v̄. We
then first note, that alsov is a solution, as for allη ∈W we obtain

b(v, η) = b(v̄, η) − b(P v̄, η) = g(η) − 0

asP v̄ ∈ V0. As v is the projection error of̄v, it is orthogonal to the projection space, hence
v ∈ V ⊥

0 . Uniqueness follows by considering a second solutionṽ ∈ V ⊥
0 , hencev − ṽ ∈ V ⊥

0 .
Let v̂ ∈ V ⊥

0 = R(B) then there existŝη ∈W such thatBη̂ = v̂. Then we observe

〈v − ṽ, v̂〉V = 〈v − ṽ, Bη̂〉V = b(v − ṽ, η̂) = 0

as bothv andṽ are solutions. Hencev − ṽ ∈ V0. Sincev − ṽ ∈ V ⊥
0 we concludev = ṽ.

A.2. Computation of scalar products forW = V ′. The scalar product onW plays
a crucial role in the computation of the Riesz representers or of the residual norms required
in the a-posteriori error terms. Here, we give details on thefacts that were mentioned in
Section 5.2. Recall that we have denoted a basis{ψi}HV

i=1 of V and{χi}HW

i=1 of W where
HV andHW are the dimensions of the high- but finite-dimensional discrete spaces, e.g.,
standard finite element spaces. Then, any functionv =

∑HV

i=1 viψi ∈ V is characterized by
its coefficient vectorv = (vi)

HV

i=1. The inner product matrixMV := (〈ψi, ψj〉V )HV

i,j=1 then
allows to compute scalar products between any pairs of elements v, u ∈ V by 〈v, u〉V =

vTMV u. If the spaceW is independent ofV , one can similarly obtain and compute scalar
products inW by the given inner product matrixMW and computing〈η, η′〉W = ηTMW η′

with η ∈ R
HW being the coefficient vector of the functionη ∈ W . In practice,W = V ′

is frequently chosen with{χi}HW

i=1 being a dual basis. This implies equal dimensionHW =
HV =: H andχi(ψj) = δij for all basis functionsψj ∈ V, χi ∈ W for i, j = 1, . . . ,H.
Then, for any givenη =

∑H
i=1 ηi

χi ∈W with coefficient vectorη = (η
i
)H
i=1 ∈ R

H its Riesz

representativeR(η) =
∑H

i=1 riψi ∈ V has the coefficient vectorr = (ri)
H
i=1 = (MV )−1η,

as for anyv =
∑H

i=1 viψi ∈ V there holds

rTMV v = 〈R(η), v〉V = η(v) = ηT v = ((MV )−1η)TMV v.

The Riesz theorem then allows to compute scalar products foranyη1, η2 ∈W by

〈η1, η2〉W = 〈R(η1), R(η2)〉V = ((MV )−1η
1
)TMV (MV )−1η

2
= ηT

1
(MV )−1η

2
.

Hence, we obtain the particular relation of the inner product matrices ofV andW : MW =
(MV )−1, which can be used in practice. Consequently, ifMV is anM -matrix which is the
case for a low order conforming finite element stiffness matrix for the Laplace operator,MW

has non-negative entries, and thus〈χi, χj〉W ≥ 0, i, j = 1, . . . ,HW .

A.3. Computation of the Inf-Sup Constant. We now provide a characterization of the
inf-sup constant, which was used for its computation in the experiments section.

LEMMA A.2 (Characterization ofβN ). The inf-sup constantβN of the reduced problem
SPN (µ) is the smallest singular value of the matrix

B̃N := (M
V

N )−1/2BN (M
W

N )−1/2,

whereBN is given in(2.9)and we define

M
V

N :=
(
〈ϕi, ϕj〉V

)NV

i,j=1
(A.3)

M
W

N :=
(
〈ξi, ξj〉W

)NW

i,j=1
. (A.4)

24



Proof. We define the operatorBN : WN → VN by pointwise application of the Riesz-
representation theorem〈vN , BNηN 〉V = b(vN , ηN ) for all vN ∈ VN , ηN ∈WN . We denote
vN = (vN,i)

NV

i=1 ∈ R
NV andηN = (ηN,i)

NW

i=1 ∈ R
NW the coordinate vector of an element

vN =
∑NV

i=1 vN,iϕi ∈ VN andηN =
∑NW

i=1 ηN,iξi ∈ WN . We set̃vN = (M
V

N )1/2)vN and

η̃N = (M
W

N )1/2ηN as suitably coordinate transformed vectors. We then obtain

βN = inf
ηN∈WN

sup
vN∈VN

b(vN , ηN )

‖vN‖V ‖ηN‖W

= inf
ηN∈R

NW

sup
vN∈R

NV

vT
NBNηN√

vT
NM

V

NvN

√
ηT

NM
W

N ηN

= inf
eηN∈R

NW

sup
evN∈R

NV

ṽT
N ((M

V

N )−1/2)TBN (M
W

N )−1/2η̃N√
ṽT

N ṽN

√
η̃T

N η̃N

= inf
eηN∈R

NW

sup
evN∈R

NV

ṽT
N B̃N η̃N√

ṽT
N ṽN

√
η̃T

N η̃N

For fixedη̃N the supremum of the quotient is obtained with Cauchy-Schwartz choosing the
vectorṽN := B̃N η̃N . Hence

βN = inf
eηN∈R

NW

(B̃N η̃N )T B̃N η̃N√
(B̃N η̃N )T B̃N η̃N

√
η̃T

N η̃N

= inf
eηN∈R

NW

√
(B̃N η̃N )T B̃N η̃N√

η̃T
N η̃N

.

We obtain the Rayleigh-quotient

β2
N = inf

eηN∈R
NW

η̃T
N (B̃T

N B̃N )η̃N

η̃T
N η̃N

,

which implies, thatβ2
N is the smallest eigenvalue of̃BT

N B̃N or, equivalently,βN is the small-
est singular value of̃BN .

A.4. Existence and Uniqueness of Saddle Point Problem.We first define an alterna-
tive formulation:

DEFINITION A.3 (Weak Form of Parametrized Variational InequalityV I(µ)). For µ ∈
P findu(µ) ∈ X such that

a(u, v − u;µ) ≥ f(v − u;µ), v ∈ X

Under the above assumptions, due to the finite dimensionality, [25] is applicable and
ensures existence of a unique solution.

The following proposition states the equivalence ofV I(µ) andSP (µ). The existence
and uniqueness of solutions forSP (µ) then follows from the existence and uniqueness of
V I(µ).

LEMMA A.4 (Equivalence ofSP (µ) andV I(µ)). LetV I(µ) andSP (µ) be given with
X = X(µ) = {v ∈ V : b(v, η) ≤ g(η;µ), η ∈M}.

i) If u is the solution ofV I(µ), then there exists a uniqueλ ∈ M such that(u, λ) is
the solution ofSP (µ).
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ii) If (u, λ) is the solution ofSP (µ), thenu is the solution ofV I(µ).
Proof. Concerning part ii): Assume(u, λ) solvesSP (µ), then forτ ∈ M we find that

η = λ + τ ∈ M , hence the inequality ofSP (µ) yieldsb(u, τ) ≤ g(τ ;µ) which guarantees
u ∈ X. Forη = 2λ ∈M andη = 0 ∈M we get

b(u, λ) ≤ g(λ;µ) b(u,−λ) ≤ g(−λ;µ)

and henceb(u, λ) = g(λ;µ). Choosev ∈ X, thenv − u ∈ V is an allowed test function in
the first equation ofSP (µ), which gives

a(u, v − u;µ) = f(v − u;µ) − b(v − u, λ)

= f(v − u;µ) − b(v, λ) + g(λ;µ)

≥ f(v − u;µ).

The last line follows, asλ ∈M andv ∈ X.
Concerning part i):
Letu ∈ X be the unique solution ofV I(µ) thenλ ∈W is chosen as the unique solution

of the variational equation

b(v, λ) = f(v;µ) − a(u, v;µ), v ∈ V (A.5)

Existence and uniqueness follow from Lemma A.1 iii) asb is inf-sup stable,f(·;µ) −
a(u, ·;µ) ∈ V ′ and for allv0 ∈ V0 = {v ∈ V : b(v, η) = 0∀η ∈ W} holdsf(v0;µ) −
a(u, v0;µ) = 0. The latter is easy to see as for suchv0 we find thatv := u ± v0 ∈ X and
using these as test functions we conclude fromV I(µ) thata(u, v0;µ) = f(v0;µ).

We now briefly prove the following equivalence:

M = M∗(µ) = {η ∈W : b(v, η) ≤ g(η;µ), v ∈ X} (A.6)

Assumeη ∈M thenb(v, η) ≤ g(η;µ) for all v ∈ X due to the definition. Henceη ∈M∗(µ)
and we getM ⊂ M∗(µ). For the other direction, we assumeη 6∈ M and lead that to a
contradiction. AsM is a closed convex cone, the separation-theorem implies theexistence of
ah ∈ W ′ with h(η) > supη′∈M h(η′) =: α. AsM is a cone,α = 0. As b is inf-sup stable
onV ×W andg+ h ∈W ′, Lemma A.1 ii) gives the existence of a solutionx ∈ V such that

b(x, η′) = h(η′) + g(η′;µ) , η′ ∈W.

In particular forη′ ∈ M we getb(x, η′) ≤ 0 + g(η′;µ) hencex ∈ X. But for the special
choice ofη above, we haveb(x, η) = h(η)+g(η;µ) > 0+g(η;µ) and thereforeη 6∈M∗(µ).
This provesM∗(µ) ⊂M which completes statement (A.6)

Now, letv ∈ X, which gives

b(v, λ) = f(v;µ) − a(u, v;µ)

= f(v − u;µ) − a(u, v − u;µ) + f(u;µ) − a(u, u;µ)

≤ 0 + b(u, λ)

≤ g(λ;µ)

Where the second-last line follows fromu solvingV I(µ) and (A.5), and the last line from
the fact thatu ∈ X. Consequentlyλ ∈M due to (A.6).

According to Lemma A.1 iv) there exists a unique solutionw ∈ V ⊥
0 satisfying

b(w, η) = g(η;µ) η ∈W
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hence in particularw ∈ X and also2u− w ∈ X since

b(2u− w, η) = 2b(u, η) − b(w, η) ≤ 2g(η;µ) − g(η;µ) = g(η;µ)

Usingw and2u− w as test-functions inV I(µ) yields

a(u,w − u;µ) = f(w − u;µ).

The definition ofλ then yields

b(w − u, λ) = 0,

and thus

b(u, λ) = b(w, λ) = g(λ;µ).

Forη ∈M , u satisfies

b(u, η − λ) = b(u, η) − g(λ;µ) ≤ g(η − λ;µ)

and thus(u, λ) solves the saddle point problem.

A.5. Equivalence ofSPN (µ) andDSPN (µ). We provide detailed arguments for the
equivalence statement of Lemma 2.5. Note, that the same reasoning can be applied for refor-
mulating the original high-dimensional FEM problemSP (µ) into a an algebraic formulation.

Proof. SPN (µ) ⇒ DSPN (µ) : Let (uN , λN ) ∈ VN ×MN be the unique solution of
SPN (µ) with coefficient vectorsuN , λN . Then, (2.13) is obviously satisfied by definition of
the convex coneMN . Usingϕi as test function inSPN (µ) yields thei-th line of (2.12):

(AN )(i,·)uN + (BN )(i,·)λN =

NV∑

j=1

a(ϕj , ϕi;µ)uN,j +

NW∑

j=1

b(ϕi, λ(µj))λN,j

= a




NV∑

j=1

uN,jϕj , ϕi;µ


 + b


ϕi,

NW∑

j=1

λN,j


λ(µj)

= a(uN , ϕi;µ) + b(ϕi, λN ) = f(ϕi;µ).

For proving (2.14) we useηN := sλ(µi), s ∈ R
+ as test function in the inequality of

SPN (µ):

b(uN , sλ(µi) − λN ) ≤ g(sλ(µi) − λN ;µ).

This can be rearranged to

s(b(uN , λ(µi)) − g(λ(µi);µ)) ≤ b(uN , λN ) − g(λN ;µ) (A.7)

The right hand side (RHS) is independent ofs, therefore, the left hand side (LHS) cannot be
positive. If the LHS was positive, for sufficiently larges it would exceed the RHS, which
would be a contradiction. Hence, we have

0 ≥ b(uN , λ(µi)) − g(λ(µi);µ) =

NV∑

j=1

b(ϕj , λ(µi))uN,j − g(λ(µi))

= uT
N (BN )(·,i) − g(λ(µi)) = (BN )(i,·)uN − g(λ(µi))
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which is thei-th row of (2.14).
Identical reasoning as above withηN := sλN , s ∈ R

+ implies, thatb(uN , λN ) −
g(λN ;µ) ≤ 0. But settingηN = 0 as test-function in the inequality ofSPN (µ) gives
b(uN , λN ) − g(λN ;µ) ≥ 0. Hence it must be equal 0 and we conclude

0 = b(uN , λN ) − g(λN ;µ) = uT
NBNλN − gT

NλN = (uT
NBN − gT

N )λN

which is the last equation (2.15) ofDSPN (µ).
DSPN (µ) ⇒ SPN (µ) : Let (uN , λN ) be a solution ofDSPN (µ) and (uN , λN ) ∈

V ×W the corresponding functions obtained by the correspondinglinear combinations. Then
obviouslyλN ∈MN as it is a positive combination by (2.13). Eqn. (2.12) is equivalent to

a(uN , ϕi;µ) + b(vi, λN ) = f(ϕi;µ) ∀i.

Due to the linearity this also holds for arbitraryvN =
∑NV

i=1 αiϕi, i.e.,

a(uN , vN ;µ) + b(vN , λN ) =
∑

i

αi(a(uN , ϕi;µ) + b(ϕi, λN ))

=
∑

i

αif(ϕi;µ) = f(vN ;µ),

which is the equality ofSPN (µ). As before, we rewrite (2.14) as

b(uN , λ(µi)) − g(λ(µi);µ) ≤ 0 ∀i. (A.8)

Hence we obtain

b(uN , ηN ) − g(ηN ;µ) ≤ 0 = b(uN , λN ) − g(λN ;µ), ∀ηN ∈MN ,

where the first inequality follows from positive linear combinations of (A.8) and the second
equality is due to (2.15). Resorting terms yields

b(uN , ηN − λN ) ≤ g(ηN − λN ;µ), ∀ηN ∈MN ,

which is the inequality ofSPN (µ).

A.6. Properties of the projection for the caseW = V ′. In Section 5.2 we introduced
an alternative projectionπ. For use in a-posteriori error estimation, different properties must
be checked. We first verify thatπ is the orthogonal projection with respect to the inner product
〈·, ·〉π by showing the characterizing property

〈η − π(η), η′ − π(η)〉π ≤ 0, η ∈W,η′ ∈M.

This can be seen by realizing that

〈η − π(η), η′ − π(η)〉π = (η − π)T (MW )2(η′ − π)

= (MW η − [MW η]+)T (MW η′ − [MW η]+)

=

HW∑

i=1

(MW η − [MW η]+)i(M
W η′ − [MW η]+)i.

We always have(MW η − [MW η]+)i ≤ 0 by definition. If (MW η − [MW η]+)i < 0, then

(MW η)i < 0 and hence
(
[MW η]+

)
i

= 0 implying (MW η′ − [MW η]+)i ≥ 0 asη′ ∈ M
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andMV being anM -matrix. Consequently,π is an orthogonal projection. Also, the norm
induced by〈·, ·〉π is trivially equivalent to theW -norm due to the finite dimensionality. Next,
we argue on the validity of the assumptions (4.6)-(4.8). For(4.6) we obtain withη ∈W,η′ ∈
M :

〈η − π(η), η′〉W = (η − π)TMW η′ = (MW )−1(MW η − [MW η]+)TMW η′

= (MW η − [MW η]+)T η′ ≤ 0,

asη′ ∈ M implies η′ ≥ 0, while MW η − [MW η]+ ≤ 0. Recalling the definition of the
detailed inequality residual (4.5), we obtain for allη′ ∈M

0 ≥ b(u(µ), η′) − g(η′) = 〈η′, η̃s〉W = (η′)TMW η̃
s
.

This is equivalent to

MW η̃
s
≤ 0 ⇔ π(η̃s) = 0,

which proves (4.7). Forη ∈M we finally obtain

〈η, η̃s〉π = η(MW )2η̃
s

= η̃MW η̃
s

= 〈η̃, η̃s〉W

by settingη̃ := MW η and η̃ :=
∑

i η̃i
χi. Hence, for obtaining the non-positivity (4.8) it

remains to show that̃η ∈M . Indeed,η ≥ 0 and by non-negativity ofMW we getMW η ≥ 0,
which means̃η ∈M . So the projectionπ indeed satisfies all properties required for its use in
the a-posteriori error estimation.
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