ALBERT-LUDWICGS-UNIVERSITAT FREIBURC
INSTITUT FUR INFORMATIK

Lehrstuhl fiir Mustererkennung und Bildverarbeitung

Presto-Box 1.1
Library Documentation

Internal Report 2/03

Bernard Haasdonk, Bhaskara Reddy Poluru, Alexandra Teynor

November 2003

This work was funded by the Bundesministerium fur Bildung und Forschung, grant
number 08NM074C

Presto-Box 1.1
Library Documentation

Bernard Haasdonk, Bhaskara Reddy Poluru, Alexandra Teynor
Computer Science Department
Albert-Ludwigs-University Freiburg
79110 Freiburg, Germany
haasdonk,poluru,teynor@informatik.uni-freiburg.de

November 12, 2003

Abstract

The library Presto-Boz is presented, which is a collection of functions and demos
dealing with pattern recognition. It aims at providing an experimental toolbox for
interactive exploration of basic concepts which are presented in a corresponding
lecture. This document serves as introduction and documentation for students,
supervisors and other users. Additionally the complete function list is given, which
can be used as a reference manual.

1 Introduction

University teaching by giving traditional pure oral or black-board lectures is not suited
for all fields of science, especially not for natural end engineering sciences. Instead of this
one-way method often a second reflection phase is provided for students by theoretical
or practical exercises. This also applies to the lecture pattern recognition which is taught
every winter at the university of Freiburg. It is an obligatory lecture for 3rd year students
of computer science, cf.

http://lmb.informatik.uni-freiburg.de/lectures/mustererkennung.

This toolbox targets at representing the different algorithms presented in that lecture. On
one hand it is basis for the exercise component of the lecture by presenting a pool of avail-
able functions that can be applied/modified in the exercise tasks. On the other hand the
toolbox provides an individual experimental component. Students can apply algorithms
and play with interactive demos, which can deepen the insight into the concepts.

This toolbox is a by-product of the project Universitarer Lehrverbund Informatik
(ULI) during the period of 2001-2003, cf. www.uli-campus.de. It was a joint project of

18 computer science groups in Germany and Switzerland. The aim was to develop web-
based multimedia-lectures for enabling time- and place-independent studying. The main
contribution of our sub-project is the collection of lecture-recordings [1]. It represents
the complete material of the course, and can be used with Presto-Boz for self-study.

The toolbox is based on the scientific computing programming language Scilab, com-
parable to the commercial product MATLAB. 1t is free software which is available for
various platforms at http://scilabsoft.inria.fr/. Additionally, support is provided,
several books and articles are dealing with the topic, the package is under continuous
further development and an increasing number of user-provided toolboxes are available.
These were the reasons for the choice of Scilab. Similar as Scilab itself being free, Presto-
Bozx is released under the GNU Lesser General Public Licence (LGPL) copying policy,
see

http://www.gnu.org/copyleft/lesser.html.

We do not require much knowledge of Scilab in the following except knowing how
to install resp. start it and that it is an interpeter language providing a command
window that accepts commands. The most important of these are the help and apropos
commands which enable exploration of the language and extent of its functionality. For
details see the introduction and documentations on the Scilab-site.

The structure of this document is the following. Most important is the next section,
which gives an introduction into the installation, usage and functionality of the toolbox.
It can e.g. be read while reproducing the steps at a computer and is meant for general
first-time usage. The remaining part of the document consists of a complete function list
and detailed descriptions which can serve as a reference manual.

2 User’s Guide

We now start with the most important aspects for using the library. First this is the
installation procedure, followed by an explanation of the toolbox’s structure and an initial
contact with the toolbox by presentation of the included demonstrations. We end with
some information on the available support.

2.1 Installation

The toolbox is platform-independent and only requires a working version of Scilab 2.6 or
higher. The package however only has been tested with Scilab versions ranging from 2.6 to
2.7.2 on Windows XP, Windows NT and Linux (Debian distribution). On other platforms
no serious problems are expected, as the toolbox does not make use of platform specific as-
pects. The installation is performed by downloading the archive from the Presto-Bozx site
[3] or the ” contributions”-section on the Scilab-Homepage http://scilabsoft.inria.fr/.
Extraction of the package generates a subfolder presto-box. Among others this contains
two installation scripts. (See README.txt for details on further files.)

classification

—

feature extraction

object feature vector class label

Figure 1: Illustration of a typical pattern recognition process.

builder.sce This is a script for building the library. It is to be called once by exec
builder.sce within Scilab. It creates .bin files for all source files ending with .sci
in the macros-subtree. Additionally 1ib and names are generated for each of the
directories. Each time builder.sce is executed it checks for modifications/changes
in .sci files and updates .bin files if it finds any.

loader.sce This is a script for loading the built library. This has to be called at every
start of Scilab by exec loader.sce. Alternatively the call of this can be put in a
.scilab file in the user’s home-directory. It reads the names and 1lib files in the
sub-directories of macros and generates one library-variable for each directory, e.g.
basic_lib for the functions in the subdirectory basic.

After execution of these two files, Presto-Box is ready to be used. This can be checked
by pressing the Demos or Help button and finding a corresponding Presto-Box entry. If
this should not work, see Section 2.4 for additional hints on usage.

2.2 Structure of the Toolbox

We recall the basic components of a pattern recognition system, which naturally leads
to the structure of Presto-Boxr . For the following italic notions we refer to Figure 1.
For details on this very interesting field we recommend excellent standard text-books like
2, 4].

The typical pattern recognition task starts with some type of objects (e.g. handwritten
letters as digitized point sequences) and some finite set of target classes (e.g. the 26
classes of letters). The goal is to have a system that assigns an estimated class label to
any formerly unseen object in the best possible way. Such a system can be separated in
(at least) two separate modules. The first is the so called feature extraction stage, where
an arbitrary structured object is converted in a vector of numerical values, the features.
This so called feature vector is a simple object that represents the original object. Of
course there are uncountable ways of obtaining such a feature vector, however there are
some properties that are favorable. The first property is good separability (or in the best
case completeness) of the features. This basically means, that objects of different classes
should not result in the same feature vector as they could not be discriminated based

pl=[120;02 3| cpl = [1; 2+42i ; 3]

p2=1[201;230] cp2 = [2+42i; 3i; 1]

-
N4

Figure 2: Illustration of a polygon and different representations in Scilab notation.

on their features. The second property is that the feature extraction should take care of
known invariances with respect to certain transformations. This means that in certain
problems the class membership of an object is independent of certain transformations of
the object. e.g. scaling or rotation of an A again results in an object that belongs to
class A. This knowledge should be incorporated in the feature extraction stage such that
transformed objects of the same class result in identical feature vectors. In this case the
features are called invariant. If a good feature representation of the object is achieved,
these are fed into a component called classifier which produces an estimated class label.
In order to result in a good estimate, such classifiers often need a learning stage. This
is often based on a set of objects with known labels, the so called training set. This
decomposition was basis for the design of Presto-Boz .

Object Types and Basic Transformations

We focussed on 3 types of objects and corresponding simple transformations. Details for
the Presto-Box commands are also provided by the commands help and apropos or can
be found in Section 3.

Polygons: These are the natural ”digital” representation of boundaries of 2d-real world
objects. For convenience Presto-Boz supports two kinds of polygon representations. The
first is a matrix representation as a 2 x n matrix with real values. Each column represents
the two coordinates of a vertex of the polygon. Points that correspond to neighbouring
columns are connected. The first column and last column are also connected. The second
representation of polygons is a complex n x 1 vector. Similarly every entry corresponds
to a vertex in the plane which is connected to the next/previous vertex.

So a cyclic shift of a matrix or vector representing a polygon results in an equivalent
representation of the polygon, cf. Figure 2. The routines polygon and cpolygon convert
between the complex vector/real matrix representation of a polygon.

The following functions differ between the required polygon types. For details see
the function list in Section 3. Beside explicitly specifying the matrix/vector by entering

coordinates, we provide a function polstar for generating a default polygon representing
an arbitrary shaped star, and a function inputpol for interactive drawing of a poly-
gon. The first supported polygon transformation is coarsening, i.e. reducing superfluous
points, by the command coarsenpol. Further similarity transformations are provided
by simtrans. These consist of angle-preserving transformations such as shifts, rotations
and scalings. For visualizing polygons one can make use of plotpol plotting single poly-
gons or plotpolseq for simultaneously plotting whole polygon sequences with individual
titles.

coarsenpol | coarsens (removes points of) a polygon with respect to a threshold angle
cpolygon converts a real-valued 2*n matrix to a complex-valued vector

inputpol generates a polygon interactively (by mouse clicks or dragging)

plotpol plots a polygon represented by a 2*n real matrix

plotpolseq | plots the given list of polygons in sequence

polstar generation of a star-shaped origin-centered polygon.

polygon converts a complex-valued vector to a real-valued matrix

simtrans performs simple similarity-transformation of a polygon.

Vectors: The second object type is the class of general real valued vectors. These are
for example the digital representation of time signals. During sampling a periodic signal
with different starting times, the resulting vectors are cyclically shifted. Consequently
a useful transformation is (cyclic) shift of such vectors, which can be performed after
calling cyclmat. Other simple transformations like scaling, shifting the mean value etc.
are simple vector operations supported as standard Scilab operations.

Matrices: These are digital representation of grey-value objects, e.g. an image of an
object taken by a camera. Again simple transformations like intensity scaling, shifting
the mean etc. are standard Scilab commands. More interesting transformations are
rotations or translations of the image. These are provided by cyclrot resp. cycltrans
which perform a cyclic rotation resp. translation of an image. A fast version of cyclic
translation is fcycltrans.

cyclmat implementation of cyclic translation matrix of dimension n*n
cyclrot implements cyclic rotation of a matrix

cycltrans | implementation of cyclic translation for matrices.

fcycltrans | fast implementation of cyclic translation for matrices.

Feature Extraction

Polygons: Useful feature extraction routines for polygons are simple ones like poly-
gon area polarea, length of the polygon boundary polboundary, center of gravity
polcog or line center of gravity pollinecog. The latter is the center of gravity after the
boundary (instead of the area) of the polygon is uniformly allocated with mass. More
sophisticated features are complex Fourier-coefficients by computeFc. Based on this the

rotational symmetry degree can be detected by detect_symmetry or the pose-invariant
and complete features called Fourier-descriptors can be computed by computeFd. The
Fourier-coefficients/descriptors have the nice property, that the original polygon can be
(approximately) recovered (up to a similarity transformation). This is provided by Fsyn-
thesis.

computeFc Fourier-coefficients of closed polygons in the complex plane
computeFd Fourier-descriptors of closed polygons in the complex plane
detect_symmetry | detection of rotational symmetry degree of a complex polygon
Fsynthesis Fourier-synthesis of a polygon using its Fourier-coefficients
polarea area of a real polygon

polboundary length of boundary of a real polygon

polcog center of gravity of a real polygon

pollinecog line center of gravity of a real polygon

Vectors: Useful feature extraction methods for vectors are provided by Scilab itself,
e.g. mean-calculations, min/max etc. More sophisticated, translation-invariant feature
extraction can be performed by the class of fast transformations CT" which are provided
by CT, RT, QT and MT.

Matrices: Simple feature extraction operations for matrices are again available as stan-
dard Scilab-commands like mean, min or max. Nontrivial translation-invariant feature
extraction is performed by the class of fast transformations CT5p. These are provided by
CT_SZ, RT_SZMT_SZ.,QT_SZ, and the corresponding modifications with suffix _ZS,
DL

CT general translation-invariant CT-transformation of vectors

CT_DI | general 2d translation-invariant CT_DI-transformation of matrices

CT_SZ | general 2d-translation-invariant CT_SZ-transformation of matrices

CT_ZS | general 2d-translation-invariant CT_ZS-transformation of matrices

MT 1d-translation-invariant CT-transformation using max and min.

MT_DI | 2d-translation-invariant CT_DI-Transformation using max and min

MT_SZ | 2d-translation-invariant CT_SZ-transformation using max and min.

MT_ZS | 2d-translation-invariant CT_ZS-transformation using max and min.

QT 1d-translation-invariant CT-transformation using + and squared-difference

QT_DI | 2d-translation-invariant CT_DI-transformation using + and squared-difference
QT_SZ | 2d-translation-invariant CT_SZ-transformation using + and squared-difference
QT_ZS | 2d-translation-invariant CT_ZS-transformation using + and squared-difference
RT 1d-translation-invariant CT-transformation using 4+ and difference

RT DI | 2d-translation-invariant CT_DI-transformation using + and difference

RT_SZ | 2d-translation-invariant CT_SZ-transformation using + and difference

RT_ZS | 2d-translation-invariant CT_ZS-transformation using + and difference

These object types and related functions represent the first stage of the pattern-
recognition chain, which was abstracting concrete objects in numerical valued feature
vectors.

Classification

The following stage of learning from these vector representations is implemented by the
block of functions dealing with classifiers. The classifiers all follow a common syntax
which is

[cl,cert] = some_class(v,...)

The name some_class is to be replaced by the according classifier name. A classifier
performs estimation of class labels for a set of vectors. The vectors to be classified are
given columnwise in the matrix v. Every useful classifier needs to have some further
parameters specifying its behaviour, e.g. parameters obtained from learning on training
observations. These are passed in the variable argument list ... The result of the classi-
fication is a vector of integer class labels in the result-vector cl, each entry corresponds
to the predicted class label for the corresponding input-vector. Additionally many classi-
fiers return a vector cert indicating the certainty with which the classification is correct.
Some classifiers only accept 2-dimensional input-data, these have the suffix _2d in their
function names, e.g. dumb_class_2d. The first useful classifier is the nearest-neighbour
classifier nneigh_class_2d. It needs a set of labeled training vectors. Classification of a
new example is done by taking the label of the closest training point. The corresponding
function for arbitrary dimensional input-data is nneigh_class.

A very good parametric classification method consists of estimating normal distribu-
tions based on training data, and taking a Bayes decision for classification of new points.
The estimation of mean and covariance matrices can be performed by class_statistics,
these can be plugged in the classifier bayes_class_2d for solving a 2 dimensional 2-class
problem, or in bayes_class for general multiclass problems in arbitrary dimensions. For
experimental purposes, normally distributed data can be generated by randnormal.

A further well known parametric approach is the polynomial classifier. This classifier
is based on learning a polynomial regression function from the training data and using
this function for classification. The whole procedure is performed by polynom_class.
Additionally the training and prediction steps of the regression can be performed sepa-
rately by regress_matrix and polynom _regress. For visualization purposes one can
make use of visclass_2d, which draws classification boundaries in 2 dimensions. The
dimension-independent version visclass can draw 2d-cuts in the feature space and the
resulting classification regions. The included interactive GUI allows very easy exploration
of the classification behaviour of a certain classifier.

\;‘ . \;‘ . QLFLHZ»_D-HW_M

Go on Clicking Left Mouse Botton, Then Click Right mouse Botion To Terminate: Go on Clicking Left Mouse Botton, Then Click Right mouse Borton To Terminate: First Click Left Mouse Button, Then Drag, And ThenClick Again To Terminare

. 4
3 3 3

X / />
1 1 1 /
o o o {
14 14 * . 1
2 2 * 2 y
34 34 x . . 3 /
] 44 4

5432101 %3 45 6 7 8 6o 543210123 45 67 8 5o 5 4 3 2101 23 45 67 8 51

Figure 3: Illustration of the inputpol function: click, marks and drag-mode.

bayes_class implements the bayes classification in multi-dimensions.
bayes_class_2d implements the bayes classification in 2 dimensions.

class_statistics estimates the statistics of the given class number

dumb_class_2d implements a demo classification in 2 dimensions.

nneigh_class implements the nearest neighbour classification in multi-dimensions
nneigh_class_2d | implements the nearest neighbour classification in 2 dimensions
polynom_class training of polynomial classifier and classification.

polynom _regress | evaluate polynomial (vectorial) regression function

randnormal generation of arbitrary dimensional normally distributed random data
regress_matrix calculates polynomial regression matrix for vectorial function y=f(x).
visclass visualization of classification regions in multi dimensions
visclass_2d visualization of classification regions in 2 dimensions

Additionally the toolbox provides some basic mathematical and data-manipulation
routines, which are mainly auxiliary functions for the presented ones.

2.3 Demos

In this section we describe in detail the provided demos. These can be either invoked
by pressing the Demos Button in the Scilab window and choosing Presto-Box Pattern
Recognition Demos or by directly calling patrec_demos. Currently only few demos are
available and not all contents of the toolbox are covered, but it gives a first impression
of the functionality and extent.

Polygon Generation - Interactive

The demo called inputpol demonstrates the corresponding function and the different
modes of interactive input of a polygon, cf. Figure 3. Basically the possibilities are
clicking of the vertices which are immediately connected. Alternatively the connection
in drawing can be turned off and the points are only indicated by marks, e.g. input of
single data points can be realized with this. The last possibility is input by dragging,
where each hit pixel is taken as a polygon vertex.

10

|
_ | ==reme

3.80
3.04+
2284
1.524
0764
-0.00+
-0.76+
-1.524
-2.28+
2.044

-3.80 T T T T T T T T T
-532 418 304 -1%0 -076 D038 1352 266 381 49 609

Figure 4: Illustration of the plotpol function.

|
FelstyRems |
{ .
| = 15.0
3 no. of arms 100 Ly
9.04
__ E sl ot
. | | S 2.0]
1 outer radius 100 ool
. -3.04
| | i
.!| i3 ﬂ -6.04
1 inner radius 100 -g 0
-12.04
‘hielp et .15.0 ; . : i : ; . . ;
-23.23-18.57-13.91-9.25 459 0.07 4.73 932 14.0518.7123.37

Figure 5: Illustration of polstar_demo.

Polygon Visualization - Single Polygon

This is not a real interactive demo but merely a call of the polygon visualization routine
plotpol with some default polygon, see Figure 4. The polygon is closed by connecting
the first and last vertex and coordinate axes are added.

Polygon Generation - Polygon Star

The function polstar_demo is the first to demonstrate the interactive capabilities of
Scilab. It demonstrates the result of the function polstar. This is a function generating
a default polygon representing a star with variable number of arms and variable inner
and outer radius. The demo consists of two windows, one for the interactive controls
and one for the graphical output. The demo allows to change the star’s parameters by
using sliders or by explicitly entering the values in corresponding text-fields. In the latter
case the change has to be confirmed by pushing the corresponding set-button. Figure 5
displays the windows.

11

i |
__ | _ | ==reme

polstar with 3 arms polstar with 4 arms i polstar with 3 arms . bolstar with 4 arms polstar with 5 arms
A 4 4

z 3
73 2 1.8
L7% 2 .00] o 0.9
Sl 8 73 2 1.9

34

837 248 038 34 G0

4 4
421 160 100 360 6.21 4 3 a 3
polstar with 7 arms ,___bolstar with § arms

polstar with & arms 3.90

34 -4 73 1.85 2
420 -140 1.00 380 620 £ -3 o 3 6
. - .00] 0.00] of
polstar with 5 armns polstar with § arms
3. 34 ics -1.95 -2

173 -2

4 i 4
19 173 85T 260 000 280 521 Xe7 273 030 513 606 6 3 0 3
o, Polstar with 8 arms 5 5 polster with 10 ams

i 19
1.9 173 0 o
& 1.9

4 2.4
532 247 038 3.24 6.09 T-520 280 000 2.60 5.20

v £
580 284 012 308 6.04 355‘,72 -286 000 286 572

Figure 6: Illustration of the plotpolseq function.

Polygon Visualization - Multiple Polygons

The demo plotpolseq demonstrates the visualization of multiple polygons within one
graphical window, each polygon headed by a separate title. The number of polygons can
be chosen, the appropriate command is displayed and executed in the Scilab-command
window and the result is plotted. Examples can be found in Figure 6.

Fourier-coefficients - Approximation Sequence

The demo plotFourierseq is not a real interactive demo but a demonstration of the use
of the corresponding function. The command

plotFourierseq(polstar(5,4,3),1,41,5)

is displayed in the Scilab command window and produces the output in Figure 7. It per-
forms a Fourier analysis of the input-polygon given by the first argument and generates a
series of Fourier approximations using an increasing number of Fourier-coefficients spec-
ified by the remaining function arguments. In the example the approximation sequence
uses 1 to 41 coefficients increasing by 5 in each approximation.

Fourier-coefficients - Interactive Exploration

The function Fc_demo again is a real interactive demo for exploration and modification
of Fourier-coefficients of complex contours. The demo consists of at least 2 windows, one
for the interactive controls, the other for the graphical output of the Fourier reconstruction
of the current Fourier-coefficients. By choosing the option ”showspectrum” an additional
window is generated which plots the current Fourier-spectrum, i.e. the absolute values
of the complex Fourier-coefficients, cf. Figure 8.

The Fourier-coefficients c_i of a complex contour can be selected by choosing the
index i with the upper slider, the absolute value and the angle of the chosen c_i are
then displayed and are editable with the lower two sliders. Beside the sliders the values
can be entered explicitly. After pressing the set button, the value will be set. If some

12

| |
|File ||200m ||Un200m ||3]] Rot.

g3 He 2.6 Mot 3.70

1 69 1.83 1.85

n.00f -0.00{ -0.00§

1 69 1.83 -1.85
(o] iy

B39 36

N=15 N=21 N=25

.73 37 378

187 1.87 1.88

0004 0.004 0.004

.87 -1.87 -1.88
37

3'??_2? -247 0324 315 5.9 29 -247 035 317 598 _3'?53[] -247 038 318 s01

b 7 N=31 277 MN=36 28 N=41
188 1.8% 1.9
[.004 0.004 0.04
1.88 -1.8% 1.9

37

3'?3_30 -247 038 319 &.02 21 -247 036 320 6.03 _3—':';3_31 -247 036 3.20 6.4

09 -255 000 255 509 ~'-520 -246 029 303 577 -3'?9_25 -246 032 310 589

Figure 7: Illustration of the plotFourierseq function.

[[
Fourier Coefficient Demo
~ ~
n
| [-13 st 15.60 i
-40 indexiofc_i 40 1250 772
9.76] 6861
6.834 &m0
= 0141 set
- | —] 3.51 5.14
i absge 1) 10.009 -~ -
-1.944 3.434
I 1 [pass sel e i
0 arg(e_i) 6.284 7784 171
107 0851 ‘ ‘ ‘
help exit 13, 0.00 |
-22.4917.9413.39-8.84 -4.29 0.27 4.82 937 13.9218.47 23.02 40 32 24 16 8 0 8 1§ M 32 40

Figure 8: Illustration of different windows of Fc_demo.

13

Fourier-coefficient is modified, a Fourier-synthesis is calculated and the resulting contour
is displayed.

By calling Fc_demo from the command line, an arbitrary polygon can be passed as
argument, which then can be modified.

Some insights are easily possible with this demo, e.g. the interpretation of c_0 as
the line center-of-gravity. Modifying this value directly results in the corresponding shift
of the object, but does not change the contour. The rotational symmetry degree s can
nicely be found in the spectrum by the repeating regions of length s — 1 with vanishing
coefficients. Changing one coefficient in these 0-regions immediately decreases the initial
rotational symmetry degree, changing nonzero coefficients maintains the rotational sym-
metry. The (quadratic) decay in the power-spectrum with increasing coefficient-index
also is directly visible.

Polygon Classification

This demonstration illustrates the complete pattern recognition chain as illustrated in Fig-
ure 1. The objects to be classified are hand-drawn contours. Various feature-extraction
methods can be combined, most of them are pose-invariant, such that rotations or trans-
lations of the input polygon do not change the classification result. Classification is
performed in a very simple way by computing the feature-vector distances between the
object to 4 reference objects L, T, F and E and choosing the object with the smallest
distance.

The demo makes use of 3 windows as depicted in Figure 9. The first windows is the
window with the interactive controls. Here the features to be used for classification can
be selected by the checkboxes. The polygon to be classified can be entered after pressing
the button new polygon, this opens a second window. The classification of the last entered
polygon is performed by the classify polygon button.

After classification the reference polygons are plotted in a third window in the order
of increasing distance to the newly generated polygon. The (squared) distance of the
feature-vectors is given above each reference polygon. The example demonstrates that
the hand drawn letter T is correctly and clearly classified as T by using the Fourier-
descriptors, because they are invariant with respect to rotation, scaling and translation.

Aspects that can be understood by this demo are:

1. Area and boundary are not scale-invariant and not suited for the given reference
set, as T and L have identical values.

2. Compactness is a scale-invariant feature however not suited as T and L have iden-
tical values.

3. Fourier-coefficients are not scale- and rotation-invariant, however very discrimina-
tive.

4. Fourier-descriptors are fully similarity invariant and very discriminative.

14

Polygon Classification Demo

[[
__ e __ | e

feature selection : ” Distance : 0.1201815 Distance : 0.9285631
First Click Lefr Mouse Burton, Then Drag, And ThenClick 4gain To Terminate 10.0 10.0
10

9

boundary 4 lovr freq. Fc iC 5

area A high freg, Fe 5. 5.0

]
Ef

compactness lov freq. Fed W0 25 25
o

high freg. Fd U-E.? 1l 5.0 8.9 127 019.7 11 5.0 8.8 127

8

7

é

. Distance : 1.0464516 Distance : 1.4235977
4 100, 100
3

2

1

0

2"

T3 7.5

“new polygon Classify polygon
help it

5 5.0

2.5 2.5

-279-123 033 189 344 500 656 811 967 11.2312.79

DE R | 5.0 89 127 D'E 711 5.0 8.9 127

Figure 9: Illustration of the different windows of polclass_demo.

5. The Fourier-coefficients and therefore the Fourier-descriptors are depending on the
orientation of the polygon. If a polygon is drawn with positive orientation (=coun-
terclockwise), the comparison with the reference polygons will be informative. How-
ever, if a polygon is negatively oriented, the difference to the (positively oriented)
reference polygons will not yield useful results.

Classifier Comparison

The demo plotclassseq is missing real interactive components, but demonstrates the
use of the corresponding command. It visualizes the classification regions of different
classifiers on given training data. By this the differences between the classifiers can be
illustrated. Figure 10 gives the default result. Given some normally distributed two-class
data in 2 dimensions plotted in the upper left corner, a series of classifiers is trained on
the data. The illustrated classifiers are the bayes-classifier, nearest-neighbour classifier
and polynomial classifiers of increasing degree 1, 2, 5 and 8.

In case of normal distributed data and plenty of training points the Bayes classifier
definitely is a good choice, as can be seen in the nice class boundaries. The nearest
neighbour classifier seems to overfit too much to the data. The linear classifier is too
simple to capture the correct boundary, the quadratic classifier seems to do a good job.
One argument for this might be that it is of 2nd order as the Bayesian class boundaries
are. Polynomial classifiers of degrees 5 and 8 seem increasingly overfitted and not suited
for the given problem. By varying the input data however other distributions can be
constructed, where these higher order classifiers are better suited than the Bayes classifier
or the lower polynomial degrees.

Classifier Visualization

The last demo visclass(’gui’) illustrates the use of the function for interactive setting
of visualization options for a given classifier. Therefore the first choice is deciding which
classifier should be visualized. The demo opens 2 windows, again one with the interactive
controls and the second for the graphical output, which can be switched to 3d or 2d mode,
see Figure 11. The graphics contains the classification results on an arbitrary axis-parallel

15

=

leamning data Bayes nearest neighbour
3 +
+ + e
* Ty b S -
2 . £ B
s R 5
T Wy =T
+ i Rl ®
o I i ¥
+ b
+ +
55 : * Pw
-2
]
® L
3 -
-3 2 1 0 1 2 =
3 -3
polynomial deg. 1 polymomial deg. 2 polynomial deg. 5
frt cert cert
7 g d
b8 b8
3 2 3

0

-3
polynomizl deg. 8

Figure 10: Ilustration of plotclassseq.

) [[
Viselsean oLl __ |l __ |l
.
-3 -3 |]1 2| iE ‘]E 31 'ja1 |
~ origin projections size resolufion

Ri'l
N [sf |
class-color number B!D_
L s | B8 - i

shades plot points 2d-mode

wo e e

3.0
-30 -24 -18 -12 -06 Uﬂl 06 12 18 24 30
=

Figure 11: Ilustration of the different windows of visclass-demo.

16

rectangle in arbitrary n-dimensional feature-space. The rectangle is specified by an n-
dimensional vector ”origin” the 2 ”projection”-directions (integers between 1 and n) and
the "size” of the rectangle in these both directions starting from the origin. ”resolution”
defines the direction-wise number of test-points extracted from the rectangle.

As drawing is quite time consuming a redraw is only invoked after pressing draw. This
will perform a new classification of the test-points defined by the specified grid.

”2d-mode” results in a color-shaded rectangle: the classes are represented by different
colors, the certainties by different shading-intensities. In non-"2d-mode” the results are
displayed by a colored function-graph in 3d: the classes are again represented by different
colors, the certainties as the height of the function-graph.

The class-colors can be edited by choosing a ”class-color number” either by slider
or the corresponding edit-field. After pressing the set button the current color will be
displayed by its rgb-components and can be edited. After pressing the color-set button,
the chosen color is saved in the colormap to be used for the next drawing. The number
of "shades” can be adjusted by a corresponding edit-field and slider. If the checkbox
"plot points” is set and a list of points is passed by the argument list, these points are
displayed additionally in the 2d-mode, e.g. the right plot in Figure 11.

2.4 Support and Development

We finish the general part for "first reading” with this section where we comment on
support and development aspects.

Additional Hints on Usage

If the user wants to access this toolbox from various operating systems or from different
Scilab versions, then before each start of Scilab, the binaries of the Presto-Box functions
have to be regenerated. A call of builder.sce is not sufficient as this only rebuilds
binaries for sources that are newer than the corresponding binaries. Solution: delete all
*.bin, names and 1ib files in the subdirectories of macros, then execute builder.sce
as described in the installation section. Another solution is to generate one separate
presto-box directory per platform and Scilab-version.

Even if the user has generated a .scilab file for loading Presto-Box at Scilab startup,
some operating-system/Scilab-versions do not read the file properly. In this case execution
of the startup-file can be forced by command line options: scilab -f .scilab

Contact

The toolbox is in continuous further development. The basic source for new versions is
the site [3]. A copy of the latest version will also be available at the ”contributions”
section of the Scilab home page

http://scilabsoft.inria.fr/.

17

We maintain a buglist on the Presto-Box website which currently only contains few
known bugs. Users are requested to kindly help us by providing feedback with possible
bugs and errors occurred during usage. Please specify your operating system and Scilab-
version in bug-reports for making them reproducible.

We welcome such bug-reports but also further comments, contributions or questions
which can be submitted to

presto-box@informatik.uni-freiburg.de

Future Extensions

Development of the toolbox will kept organized at the university of Freiburg, where it is
maintained in a cvs-repository. Beside fixing known bugs and realizing minor improve-
ments, future releases will develop towards these directions:

e interactive demo for the 2-dimensional translation invariant transformations CT
e implementation of demonstration for the Karhunen-Loeve transformation

e inclusion/adaption of the routines which evolved from the course during winter
02/03 and 03/04, e.g. Mahalanobis classification, model-selection routines.

e inclusion of an image-processing toolbox and default image data

e boundary extraction of images (matrix yields a polygon.)

e implementation of perceptron training and classification

e implementation of support vector machine training and classification

e implementation of neural net training and classification

3 Function List

This section presents the complete list of functions in the toolbox and detailed descrip-
tions. These descriptions are parts of the help-texts which are obtained by help com-
mand_name. Details on using the demos can be found in Section 2.3.

3.1 Overview

CT general translation-invariant CT-transformation of vectors

CT_DI general 2d translation-invariant CT_DI-transformation of matrices
CT_SZ general 2d-translation-invariant CT_SZ-transformation of matrices
CT_ZS general 2d-translation-invariant CT_ZS-transformation of matrices
Fc_demo a GUI for demonstration of Fourier-coefficients of a polygon
Fsynthesis Fourier-synthesis of a polygon using its Fourier-coefficients

18

MT

MT_DI
MT_SZ
MT_ZS

QT

QT_DI

QT_SZ

QT_ZS

RT

RT_DI

RT_SZ

RT_ZS
bayes_class
bayes_class_2d
binom_coeff
class_statistics
coarsenpol
computeFc
computeFd
cpolygon
cyclmat
cyclrot
cycltrans
detect_symmetry
dumb_class_2d
feycltrans
getmatrix
inputpol
monomvec
new_window
nneigh_class
nneigh_class_2d
patrec_demos
plotFourierseq
plotFs
plotclassseq
plotpol
plotpolseq
polarea
polboundary
polclass_demo
polcog
pollinecog

1d-translation-invariant C'T-transformation using max and min.
2d-translation-invariant CT_DI-Transformation using max and min
2d-translation-invariant CT_SZ-transformation using max and min.
2d-translation-invariant CT_ZS-transformation using max and min.
1d-translation-invariant CT-transformation using + and squared-difference
2d-translation-invariant CT_DI-transformation using + and squared-difference
2d-translation-invariant CT_SZ-transformation using + and squared-difference
2d-translation-invariant CT_ZS-transformation using + and squared-difference
1d-translation-invariant CT-transformation using + and difference
2d-translation-invariant CT_DI-transformation using + and difference
2d-translation-invariant CT_SZ-transformation using + and difference
2d-translation-invariant CT _ZS-transformation using + and difference
implements the bayes classification in multi-dimensions.

implements the bayes classification in 2 dimensions.

calculation of binomial-coefficient.

estimates the statistics of the given class number

coarsens (removes points of) a polygon with respect to a threshold angle
Fourier-coefficients of closed polygons in the complex plane
Fourier-descriptors of closed polygons in the complex plane

converts a real-valued 2*n matrix to a complex-valued vector
implementation of cyclic translation matrix of dimension n*n
implements cyclic rotation of a matrix

implementation of cyclic translation for matrices.

detection of rotational symmetry degree of a complex polygon
implements a demo classification in 2 dimensions.

fast implementation of cyclic translation for matrices.

gets the data stored in an object figure (as a matrix)

generates a polygon interactively (by mouse clicks or dragging)
calculates the power-substitution-vector, the vector of monomials

gets the number of the next possible new graphics window

implements the nearest neighbour classification in multi-dimensions
implements the nearest neighbour classification in 2 dimensions

a GUI showing a list of all the Presto-Box demos

plots Fourier-sequence of a polygon for given range and step values
plotting of the Fourier-spectrum (mainly used in Fc_demo)

plots the effect of different classifiers on given learning data

plots a polygon represented by a 2*n real matrix

plots the given list of polygons in sequence

area of a real polygon

length of boundary of a real polygon

a GUI for interactive polygon classification

center of gravity of a real polygon

line center of gravity of a real polygon

19

polstar generation of a star-shaped origin-centered polygon.

polstar_demo a GUI for interactive polygon generation

polygon converts a complex-valued vector to a real-valued matrix
polynom_class training of polynomial classifier and classification.

polynom _regress evaluate polynomial (vectorial) regression function

pw_absdiff elementwise absolute difference.

pw_add elementwise addition.

pw_diffsquare elementwise square of difference.

pw_max elementwise maximum.

pw_min elementwise minimum.

randnormal generation of arbitrary dimensional normally distributed random data
regress_matrix calculates polynomial regression matrix for vectorial function y=f(x).
repmat constructs a large matrix of n*m blocks each consisting of ”mat”
setmatrix stores the data (an integer matrix) in an object figure.

simtrans performs simple similarity-transformation of a polygon.

visclass visualization of classification regions in multi dimensions

visclass_2d visualization of classification regions in 2 dimensions

w_DI performs w_DI-transformation of a matrix

3.2 Detailed Descriptions

CT - general translation-invariant CT-transformation of vectors

CALLING SEQUENCE
res = CT(f1, {2, x)

PARAMETERS

f1,£2: commutative functions with calling syntax r = f1(a,b) where a, b & r are all equally sized
matrices, r containing the results of elementwise dyadic operations.

x: vector/matrix each column of which will be processed by the CT.

res: vector/matrix of the columnwise results of the transformation of x.

DESCRIPTION
CT performs CT transformation of the given column-vector x using the commutative-functions f1
and 2 (if x is a matrix then each of its column-vectors will be processed simultaneously).

CT_DI - general 2d translation-invariant CT_DI-transformation of matrices

CALLING SEQUENCE
res = CT_DI(fl1, {2, x)

PARAMETERS

f1,£2: commutative functions with calling syntax r = fl(a,b) where a, b & r are equally sized
matrices, r containing the results of elementwise dyadic operations.

x: matrix to be transformed.

res: matrix of the CT_DI transformation of x.

20

DESCRIPTION
CT_DI (is a matrix transformation) performs CT_DI transformation, i.e. first w_DI transformation
then CT_ZS transformation, using the commutative functions f1 and f2 on the given matrix x.

CT_SZ - general 2d-translation-invariant CT_SZ-transformation of matrices

CALLING SEQUENCE
res = CT_SZ(f1, {2, x)

PARAMETERS

f1,£2: commutative functions with calling syntax r = fl(a,b) where a, b & r are equally sized
matrices, r containing the results of elementwise dyadic operations.

x: matrix to be transformed by CT_SZ.

res: matrix of CT_SZ transformation (of matrix x).

DESCRIPTION
CT_SZ (is a matrix transformation) performs CT_SZ tranformation i.e. first row by row CT-
transformation then columnwise CT-transformation, using the commutative-functions f1 and 2
on the given matrix x.

CT_ZS - general 2d-translation-invariant CT_ZS-transformation of matrices

CALLING SEQUENCE
res = CT_ZS(f1, {2, x)

PARAMETERS

f1,£2: commutative functions with calling syntax r = fl(a,b) where a, b & r are equally sized
matrices, r containing the results of elementwise dyadic operations.
x: matrix to be processed by the CT_ZS.
res: matrix with the result of the transformation of x.
DESCRIPTION

CT_ZS (is a matrix transformation) performs CT_ZS transformation i.e. first columns are CT-
processed and then rows) using the commutative functions f1 & 2 on the given matrix x.

Fc_demo - a GUI for demonstration of Fourier-coefficients of a polygon

CALLING SEQUENCE
Fc_demo() - it can take varargin, as follows: Fc_demo([’setnumber’, val], ['setpolygon’, polygon],
[’showspectrum’])

PARAMETERS

val: highest index of Fourier-coefficient to be used, default value is 20

polygon: 2*n matrix with x and y coordinates of the polygon for which the Fourier-coefficients
are to be demonstrated. the default value is polstar(5,4,3).

DESCRIPTION
Fc_demo allows interactive investigation of Fourier-coefficients (Fc) of complex contours. The
Fourier-coefficients c_i of a complex contour can be selected by choosing the index i with the upper
slider, the absolute value and the angle of the chosen c_i are then displayed and are editable by the
lower two sliders. Beside the sliders the values can be entered explicitly. After pressing the ”set”

21

button, the value will be set. When some some Fc is modified, a Fourier-synthesis is calculated
and the resulting contour is displayed. If the demo is started with the option ”showspectrum”,
the power-spectrum of the current contour is plotted additionally.

Fsynthesis - Fourier-synthesis of a polygon using its Fourier-coefficients

CALLING SEQUENCE
res = Fsynthesis(Fc)

PARAMETERS

Fc: complex Fourier-coefficients, can be obtained by computeFc function.

res: A vector of 1000 complex values representing the approximate polygon.

DESCRIPTION
Fsynthesis synthesises the input complex vector Fc (generally obtained from ”computeFc”) into
1000 points in the complex plane and outputs the resulting complex vector. It can be drawn by
”plotpol” function once if it is converted to a real matrix by using ”polygon” function.

MT - 1d-translation-invariant CT-transformation using max and min.

CALLING SEQUENCE
res = MT(x)

PARAMETERS

x: vector/matrix each column of which will be processed by the MT.

res: vector/matrix of the columnwise results of the transformation of x.

DESCRIPTION
MT performs CT transformation using the commutative functions pairwise- maximum and pairwise-
minimum on the given column vector x, if x is a matrix then each of its column vectors will be
processed simultaneously.

MT _DI - 2d-translation-invariant CT_DI-Transformation using max and min

CALLING SEQUENCE
res = MT_DI(x)

PARAMETERS

x: matrix to be processed by the MT _DI.

res: matrix of the MT_DI transformation of x.
DESCRIPTION
MT_DI (is a matrix transformation) performs CT_DI transformation using the commutative func-

tions pairwise-maximum and pairwise-minimum on the given matrix x, i.e. first w_DI transfor-
mation then MT_ZS transformation.

22

MT_SZ - 2d-translation-invariant CT_SZ-transformation using max and min.

CALLING SEQUENCE
res = MT_SZ(x)

PARAMETERS
x: matrix to be processed by the MT_SZ.

res: matrix of the MT_SZ transformation of x.

DESCRIPTION
MT_SZ (is a matrix transformation) performs CT_SZ transformation i.e. first row by row then
columnwise, using the commutative functions pairwise-maximum and pairwise-minimum, on the
given matrix x.

MT_ZS - 2d-translation-invariant CT_ZS-transformation using max and min.

CALLING SEQUENCE
res = MT_ZS(x)

PARAMETERS
x: matrix to be processed by the MT_ZS.

res: matrix of the MT_ZS transformation of x.

DESCRIPTION
MT_ZS (is a matrix transformation) performs CT_ZS transformation i.e. first columns are pro-
cessed and then rows) using the commutative functions pairwise-maximum and pairwise-minimum,
on the given matrix x.

QT - ld-translation-invariant CT-transformation using + and squared-difference
CALLING SEQUENCE
res = QT(x)
PARAMETERS
x: vector/matrix each column of which will be processed by the QT.

res: vector/matrix of the columnwise results of the transformation of x.

DESCRIPTION
QT performs CT transformation using the commutative functions pairwise-addition and squared-
difference on the given column vector x, if x is a matrix then each of its column vectors will be
processed simultaneously.

QT_DI - 2d-translation-invariant CT_DI-transformation using + and squared-difference

CALLING SEQUENCE
res = QT_DI(x)

PARAMETERS
x: a matrix to be processed by the QT_DI.

res: matrix of the results of the QT _DI transformation of x.
DESCRIPTION
QT_DI (is a matrix transformation) performs CT DI transformation using the commutative func-

tions pairwise-addition and squared-difference on the given matrix x, i.e. first w_DI transformation
then QT_ZS transformation.

23

QT_SZ - 2d-translation-invariant CT_SZ-transformation using + and squared-difference

CALLING SEQUENCE
res = QT-SZ(x)

PARAMETERS
x: matrix to be processed by the QT_SZ.

res: matrix of the result of the QT_SZ transformation of x.
DESCRIPTION
QT_SZ (is a matrix transformation) performs CT_SZ transformation i.e. first row by row then

columnwise, using the commutative functions: pairwise- addition and squared-difference on the
given matrix x.

QT_ZS - 2d-translation-invariant CT_ZS-transformation using + and squared-difference

CALLING SEQUENCE
res = QT-ZS(x)

PARAMETERS
x: a matrix to be processed by the QT _ZS.

res: matrix of the result of the QT_ZS transformation of x.
DESCRIPTION
QT_ZS (is a matrix transformation) performs CT_ZS transformation (i.e. first columns are pro-

cessed and then rows) using the commutative functions pairwise-addition and squared-difference
on the given matrix x.

RT - 1d-translation-invariant CT-transformation using + and difference
CALLING SEQUENCE
res = RT(x)
PARAMETERS
x: vector/matrix each column of which will be processed by the RT.
res: vector/matrix of the columnwise results of the transformation of x.
DESCRIPTION
RT performs CT transformation using the commutative functions pairwise-addition and absolute-

difference on the given column vector x, if x is a matrix then each of its column vectors will be
processed simultaneously.

RT _DI - 2d-translation-invariant CT_DI-transformation using + and difference

CALLING SEQUENCE
res = RT_DI(x)

PARAMETERS
x: a matrix to be processed by the RT_DI.

res: matrix of the result of the RT_DI transformation of x.
DESCRIPTION
RT_DI (is a matrix transformation) performs CT_DI transformation using the commutative func-

tions pairwise-addition and absolute-difference on the given matrix x, i.e. first w_DI transformation
then ZS transformation.

24

RT _SZ - 2d-translation-invariant CT_SZ-transformation using + and difference

CALLING SEQUENCE
res = RT_SZ(x)

PARAMETERS

x: a matrix to be processed by the RT_SZ.

res: matrix of the result of the RT_SZ transformation of x.

DESCRIPTION
RT_SZ (is a matrix transformation) performs CT_SZ tranformation i.e. first row by row then
columnwise, using the commutative functions pairwise- addition and absolute-difference on the
given matrix x.

RT_ZS - 2d-translation-invariant CT_ZS-transformation using + and difference

CALLING SEQUENCE
res = RT_ZS(x)

PARAMETERS

x: a matrix to be processed by the RT_ZS.

res: matrix of the result of the RT_ZS transformation of x.

DESCRIPTION
RT.ZS (is a matrix transformation) performs CT_ZS transformation i.e. first columns are pro-
cessed and then rows) using the commutative functions pairwise-addition and absolute-difference
on the given matrix x.

bayes_class - implements the bayes classification in multi-dimensions.

CALLING SEQUENCE
[classes,cert] = bayes_class(x, [p1,m1,K1,p2,m2,K2,...]).

PARAMETERS

x: a n1*n2 matrix with n2 columnwise data points to be classified
pl,p2,...: prior probabilities of the classes (sum == 1).

ml,m2,.... mean vectors of the classes (length nl)

K1,K2,...: covariance matrices of the distributions (of size n1*n1)
classes: vector of estimated class memberships (length n2).

cert: vector (length n2) of certainty measures for the classifications, in this case the a-posteriori
probabilities given by the input distributions.

DESCRIPTION
bayes_class implements bayes classification of n1-dimensional vectors in case of a multiclass prob-
lem with the class conditional probability distributions assumed to be the normal distributions
defined by the statistical parameters pl,m1,K1,p2,m2,K2....

25

bayes_class_2d - implements the bayes classification in 2 dimensions.

CALLING SEQUENCE
[classes,cert] = bayes_class_2d(x, pl,m1,K1,p2,m2,K2).

PARAMETERS

x: a 2*n matrix with columnwise n data points to be classified
pl,p2: prior probability of the 2 classes (sum == 1).

ml,m2: mean vector of the 2 classes.(of length 2)

K1,K2: covariance matrices of the 2 distributions (of size 2*2).
classes: vector of estimated class memberships(1 or 2) of length n.

cert: vector (length n) of certainty measures for the classifications, in this case the a-posteriori
probabilities.

DESCRIPTION
bayes_class_2d implements bayes classification of 2-dimensional vectors in case of a 2-class problem
with the class conditional probability distributions assumed to be the normal distributions defined
by the statistical parameters p1l, m1, K1, p2, m2, K2.

binom_coeff - calculation of binomial-coefficient.

CALLING SEQUENCE
res =binom_coeff(n k)

PARAMETERS

n: a positive integer
k: a positive integer in the range from 0 to n

res: binomial coefficient

DESCRIPTION
binom_coeff calculates the binomial-coefficient "k out of n” where n is a positive integer and k
should be in the range [0,...,n].

class_statistics - estimates the statistics of the given class number

CALLING SEQUENCE
[p,m,k] = class_statistics(learn_data [,labels, class no))

PARAMETERS

learn_data: a matrix of columnwise learning data points

labels: a vector of length equal to the number of points, default labels are ones.
class_no: number of the class for which the statistics should be generated, default is 1.
p: prior probability of the given (or else default) class number

m: mean vector of the given (or else default) class number

k: covariance matrix of the given (or else default) class number

DESCRIPTION
class_statistics is a function for generating class statistics i.e. converting the learning data and
labels for classification into the statistics for e.g. normal distribution estimation.

26

coarsenpol - coarsens (removes points of) a polygon with respect to a threshold angle

CALLING SEQUENCE
res = coarsenpol(p,t)

PARAMETERS

p: a 2*n matrix representing the vertices of the polygon as its columns
t: threshold angle

res: coarsened polygon resulting from p

DESCRIPTION
coarsenpol removes all the vertices of the given polygon p whose internal angles are more than
m-t and outputs the resulting polygon.

computeFc - Fourier-coefficients of closed polygons in the complex plane

CALLING SEQUENCE
res = computeFc(n, cpol)

PARAMETERS

n: maximum index of Fourier-coefficients to be calculated, integer >1
cpol: vector of complex values representing the polygon.

res: vector of (complex valued) Fourier-coefficients c_i (i ranging from -n, ..., 0, ..., +n)

DESCRIPTION
computeFc takes a complex vector representing a closed polygon and calculates the Fourier-

”on

coefficients (in the complex plane). The output can be used in ”Fsynthesis”, ” computeFd” func-
tions.

computeFd - Fourier-descriptors of closed polygons in the complex plane

CALLING SEQUENCE
res = computeFd(q, s, Fc)

PARAMETERS

q: Index of the Fourier-coefficient which will be used for normalization.

s: rotation symmetry of the polygon represented by the Fourier-coefficients, (i.e. distance between
indices of non-vanishing coefficients).

Fc: vector of (complex valued) Fourier-coefficients.

DESCRIPTION
computeFd takes Fourier-coefficients of a closed polygon and calculates the similarity invariant
complex Fourier-descriptors.

cpolygon - converts a real-valued 2*n matrix to a complex-valued vector

CALLING SEQUENCE
res = cpolygon(pol)

PARAMETERS

pol: a 2*n matrix of real values representing the vertices of a polygon

27

res: a vector (of length n) of complex values

DESCRIPTION
cpolygon converts a 2*n matrix of real values to a complex vector of length n.

cyclmat - implementation of cyclic translation matrix of dimension n*n

CALLING SEQUENCE
res = cyclmat(n)

PARAMETERS

n: dimension of the desired translation matrix (an integer >1)
res: cyclic translation matrix, e.g. if n = 4 thenres’ * [1 23 4] =[234 1)
DESCRIPTION

implementation of cyclic translation matrix of dimension n*n. Any vector can be translated
cyclically by simple multiplication with the transpose of this resulting matrix.

*

cyclrot - implements cyclic rotation of a matrix

CALLING SEQUENCE
res = cyclrot(mat, phi)

PARAMETERS

mat: matrix to be rotated
phi: rotation angle, a real value

res: rotated matrix

DESCRIPTION
cyclrot implements the cyclic rotation of the given matrix "mat” around its center using nearest
neighbour interpolation.

cycltrans - implementation of cyclic translation for matrices.

CALLING SEQUENCE

res = cycltrans(mat, m, n)
PARAMETERS

mat: arbitrary typed matrix to be translated.
m: shift in y-Direction = first matrix-dimension, integer value.
n: shift in x-Direction = second matrix-dimension integer value.

res: cyclic translated matrix.

DESCRIPTION
cycltrans implements cyclic translation of matrices with help of (expensive) matrix multiplications.
e.g. cycltrans([123;456;789],1,1)=[564;897;231]

28

detect_symmetry - detection of rotational symmetry degree of a complex polygon

CALLING SEQUENCE
res = detect_symmetry(Fc)

PARAMETERS

Fec: vector of Fourier-coefficients obtained from a polygon.

res: (largest) symmetry degree of the polygon represented by Fc

DESCRIPTION
detect_symmetry detects rotational symmetry degree s of a polygon represented by its Fourier-
coefficients (Fc). This is the maximum number for which a rotation of 27 /s around the polygon’s
center exactly reproduces the polygon. If the polygon is not symmetric then the output will be 1.

dumb_class_2d - implements a demo classification in 2 dimensions.

CALLING SEQUENCE
[cl,cert] = dumb_class_2d(v)

PARAMETERS

v: a 2*n - matrix consisting of n points to be classified
cl: n-vector of estimated class memberships

cert: n-vector of certainty measures for the classifications

DESCRIPTION
dumb_class_2d implements a demo classification of 2-dimensional vectors: labels 1,2,3 are assigned
to x-coordinates in the intervalls -inf < x < 0,0 <x < 1,1 < x < 4 inf. "cert” is set to the y value of
the points. Purpose of routine: demonstration of use of the function visclass: visclass(dumb_class)
produces graphical output of classification regions.

fcycltrans - fast implementation of cyclic translation for matrices.
CALLING SEQUENCE

res = fcycltrans(mat, m, n)
PARAMETERS

mat: arbitrary typed matrix to be translated.
m: shift in y-Direction = first matrix-dimension, integer value.
n: shift in x-Direction = second matrix-dimension integer value.

res: cyclic translated matrix.

DESCRIPTION
feycltrans implements fast cyclic translation of matrices. e.g. feycltrans([1 2 3;4 5 6; 7 8 9], 1,1)
=[564;897;231]

29

getmatrix - gets the data stored in an object figure (as a matrix)

CALLING SEQUENCE
res = getmatrix(f, s)

PARAMETERS

f: object figure number
s: string argument specifying the name with which the data(as a matrix) is stored in the figure

res: the matrix stored in the "object figure”.

DESCRIPTION
getmatrix gets the data stored (as a matrix) in an ”object figure”. This function works for huge
data, and outputs a matrix but not a list in contrast to the function ”get”.

inputpol - generates a polygon interactively (by mouse clicks or dragging)

CALLING SEQUENCE
res = inputpol(['mode’, Mode], [’size’, Size], ['noclose’], [no-nw’])

PARAMETERS

Mode: sets the mode of mouse drawing (’click’, ’drag’, 'marks’); default: ’click’
Size: a 1*4 matrix which sets the region of drawing; default :[-5,-5,10,5];

‘noclose’: by default the graphics-window will be closed as soon as the drawing is finished. This
parameter should be given in order to keep the window opened.

‘no-nw’: This parameter should be given in order to draw in an already existing window. Default
is that a new graphics-window will be popped up.

res: a 2*n matrix with indices of the resulting polygon as its elements
DESCRIPTION
inputpol allows the user to draw a polygon by clicking/dragging the mouse(left mouse button
should be pressed for drawing) in the window which is popped up at the function-call. If the user
gives 'no-nw’ then the currently-active window will be set for drawing. The window will be closed

after drawing, if the user doesn’t give 'no-close’ argument. With giving 'marks’, the lines of the
polygon will not be drawn but marks put at the vertices instead.

monomvec - calculates the power-substitution-vector, the vector of monomials

CALLING SEQUENCE

res = monomvec(p, X)

PARAMETERS

p: desired polynomial degree
x: input vector (x1, ..., xn) of arbitrary length n (if matrix, each column is processed)
res: power substitution vector of x

DESCRIPTION

monomvec Calculates the power-substitution-vector i.e vector of monomials of a given vector. If p
is the desired polynomial degree and x =(x1...xn) is the given vector, then the power-substitution-

vector of x is (1, x1, ... , xn, x1°2, ..x1x2, ..., xn"2,... xn"p). This is the lexicographical ordered
set of monomials of x of degree < p. If X is a matrix, result will be a matrix with columnwise
results.

30

new_window - gets the number of the next possible new graphics window

CALLING SEQUENCE

res = new_window()

PARAMETERS

res: is the number of the possible new window i.e. one number higher than the highest number
in all of the existing windows.

DESCRIPTION

new_window gets the value (number) of the next possible new graphics window

nneigh_class - implements the nearest neighbour classification in multi-dimensions

CALLING SEQUENCE
[classes,cert] = nneigh_class(x, xlearn, labels).

PARAMETERS

x: a n1*n2 matrix representing n2 data points to be classified as its columns.
xlearn: n1*m - matrix consisting of learning points

labels: vector of integer class-labels (length m)

classes: vector of estimated class memberships (length n2).

cert: vector of certainty measures for the classifications (length n2).

DESCRIPTION
nneigh_class implementation of nearest neighbour classification in arbitrary dimensions and arbi-
trary classes. As heuristic certainty measure simly exp(-sqr(d)) is used, where d is the distance of
a classified point to its nearest neighbour in the set of learning points.

nneigh_class_2d - implements the nearest neighbour classification in 2 dimensions

CALLING SEQUENCE
[classes,cert] = nneigh_class 2d(x, xlearn, labels).

PARAMETERS

x: a 2*n matrix n 2-dimensional data points to be classified
xlearn: 2* m - matrix consisting of learning points

labels: m-vector of integer class-labels of learning points
classes: n-vector of estimated class memberships, integers.

cert: n-vector of ”certainty” measures for the classifications, in this case e~ (-dmin~2) (only
heuristic, no theoretic foundation for ”certainty”).

DESCRIPTION
nneigh_class_2d implements nearest neighbour classification of two-dimensional vectors and ar-
bitrary many classes based on the learning data and labels. The classification regions can be
visualized by visclass_2d(nneigh_class_2d, xlearn, labels).

31

patrec_demos - a GUI showing a list of all the Presto-Box demos

CALLING SEQUENCE
patrec_demos|()

DESCRIPTION
patrec_.demos displays a gui object which contains a list of all the demos and graphic-functions of
Presto-Box. Users can also view these demos with the name ”Presto-Box: Pattern-Recognition-
Demos” after pressing the ”Demos” button in the scilab toolbar.

plotFourierseq - plots Fourier-sequence of a polygon for given range and step values

CALLING SEQUENCE
plotFourierseq(pol, n_start, n_end, n_step)

PARAMETERS

pol: a 2*n polygon for which the Fourier-sequence is to be calculated
n_start: start of the range of index of coefficients
n_end: end of the range of index of coeflicients

n_step: step of the range of index of coefficients

DESCRIPTION
plotFourierseq generates a list (sequence) of polygons in the given range of the index of coefficients
from a given polygon, then it plots the list of polygons using the plotpolseq function. Users can
find a sample demo in the list displayed by patrec_demos or in by choosing the Presto-Box demos
shown after pressing the " Demos” button in the scilab toolbar.

plotF's - plotting of the Fourier-spectrum (mainly used in Fc_demo)

CALLING SEQUENCE
plotFs(Fc)

PARAMETERS
Fc: a vector of complex values representing the Fourier-coefficients.

DESCRIPTION
plotFs plots the Fourier-spectrum (power-spectrum), i.e. the absolute values of the Fourier-
coefficients. This function is mainly used in ”Fc_demo” when the demo is started with ”show
spectrum” option.

plotclassseq - plots the effect of different classifiers on given learning data

CALLING SEQUENCE
plotclassseq(learn_data, labels)

PARAMETERS
learn_data: matrix of columnwise learning vectors

labels: vector with integer-label for each learning vector

DESCRIPTION
plotclassseq plots the classification results from different classifiers defined like bayes_class, nneigh_class
polynom _class in a sequence.

32

plotpol - plots a polygon represented by a 2*n real matrix

CALLING SEQUENCE
plotpol(pol)
PARAMETERS

pol: a 2*n matrix representing the polygon

DESCRIPTION
plotpol plots a polygon represented by a 2*n matrix

plotpolseq - plots the given list of polygons in sequence

CALLING SEQUENCE
plotpolseq(poll, strl [, pol2, str2, ...])

PARAMETERS

poll,pol2,...: 2*n matrices representing the polygons, this can be repeated any number of times
but should be followed by its title (as a string argument str) every time.

strl,str2,...: a string argument representing the title of the polygon preceding this parameter.

DESCRIPTION
This function plots a sequence of polygons into different subplots of one graphical window. Each
polygon is labelled with an individual title above the plot.

polarea - area of a real polygon

CALLING SEQUENCE
res = polarea(p)

PARAMETERS

p: a 2*n real matrix representing the polygon for which the area is to be calculated.

res: area of the input polygon

DESCRIPTION
polarea calculates the area of the polygon represented by a 2*n real valued matrix.

polboundary - length of boundary of a real polygon

CALLING SEQUENCE
res = polboundary(p)

PARAMETERS

p: a 2*n real matrix representing the polygon for which the length of its boundary is to be
calculated.

res: length of boundary of the input polygon

DESCRIPTION
polboundary calculates the length of boundary of the polygon represented by a 2*n real valued
matrix.

33

polclass_demo - a GUI for interactive polygon classification

CALLING SEQUENCE
polclass_demo([[’setpoly”, pol]...] [, 7high_index”, hfc] [, ”low_index”, lfc] [, ”pfeatures”])

PARAMETERS

”setpoly”: optional string parameter, for setting a reference polygon to compare with the polygon
to be classified. A 2*n matrix ”pol” should follow this argument. the set of these two can

be repeated any number of times. default values are given by a list of polygons representing
the letters E, F, L, T.

"high_index”: optional string parameter for setting the highest index of high frequency Fourier-
coefficients This argument should be followed by an integer ”hfc”.

"low_index”: optional string parameter, for setting the highest index of Fourier-coefficients to be
regarded as "low-frequency Fc¢”. This argument should be followed by an integer lfc.

”pfeatures”: optional string parameter, if the user wants to print the feature vectors to the scilab
window.

DESCRIPTION

polclass_.demo takes the polygons given by the user with the argument ”setpoly”, otherwise the
default values E, F, L, T. Then it displays a GUI showing the features to be selected and a "new
polygon” and ”classify polygon” button. First the user has to click "new polygon” button for
drawing a polygon interactively. then he has to make sure that at least one feature is selected
in the list, then has to click the ”classify polygon” button to see the classification of the input
polygon. more detailed information is available in the help button in the GUI object of this demo.
The demo is also available in the patrec_demos list or by choosing the Presto-Box demos after
pressing the ”Demos” button in the scilab toolbar.

polcog - center of gravity of a real polygon

CALLING SEQUENCE
res = polcog(p)
PARAMETERS
p: a 2*n real matrix representing the polygon for which the center of gravity is to be calculated.
res: center of gravity of the input polygon
DESCRIPTION

polcog calculates the center of gravity of the polygon represented by a 2*n real valued matrix.
This is the ”physical” center of gravity if area of the polygon is filled uniformly with mass.

pollinecog - line center of gravity of a real polygon
CALLING SEQUENCE
res = pollinecog(p)
PARAMETERS
p: a 2*n real matrix representing the polygon for which the line center of gravity is to be
calculated.
res: line center of gravity of the input polygon
DESCRIPTION
pollinecog calculates the line center of gravity of the polygon represented by a 2*n real valued

matrix. This is the " physical” center of gravity if mass is distributed uniformly along the boundary
line of the polygon.

34

polstar - generation of a star-shaped origin-centered polygon.

CALLING SEQUENCE
res = polstar(n, R, 1)

PARAMETERS

n: number of arms
R: outer radius
r: inner radius

res: matrix with the corners/edges of the origin centered star of n arms

DESCRIPTION
polstar generates a default polygon. Result is a star with origin as the center, n as the number of
arms, R as the outer radius and r as the inner radius.

polstar_demo - a GUI for interactive polygon generation

CALLING SEQUENCE
polstar_demo()

DESCRIPTION
polstar_demo demonstrates the function polstar. first it displays a GUI showing the slider, edit

field, push button for each "number of arms”, ”outer radius”,”inner radius”. The user then can
?))

modify these values by dragging the slider or by typing some value in the edit field and pressing
the ”set” button. More detailed information is available by the "help” button in the GUI object
of this demo. The demo is also available in the patrec.demos list or by choosing the Presto-Box
demos after pressing the ”Demos” button in the scilab toolbar.

polygon - converts a complex-valued vector to a real-valued matrix

CALLING SEQUENCE
res = polygon(cpol)

PARAMETERS

cpol: a vector(of length n) of complex values

res: a 2*n matrix of real values

DESCRIPTION
cpolygon converts a complex vector of length n to a 2*n matrix of real values.

polynom_class - training of polynomial classifier and classification.

CALLING SEQUENCE
[classes, cert] = polynom_class(X, p, Xlearn, labels)

PARAMETERS

X: arbitrary sized matrix of columnwise points which have to be classified.
p: polynomial degree to be used (positive integer)

Xlearn: matrix of columnwise learning vectors, dimension of the vectors has to coincide with
columns of X

labels: vector of integer-labels (starting from 1) of the learning vectors (of same length as number
of Xlearn-examples)

35

classes: vector of estimated class-numbers for each vector in X.

cert: vector of ”certainties” for each class decision. Values between 0 and 1, simply the maximum
of the winning decision function.

DESCRIPTION
polynom_class first performs polynomial regression on the learning data, (uses regress_matrix and
polynom_regress functions for this purpose) then it uses this regression-function for classification.

polynom_regress - evaluate polynomial (vectorial) regression function

CALLING SEQUENCE
res = polynom_ regress(p, X, A)

PARAMETERS

p: desired polynomial degree of regression (also implicitly contained in matrix A)
X: matrix of columnwise points in which the regression function will be evaluated.
A: Regression matrix defining the regression function obtained e.g. from regress_matrix.

res: matrix with columnwise results from the regression function evaluated in the columns of X

DESCRIPTION
polynom_regress perform evaluation of a trained polynomial (vectorial) regression function by res
= transpose(A)*monomvec(p,X). The output of this data is e.g. used in polynom_class function
for classification.

pw_absdiff - elementwise absolute difference.

CALLING SEQUENCE
res = pw_absdiff(x, y)

PARAMETERS

x: first vector/matrix for computation
y: second vector/matrix for computation, same size as x

res: elementwise absolute difference same size as x,y

DESCRIPTION
pw-_absdiff dummy function needed for CT-transformation performing elementwise absolute dif-
ference.

pw_add - elementwise addition.

CALLING SEQUENCE
res = pw-add(x, y)

PARAMETERS
x: first vector/matrix for computation

y: second vector/matrix for computation, same size as x

res: elementwise addition same size as x,y

DESCRIPTION
pw_add dummy function needed for CT-transformation performing elementwise addition.

36

pw_diffsquare - elementwise square of difference.

CALLING SEQUENCE
res = pw_diffsquare(x, y)

PARAMETERS

x: first vector/ matrix for computation
y: second vector/ matrix for computation, same size as x

res: elementwise square of difference same size as x,y

DESCRIPTION
pw_diffsquare dummy function needed for CT-transformation performing elementwise square of
difference.

pw_max - elementwise maximum.

CALLING SEQUENCE

res = pw_max(x, y)

PARAMETERS

x: first vector/matrix for computation
y: second vector/matrix for computation, same size as x

res: elementwise maximum same size as x,y

DESCRIPTION

pw-_max dummy function needed for CT-transformation performing elementwise maximum.

pw_min - elementwise minimum.

CALLING SEQUENCE

res = pw._min(x, y)
PARAMETERS

x: first vector/matrix for computation
y: second vector/matrix for computation, same size as x

res: elementwise minimum same size as x,y

DESCRIPTION

pw_min dummy function needed for CT-transformation performing elementwise minimum.

randnormal - generation of arbitrary dimensional normally distributed random data
CALLING SEQUENCE

res = randnormal(m, K [,n])

PARAMETERS

m: mean vector of length L.
K: covariance matrix(an L x L square matrix).
n: number of the learning data points to be generated, default value is 1000.

res: learning data points with length of the mean vector as its dimension.

37

DESCRIPTION
randnormal generates arbitrary dimensional normally distributed random data. The result can

be used as the Xlearn data in the functions nneigh_class, polynom_class etc.

regress_matrix - calculates polynomial regression matrix for vectorial function y=f(x).

CALLING SEQUENCE
res = regress_matrix(p, Xlearn, Y)

PARAMETERS

p: desired polynomial degree of regression
Xlearn: matrix with columnwise observation vectors x_i
Y: matrix with columnwise target vectors y_i

res: regression matrix defining regression function.

DESCRIPTION
regress_matrix calculates the polynomial regression-matrix given some learning data. This matrix

can then be used for evaluation of the regression function in new points by polynom_regress

repmat - constructs a large matrix of n*m blocks each consisting of ”mat”

CALLING SEQUENCE

res = repmat(mat, n, m)
PARAMETERS

mat: a matrix of dimension x*y where x & y are >1
n: desired number of copies of mat in y- direction
m: desired number of copies of mat in x- direction

res: block-matrix consisting of n*m copies of "mat”.

DESCRIPTION
repmat: repeating of matrix "mat” (to n rows and m columns) i.e constructing a large matrix of

n*m blocks each consisting of "mat”.

setmatrix - stores the data (an integer matrix) in an object figure.

CALLING SEQUENCE
setmatrix(f, s, mat)

PARAMETERS

f: object figure number

s: string argument specifying the name with which the data (as a matrix) is to be stored in the
”object figure”

mat: data to be stored in the ”object figure” (an integer matrix)

DESCRIPTION
setmatrix sets the data (an integer matrix) in an ”object figure”. This function works even for

huge data in contrast to the ”set” function.

38

simtrans - performs simple similarity-transformation of a polygon.

CALLING SEQUENCE
res = simtrans(p, r, a, tv)

PARAMETERS

p: is a 2*n matrix with indices of polygon to be translated.
r: scale-factor (r>0).

a: angle of rotation.

tv: translation vector(of length 2).

res: a 2*n matrix with points of the transformed polygon.

DESCRIPTION
simtrans is a routine performing a similarity-transformation of a polygon i.e. rotation, scaling and
translation simultaneously.

visclass - visualization of classification regions in multi dimensions

CALLING SEQUENCE
visclass([”origin”, ori], [’projections”, projl, proj2], [’size”, Size|, ["resolution”, resol], [’gui”],
["class_color”, cl.no, RGB_Vect], ["2d”, [’plot_points”, points, labels], [’shades”, num_shades]],
7 classifier”, classif, class_data)

PARAMETERS

”origin”: this string should be followed by a vector(ori) representing the origin of the plot, default
value is [-3,-3].

"projections”: this string should be followed by two distinct positive integers > 0 & < length(ori),
default values are 1 & 2.

”size”: this string should be followed by a vector of length 2 for setting the size of the range of
x and y coordinates for plotting, default value is [6,6].

"resolution”: this string should be followed by a vector of length 2 for setting resolution of the
range of x and y coordinates for plotting, the default value is [31,31].

”

gui”: this should be given if the user wants to modify some of the parameters of this function
interactively, (a GUI will be popped up for this).

”class_color”: this string should be followed by the class number (an integer) & a vector [R G
B] of length 3 for setting class_color R,G,B. Each should be between 0 & 1.

72d”: since the default plotting type is ”3d”, the user should use this parameter if he wants to
see the visualization in 2d-graphics.

”plot_points”: plots some points with different shades in the plotting region, this string should
be followed by a (2 x n) matrix of the points to be plotted and a vector of their class labels,
this is an optional argument, it should be given only when ”2d” option is selected.

”shades”: this string should be followed by a positive integer <100, which sets the number of
shades of 2d plotting. should be given only when ”2d” option is selected, the default value
is 16.

”classifier”: should be at the end of all the arguments. this string should be followed by any of the
classifiers like: dumb_class_2d, bayes_class, nneigh_class, polynom class & the corresponding
classifier specific data.

39

”class_data”: classifier specific parameters ordered as in the individual argument syntax. For
example p, m, k for bayes_class, learn_data & labels for nneigh_class.

DESCRIPTION
visclass visualizes classification of a given classifier in multi dimensions. If called with the ”gui”
option, interactive setting of various display-parameters is possible.

visclass_2d - visualization of classification regions in 2 dimensions

CALLING SEQUENCE
visclass_2d(classifier,varargin)

PARAMETERS

classifier: Name of the classifier like bayes_class, nneigh_class, polynom class etc. default value
is: dumb_class_2d

varargin: Classification data of the classifier, for example p, m, k for bayes_class, learn_data &
labels for nneigh_class etc.

DESCRIPTION
visclass_2d visualizes the regions of classification of various classifiers with 2-dimensional data.

w_DI - performs w_DI-transformation of a matrix

CALLING SEQUENCE
res = w_DI(x)

PARAMETERS

x: matrix to be transformed
res: transformed matrix
DESCRIPTION
w_DI transforms a given matrix x such that the diagonal elements will come into the first column
of the resulting matrix, i.e. it translates the i-th row cyclically such that the element in the i-th col-

umn comes into the first. This function is necessary for the translation-invariant transformations
of the class CT_DI.

References

[1] H. Burkhardt and B. Haasdonk. Mustererkennung WS 02/03, ein multimedialer
Grundlagenkurs im Hauptstudium Informatik, CD 1 + 2 (TSCC-Video). Computer
Science Department, University of Freiburg, Germany, 2003.

2] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley Interscience,
9nd edition, 2001.

[3] B. Haasdonk and B.R. Poluru. Presto-Box - Pattern REcognition Scilab TOolBOX.
http://lmb.informatik.uni-freiburg.de/lmbsoft/presto-box, 2002.

[4] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, London,
1999.

40

