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Abstract. Within the framework of kernel methods, linear data methods have al-
most completely been extended to their nonlinear counterparts. In this paper, we
focus on nonlinear kernel techniques based on the Mahalanobis distance. Two ap-
proaches are distinguished here. The first one assumes an invertible covariance op-
erator, while the second one uses a regularized covariance. We discuss conceptual
and experimental differences between these two techniques and investigate their use
in classification scenarios. For this, we involve a recent kernel method, called Kernel
Quadratic Discriminant and, in addition, linear and quadratic discriminants in the
dissimilarity space built by the kernel Mahalanobis distances. Experiments demon-
strate the applicability of the resulting classifiers. The theoretical considerations and
experimental evidence suggest that the kernel Mahalanobis distance derived from
the regularized covariance operator is favorable.
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1 Introduction

Nonlinear learning methods can be successfully designed by linear techniques
in feature space induced by kernel functions. Many of such kernel methods
have been proposed so far, including Support Vector Machine (SVM) and Ker-
nel Fisher Discriminant (KFD) [2]. They have been widely applied to various
learning scenarios thanks to their flexibility and good performance [6,7]. In
this paper, we consider a nonlinear kernel technique, the kernel Mahalanobis
distance, which represents a kernel quadratic analysis tool. Two approaches
to kernel Mahalanobis distance are distinguished and investigated here. The
first one assumes invertible class covariance matrices in the kernel-induced
feature space and is similar to the method discussed in [5], while the other
one regularizes them appropriately. As a result, these different assumptions
lead to different formulations of kernel Mahalanobis classifiers. The goal of
the current presentation is to compare these two approaches theoretically and
experimentally. For the experiments we use different classifiers built on these
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kernel Mahalanobis distances. First, we use Kernel Quadratic Discriminant
(KQD) analysis [4]. We also train classifiers in simple dissimilarity spaces [3]
defined by the class-wise kernel Mahalanobis distances. In this way, we make
an explicit use of the between-class information, which may also lead to fa-
vorable results. Our approach KQD is a pure kernelized algorithm and differs
from the two-stage approach [8] which relies on supervised dimension reduc-
tion in a kernel-induced space followed by a quadratic discriminant analysis.

The paper is organized as follows. Section 2 starts with preliminaries on
kernels. Section 3 introduces the kernel Mahalanobis distances and subsequent
classification strategies. Section 4 presents an experimental study on the kernel
Mahalanobis distance classifiers on toy and real world data. Section 5 gives
some theoretical insights and we conclude with Section 6.

2 Kernels and Feature-Space Embedding

Let X be a set of objects, either a vector space or a general set of structured
objects. Let φ : X → H be a mapping of patterns from X to a high-dimensional
or infinite dimensional Hilbert space H with the inner product 〈·, ·〉.

We address a c-class problem, given by the training data X := {xi}
n
i=1⊂X

with labels {yi}
n
i=1 ⊂Ω, where Ω := {ω1, . . . , ωc} is a set of c target classes.

Let Φ := [φ(x1), . . . , φ(xn)] be the sequence of images of the training data
X in H. Given the embedded training data, the empirical mean is defined as
φµ := 1

n

∑n
i=1 φ(xi) = 1

n
Φ1n, where 1n is an n-element vector of all ones. Here

and in the following we will use such matrix-vector-product notation involving
Φ for both finite and infinite dimensional H which is reasonable by suitable
interpretation as linear combinations in H. The mapped training data vec-
tors are centered by subtracting their mean such that φ̃(xi) := φ(xi)−φµ, or,

more compactly, Φ̃ := [φ̃(x1), . . . , φ̃(xn)] = Φ− 1
n
φµ1

T

n = Φ− 1
n
Φ1n1T

n = ΦH.

Here, H := In − 1
n
1n1T

n is the n × n centering matrix, while In is the n × n

identity matrix. Note that H = HT = H2. The empirical covariance opera-
tor C : H → H acts on φ(x) ∈ H as C φ(x) := 1

n

∑n

i=1(φ(xi)−φµ) 〈φ(xi)−

φµ, φ(x)〉 = 1
n

∑n

i=1 φ̃(xi)(φ̃(xi))
Tφ(x) = 1

n
Φ̃Φ̃Tφ(x). Here, we use the trans-

pose notation φ(x)Tφ(x′) := 〈φ(x), φ(x′)〉 as an abbreviation for inner prod-
ucts, hence Φ̃Tφ(x) denotes a column-vector of inner products. We can there-
fore interpret 1

n
Φ̃Φ̃T as an operator and identify the empirical covariance as

C = 1
n

Φ̃Φ̃T = 1
n
ΦHHΦT.

The transformation φ acts as a (usually) nonlinear map to a high-
dimensional space H in which the classification task can be handled in either
a more efficient or more beneficial way. In practice, we will not necessarily
know φ, but choose a kernel function k : X × X → R that encodes the inner
product in H, instead. The kernel k is a positive definite function such that
k(x, x′) = φ(x)Tφ(x′) for any x, x′ ∈ X . Particular instances of such kernels are
the Gaussian Radial Basis Function krbf(x, x′) := exp(−γ||x−x′||2) for γ ∈ R+

and the polynomial kernel kpol := (1+〈x, x′〉)p for p ∈ N. Given that X = R
d,
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the kernel krbf represents an inner product in an infinite dimensional Hilbert
space H, in contrast to a finite dimensional space for the polynomial kernel
kpol. For details on kernel methods we refer to [6,7]. K := ΦTΦ is an n×n kernel
matrix derived from the training data. Moreover, we will also use the centered
kernel matrix K̃ := Φ̃TΦ̃ = HΦTΦH = HKH. Further, for an arbitrary x ∈ X ,
kx := [k(x1, x), . . . , k(xn, x)]T = ΦTφ(x) denotes the vector of kernel values
of x to the training data, while k̃x := Φ̃Tφ̃(x) = H(kx−

1
n
K1n) is the centered

vector. Finally, we will also use the self-similarity kxx := k(x, x) = φ(x)Tφ(x)
and its centered version k̃xx = φ̃(x)Tφ̃(x) = kxx − 2

n
1T

nkx + 1
n2 1

T

nK1n. In
addition to the quantities defined for the complete sequence Φ, we can define
analogous class-wise quantities which are indicated with the superscript [j].

3 Kernel Mahalanobis Distance Classifiers

With the above notation, the Mahalanobis distance in the kernel-induced
feature space H can be formulated purely in terms of kernel evaluations as we
derive in the following. Then we introduce the subsequent classifiers.

3.1 Kernel Mahalanobis Distances for Invertible Covariance

For simplicity of presentation, we consider here a single class of n elements
Φ = [φ(x1), . . . , φ(xn)]. For classification, the resulting formulae will be used
in a class-wise manner. We require here an invertible empirical class covariance
operator C in the kernel-induced space. This limits our reasoning to a finite-
dimensional H, as the image of C based on n samples has a finite dimension
m < n. We want to kernelize the empirical square Mahalanobis distance

d2(φ(x); {φµ, C}) := (φ(x) − φµ)TC−1(φ(x) − φµ). (1)

Since H is m-dimensional, with m < n, we may interpret Φ̃ as an m×n matrix.
Hence, it has a singular value decomposition Φ̃ = USV T with orthogonal
matrices U ∈R

m×m, V ∈R
n×n and a diagonal matrix S∈R

m×n. By using the
orthogonality of U and V , we have: C = 1

n
Φ̃Φ̃T = 1

n
USSTUT and K̃ = Φ̃TΦ̃ =

V STSV T, with an invertible matrix SST∈ R
m×m but singular STS ∈ R

n×n.
So C−1 = nU(SST)−1UT and K̃− = V (STS)−V T, where the superscript −

denotes the pseudo-inverse. Multiplication of these equations with Φ̃ yields
1
n
C−1Φ̃ = U(SST)−1SV T and Φ̃K̃− = US(STS)−V T. Since S ∈ R

m×n is
diagonal and has m nonzero singular values, both middle matrices (SST)−1S

and S(STS)− are m × n diagonal matrices with inverted singular values on
the diagonal. Therefore, these matrices are identical and we conclude that

Φ̃K̃− =
1

n
C−1Φ̃. (2)

Given a centered vector φ̃(x) = φ(x) − 1
n
Φ1n, C acts on φ̃(x) as follows:

Cφ̃(x) =
1

n
Φ̃Φ̃T

(

φ(x)−
1

n
Φ1n

)

=
1

n
Φ̃H

(

kx−
1

n
K1n

)

=
1

n
Φ̃k̃x. (3)
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Since C is invertible, this implies with (2) that φ̃(x) = 1
n
C−1Φ̃k̃x = Φ̃K̃−k̃x.

Together with the identity (2) this allows us to express the Mahalanobis dis-
tance for invertible covariance operator in its kernelized form as:

d2
IC(x) := d2

IC(φ(x); {φµ, C}) = φ̃(x)TC−1φ̃(x) = n k̃
T

x(K̃−)2k̃x. (4)

In practice the computation of K̃− relies on a threshold α > 0 such that
singular values smaller than α are treated as 0. Hence, the distance d2

IC has a
regularization parameter α, which must be chosen properly during training.

3.2 Kernel Mahalanobis Distance for Regularized Covariance

The empirical covariance operator may not be invertible as we work with finite
samples in a high-dimensional/infinite dimensional space H. As an ansatz we
directly regularize the covariance operator to prevent it from being singular:
Creg := C + σ2IH = 1

n
Φ̃Φ̃T+ σ2IH, where σ2 >0 is a parameter to be chosen.

After multiplying by Φ̃ from both sides, using K̃ = Φ̃TΦ̃ and defining K̃reg :=

K̃ + αIn for α := nσ2, we get CregΦ̃ = 1
n
Φ̃(K̃ + nσ2In) = 1

n
Φ̃K̃reg. As a

result, both Creg and K̃reg are strictly positive definite, hence non-singular,
as nσ2 >0. The inverses are therefore well-defined, leading to an equivalent of
(2) as

Φ̃K̃−1
reg =

1

n
C−1

regΦ̃. (5)

Note that Creg acts on an arbitrary centered vector φ̃(x) as Creg φ̃(x) =
1
n
Φ̃k̃x +σ2φ̃(x), directly following from (3). Since Creg is invertible, we obtain

φ̃(x) =
1

n
C−1

regΦ̃k̃x + σ2C−1
regφ̃(x). (6)

After multiplying (6) on both sides by φ̃(x)T (from the left) and thanks to
(5), we can write φ̃(x)Tφ̃(x) = φ̃(x)TΦ̃K̃−1

regk̃x + σ2φ̃(x)TC−1
regφ̃(x). We can

solve for the desired square Mahalanobis distance in the last term. By using
the kernel quantities k̃xx = φ̃(x)Tφ̃(x) and k̃x = Φ̃Tφ̃(x) we obtain the kernel
Mahalanobis distance for regularized covariance

d2
RC(x) := d2(φ(x); {φµ, Creg}) = φ̃(x)TC−1

regφ̃(x) =
1

σ2
(k̃xx − k̃

T

xK−1
regk̃x). (7)

3.3 Classifiers Based on Kernel Mahalanobis Distances

Kernel Quadratic Discriminant (KQD). First, we consider the straight-
forward extension of Quadratic Discriminant (QD) analysis in Euclidean
spaces. This leads to Kernel Quadratic Discriminants (KQD) [4]. For a c-
class problem in a space X = R

d with regular class-wise covariance matrices
Σ[j], means µ[j] and prior probabilities P (ωj), the quadratic discriminant for
the j-th class is given as f [j](x) := − 1

2 (x−µ[j])T(Σ[j])−1(x−µ[j])+ bj , where
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bj := − 1
2 ln(det(Σ[j])) + ln(P (ωj)). A new sample x is classified to ωi with

i = arg maxj=1,...,c f [j](x); see for instance [1].
By inserting the class-wise kernel Mahalanobis distances, two different

decision functions are obtained for KQD, f
[j]
IC(x) := −(d

[j]
IC(x))2 + bj and

f
[j]
RC(x) := −(d

[j]
RC(x))2 + bj for the invertible and regularized covariance case,

respectively. The offset bj can be expressed by kernel evaluations thanks to

ln(det(C [j]) = ln
∏

(λ
[j]
i ) where the eigenvalues λ

[j]
i of C [j] are identical to

the eigenvalues of 1
nj

K̃ [j] for i = 1, . . . , l := rank(K̃ [j]). Numerical problems

however arise in computing the logarithm of the eigenvalue-product, if many
small eigenvalues occur. This happens in practice because a kernel matrix
has often a slowly decaying eigenvalue spectrum. Consequently, we choose the
offset values by a training error minimization procedure; see [4] for details. In
the following we refer to the resulting classifiers as KQD-IC and KQD-RC.

Fisher and Quadratic Discriminants in Dissimilarity Spaces. We can
define new features of a low-dimensional space by the square kernel Maha-
lanobis distances computed to the class means. Hence, given a c-class problem
and class-wise squared dissimilarities (d[j](x))2, j = 1, . . . , c, we can define a
data-dependent mapping to a c-dimensional dissimilarity space ψ : X → R

c

with ψ(x) := [(d[1](x))2, . . . (d[c](x))2]T. This can be done for either the d2
IC

or d2
RC distances. For c = 2 classes, the KQD decision boundary is simply a

line parallel to the main diagonal in this 2D dissimilarity space. For certain
data distributions, more complex decision boundaries may be required. Since
kernel Mahalanobis distances are derived based on the within-class informa-
tion only, subsequent decision functions in this dissimilarity space enable us
to use the between-class information more efficiently. Two classifiers are here
considered, namely Fisher Discriminants (FD) and Quadratic Discriminant
(QD); see e.g. [1]. Since we apply these in two dissimilarity spaces defined by
either d2

IC or d2
RC , we get four additional classification strategies denoted as

FD-IC, FD-RC, QD-IC and QD-RC, correspondingly.

4 Experiments

In order to get insights into the kernel Mahalanobis distances, we first perform
2D experiments on an artificial data set for different sample sizes and kernels.
Then we target at some real-world problems. We include three reference clas-
sifiers to compare the overall classification performance. These are two linear
kernel classifiers, Support Vector Machine (SVM) [6] and Kernel Fisher Dis-
criminant (KFD) [2], and a nonlinear Kernel k-Nearest Neighbor (KNN) clas-
sifier. The KNN classifier is based on the kernel-induced distance in the feature
space ||φ(x)−φ(x′)||2 = k(x, x) − 2k(x, x′) + k(x′, x′), which corresponds to
the usual k-nearest neighbor decision in the input space for a Gaussian kernel.
The regularization parameters are the usual C for penalization in SVM, β for
regularizing the within-class scatter in KFD and the number of neighbors k

for KNN. All experiments rely on PRtools41 (http://prtools.org).
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Fig. 1. Cross-validated classifiers on 2D toy data with kernel krbf .

4.1 Experiments on 2D Toy Data

We consider a two-class toy problem as illustrated in Fig. 1. Both classes
have equal class-priors and are generated by a mixture of two normal distri-
butions such that the resulting distributions are no longer unimodal. Hence,
QD analysis is invalid here and stronger nonlinear models must be applied.
The training set consists of 200 samples. We study both Gaussian and polyno-
mial kernels, krbf and kpol. The optimal kernel parameters and regularization
parameters of the classifiers are chosen by 10-fold cross-validation. The cross
validation range for the kernel parameters are γ ∈ [0.01, 50] discretized by 8
values and p = 1, 2, 3, 4. The regularization parameters and cross-validation
ranges (each discretized by 8 values) are α ∈ [10−6, 10−1] (class-wise identical)
for KQD-IC, FD-IC and QD-IC, α = nσ2 ∈ [10−5, 1] (class-wise identical) for
KQD-RC, FD-RC and QD-RC, C ∈ [10−1, 106] for SVM, k ∈ [1, 8] for KNN
and β ∈ [10−6, 10] for KFD. The resulting kernel Mahalanobis classifiers with
kernel krbf and the training data set are depicted in the left plot of Fig. 1.
The right plot shows the reference classifiers. The KNN rule is, as expected,
highly nonlinear. Overall, all classifiers perform reasonably well.

The classification errors are determined on an independently drawn test set
of 1000 examples. The procedure of data drawing, cross-validated training of
the classifiers and test-error determination is repeated for ten random training
and test-set drawings. The mean errors and standard deviations are shown in
Table 1. To assess the dependence on the sample number, we also determine
results for smaller training sample sizes n.

Among the reference classifiers we see that nonseparability is problematic
for SVM as it performs worse than the KNN approach for pronounced cases
(larger n). KFD is frequently similar or better than SVM, as also reported in
other studies [2]. Among the different Mahalanobis distances we observe a su-
periority of the approaches based on d2

RC over those using d2
IC . The difference

in performance is increasing with the decrease of the sample size n. KQD-IC
seems favorable among the IC-approaches. Concerning the RC-approaches,
QD-RC seems favorable for krbf , while KQD-RC seems favorable for kpol.
Good results are obtained by both krbf and kpol for this data set. Compar-
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Table 1. Average classification errors [in %] for 2D data with different training
sample sizes n and kernels. Numbers in parenthesis denote standard deviations.

krbf kpol

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

KQD-IC 20.8 (4.2) 17.4 (1.1) 15.5 (1.4) 18.8 (1.8) 17.2 (1.6) 16.0 (1.5)
FD-IC 20.9 (3.8) 17.9 (2.3) 15.7 (2.0) 20.8 (5.0) 19.3 (2.6) 16.0 (1.2)
QD-IC 21.7 (4.8) 16.7 (0.9) 16.0 (1.7) 19.7 (3.5) 18.4 (2.3) 17.3 (1.8)
KQD-RC 18.8 (2.1) 16.2 (1.0) 15.3 (1.6) 16.2 (1.8) 16.5 (1.8) 14.9 (1.2)
FD-RC 18.4 (2.1) 17.5 (1.8) 15.3 (1.7) 17.5 (2.9) 17.9 (2.7) 15.5 (1.0)
QD-RC 18.5 (2.2) 15.8 (1.2) 14.9 (1.8) 19.5 (4.2) 18.5 (3.1) 17.2 (1.9)

KFD 19.5 (3.1) 16.5 (2.2) 14.7 (1.4) 16.7 (2.3) 16.4 (2.4) 14.5 (1.2)
SVM 19.0 (2.0) 17.0 (1.8) 16.1 (2.7) 17.4 (2.4) 19.6 (6.3) 17.9 (2.2)
KNN 18.6 (3.0) 16.3 (1.6) 15.4 (1.6) 17.7 (2.8) 17.0 (2.5) 16.7 (1.4)

ing the kernel Mahalanobis approaches to the reference methods, the former
provide similar results to those of the reference classifiers.

4.2 Real-World-Experiments

We use data from the UCI Repository (http://archive.ics.uci.edu/ml/).
They describe problems with categorical, continuous and mixed features and
with varying number of dimensions and classes. Each data set is split into
training and test sets in the ratio of rtr as specified in Table 2. We stan-
dardize the vectorial data and apply a Gaussian kernel krbf . For multiclass
problems, SVM and KFD are trained in the one-vs-all scenario. As before,
the optimal kernel parameter γ and regularization parameters of all clas-
sifiers are determined by 10-fold cross-validation with partially slightly ad-
justed search ranges, i.e. α ∈ [10−6, 5 ·10−1] for KQD-IC, FLD-IC and QD-IC,
α = nσ2 ∈ [10−5, 2] for KQD-RC, FLD-RC and QD-RC, C ∈ [10−1, 106] for
SVM, k ∈ [1, 15] for KNN and β ∈ [10−6, 2] for KFD. The average test-errors
and the standard deviations over ten repetitions are reported in Table 3.

Concerning the reference methods, we observe that KFD is mostly best,
sometimes outperformed by SVM. Among the kernel Mahalanobis classifiers
we again note that the RC-versions are almost uniformly better than the IC-
versions. In a number of cases the IC-versions are clearly inferior (Ecoli, Glass,
Heart, Mfeat-*, Sonar, Wine, Ionosphere). This occurs when the number of
samples is low as compared to the original dimensionality. Interestingly, QD-
RC often gives similar or better results than KQD-RC, which is not analogous
for the IC-versions. The kernel Mahalanobis classifiers are mostly comparable
to the reference classifiers for both binary and multiclass problems. QD-RC
performs overall the best (also better than reference classifiers) for the Dia-
betes, Imox, Ionosphere, and Wine data. Both KQD-RC and QD-RC classifiers
are better than the reference classifiers for the Imox and Sonar data.
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Table 2. Data used in our experiments and hold-out ratio rtr.

Data #Obj. #Feat. #Class Class sizes rtr Variables

Biomed 194 5 2 127/67 0.50 Mixed
Diabetes 768 8 2 500/268 0.50 Mixed
Ecoli 272 6 3 143/77/52 0.50 Continuous
Glass 214 9 4 70/76/17/51 0.50 Continuous
Heart 297 13 2 160/137 0.50 Mixed
Imox 192 8 4 48 0.50 Integer-valued
Ionosphere 351 34 2 225/126 0.50 Continuous
Liver 345 6 2 145/200 0.50 Cont. Integer-valued
Mfeat-Fac 2000 216 10 200 0.15 Continuous
Mfeat-Fou 2000 76 10 200 0.15 Continuous
Sonar 208 60 2 97/111 0.50 Continuous
Wine 178 13 3 59/71/48 0.50 Continuous

Table 3. Average classification errors [in %] for real data and kernel krbf . Numbers
in parenthesis denote the standard deviations.

Biomed Diabetes Ecoli Glass Heart Imox

KQD-IC 16.2 (3.8) 28.3 (1.8) 7.6 (3.6) 46.7 (8.2) 20.5 (2.0) 7.2 (2.4)
FD-IC 22.6 (5.0) 32.6 (2.4) 12.0 (3.0) 49.8 (3.5) 21.1 (2.0) 14.1 (4.6)
QD-IC 16.5 (4.1) 29.6 (2.2) 7.2 (2.8) 52.0 (4.2) 21.9 (1.9) 8.4 (2.0)
KQD-RC 16.6 (3.1) 28.2 (2.1) 5.9 (1.6) 44.0 (6.3) 16.7 (1.9) 9.2 (3.4)
FD-RC 16.4 (4.4) 28.2 (1.2) 5.8 (1.8) 44.4 (4.3) 17.1 (2.4) 10.9 (3.8)
QD-RC 15.5 (2.8) 25.8 (2.3) 5.6 (1.9) 40.7 (4.8) 18.3 (2.7) 6.6 (2.5)

KFD 16.5 (2.8) 26.3 (2.1) 5.2 (1.6) 36.7 (5.7) 18.4 (2.3) 9.4 (2.2)
SVM 15.2 (2.3) 28.9 (2.3) 5.2 (2.3) 39.3 (5.0) 16.4 (2.3) 10.1 (3.3)
KNN 20.6 (3.7) 30.8 (0.9) 7.4 (2.1) 43.9 (5.3) 17.3 (2.6) 9.6 (5.3)

Ionosphere Liver Mfeat-Fac Mfeat-Fou Sonar Wine

KQD-IC 11.2 (2.6) 35.6 (4.0) 10.0 (1.7) 61.4 (3.2) 29.5 (5.7) 5.1 (2.6)
FD-IC 12.2 (2.5) 41.8 (3.8) 13.5 (1.4) 55.7 (3.4) 31.7 (4.8) 6.5 (2.8)
QD-IC 11.7 (2.2) 42.1 (3.7) 12.4 (1.8) 35.5 (2.7) 35.5 (3.1) 7.4 (3.3)
KQD-RC 7.8 (3.3) 39.6 (4.6) 6.1 (0.6) 25.1 (1.4) 15.7 (3.2) 3.8 (1.4)
FD-RC 7.5 (2.0) 37.6 (2.9) 7.1 (0.8) 26.6 (1.4) 22.0 (4.0) 3.5 (1.4)
QD-RC 5.8 (1.7) 39.6 (3.4) 6.1 (1.0) 25.7 (1.1) 16.6 (2.5) 2.8 (1.7)

KFD 6.8 (2.2) 32.9 (2.6) 3.9 (0.6) 22.9 (0.9) 17.7 (3.3) 3.8 (1.9)
SVM 7.1 (1.4) 30.4 (3.1) 4.7 (0.6) 23.0 (1.0) 18.2 (5.3) 3.1 (1.8)
KNN 23.9 (14.7) 41.2 (3.7) 8.1 (6.2) 28.3 (1.6) 19.8 (3.9) 8.3 (7.1)

5 Discussion and Theoretical Considerations

We focus now on some theoretical aspects concerning the kernel Mahalanobis
distances with respect to their usage.

Assumption on Invertible Covariance. The motivation behind the dis-
tance d2

IC requires that the covariance operator is invertible. As a theoretical
consequence, the sound derivation is limited to a finite dimensional H. This
is violated e.g. for the Gaussian kernel krbf . Counterintuitive situations may
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Fig. 2. XOR-example and square kernel Mahalanobis distances for the kernel krbf .
The left plot shows (d

[1]
IC

(x))2, while the right plot shows (d
[1]
RC

(x))2.

occur if non-singularity does not hold: a vector k̃x in (4) may be nonzero but
lie in the eigenspace of K̃ corresponding to the eigenvalue 0. This may occur if
x is atypical with respect to the training samples. Simple computation yields
d2

IC(x) = 0. If a classifier uses the distance as indication of a likelihood of x

belonging to the corresponding class, the classification result will be clearly
counterintuitive and possibly wrong. This phenomenon can be demonstrated
on a simple 2-class XOR-data (X = {(−1,−1)T, (−1, 1)T, (1,−1)T, (1, 1)T}, y =
(ω1, ω2, ω2, ω1)) as illustrated in Fig. 2, where the first class is plotted as cir-
cles and the second class as crosses. We plot a shading of the square kernel
Mahalanobis distances of the first class resulting from the kernel krbf with

γ = 1. We clearly see the fundamental qualitative difference between d
[1]
IC

(left, α = 10−4) and d
[1]
RC (right, σ2 = 1). The left plot demonstrates the

problematic case, where the training examples of the first class have a higher
distance to their own class than the samples of the second class. This illus-
trates why the discrimination power of the d2

IC distances can decrease for
few training samples in high-dimensional H, as observed in our experiments.
Nevertheless, the IC-methods are still applicable for infinite dimensional H.
Formally, the final decision rules are still well defined and can be applied in-
dependently whether the covariance operator is singular or not. Empirically,
the results are frequently quite good. We may conclude that the pathological
cases are rarely observed in practice if sufficiently many samples are available
for training. Still a decrease in classification accuracy may be observed for few
samples in high-dimensional spaces. In these cases, the use of d2

RC is clearly
more satisfactory and beneficial from a theoretical point of view.

Invariance. An interesting theoretical issue is invariance of the Mahalanobis
distances in the kernel feature space. These invariance properties naturally
transfer to kernel transformations that do not affect the resulting distances.
One can easily check by definitions that the Mahalanobis distance is trans-
lation invariant in the feature space, i.e. φ̄(x) := φ(x) + φ0 for a translation
vector φ0 ∈ H. Choosing φ0 := φ(x0) for any x0 ∈ X (or a general arbi-
trary linear combination) implies that both d2

IC and d2
RC remain identical

by using the shifted kernel k̄(x, x′) :=
〈

φ̄(x), φ̄(x′)
〉

= k(x, x′) + k(x, x0) +
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k(x′, x0) + k(x0, x0). In particular, kernel centering does not affect the dis-
tances. In analogy to Euclidean Mahalanobis distances, kernel Mahalanobis
distances are invariant to scaling of the feature space by using the scaled
kernels k̄(x, x′) := θk(x, x′) for θ > 0. As we involve regularization parame-
ters, this invariance only holds in practice if the regularization parameters are
similarly scaled ᾱ := θα and σ̄2 := θσ2. Consequently, a kernel can be used
without a scale-parameter search.

6 Conclusion
We presented two versions of kernel Mahalanobis distance, d2

IC and d2
RC ,

derived either for invertible covariance operators or based on an additive reg-
ularization thereof. The distance d2

RC leads to empirically better classification
performance than d2

IC , in particular for small sample size problems. Overall,
the former measure is both conceptually and empirically favorable. These two
Mahalanobis distances represent one-class models as only the within-class ker-
nel information is used for their constructions. The between-class information
is utilized in subsequent classifiers. Fully kernelized quadratic discriminant
analysis can be performed by the KQD-IC/KQD-RC methods. Additional
classifiers can be applied in the dissimilarity space obtained from the kernel
Mahalanobis distances as illustrated with Fisher Discriminants FD-IC/FD-
RC and Quadratic Discriminants QD-IC/QD-RC. Empirically, they often give
comparable results to the reference classifiers. In several cases, QD-RC gives
the overall best results. The kernel Mahalanobis classifiers can be advanta-
geous for problems with high class overlap or nonlinear pattern distributions
in a kernel-induced feature space.
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2.S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant

analysis with kernels. In Neural Networks for Signal Processing, pages 41–48,
1999.

3.E. Pe֒kalska and R.P.W Duin. The Dissimilarity Representation for Pattern Recog-

nition. Foundations and Applications. World Scientific, 2005.
4.E. Pe֒kalska and B. Haasdonk. Kernel discriminant analysis for positive definite

and indefinite kernels. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2009. Accepted.
5.A. Ruiz and P.E. Lopez-de Teruel. Nonlinear kernel-based statistical pattern anal-

ysis. IEEE Transactions on Neural Networks, 12(1):16–32, 2001.
6.B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge,

2002.
7.J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cam-

bridge University Press, UK, 2004.
8.J. Wang, K.N. Plataniotis, J. Lu, and A.N. Venetsanopoulos. Kernel quadratic

discriminant analysis for small sample size problem. Pattern Recognition,
41(5):1528–1538, 2008.


