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Preface

The aim of this 3-day workshop is to bring together mathematicians and engineers working on model
reduction of parametrized problems. In particular we aim at Reduced Basis (RB) methods for
parametrized partial differential equations and Parametrized Model Order Reduction (PMOR) tech-
niques for dynamical systems. It is also a specific intention to bring together experts from both pde and
ode-based frameworks. The acronym MoRePaS stands for Model Reduction of Parametrized Systems
and includes both areas.

We especially have in mind the following aspects of parametrized model reduction that also repre-
sents the wide scope of the program:

• Parametrized Partial Differential Equations

• Parametrized Dynamical Systems

• Reduced Basis Methods

• Proper Orthogonal Decomposition

• Krylov-Subspace Methods (Padé, Moment matching, etc.)

• Error Estimation (a priori, a posteriori, effectivities, etc.)

• Basis Construction

• Preservation of System-Properties (Conservation, Stability, etc.)

• Approximation of Nonlinearities

• Interpolation Methods

• Robust Optimization

• Applications of Reduced Models (Control, Parameter Identification, Inverse Problems, Hierar-
chical Models)

• Engineering Applications (CFD, MEMS, etc.)

The quality of the submissions for this workshop is impressive. Not only the invited sessions but also
the contributed talks as well as the topics of the poster session represent the leading edge of research
on MoRePaS. Furthermore, we are very happy to have such a broad internationality of participants
coming from Austria, Belgium, Finland, France, Germany, Norway, Switzerland and the United States.

In order to maintain the character of a workshop, we have scheduled no parallel sessions. We do
hope that this workshop will also serve as a platform for a scientific exchange with respect to the
before-mentioned different aspects of MoRePaS.
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6 Abstracts

Interpolatory and system-theoretic methods for parametric model reduction

Peter Benner

Faculty of Mathematics
Chemnitz University of Technology

Model reduction has become an ubiquitous tool in simulation and control for dynamical systems
arising in various engineering disciplines. Often, models of physical processes contain parameters
describing material properties and geometry variations, or arising from changing boundary conditions.
For purposes of design and optimization, it is often desirable to preserve these parameters as symbolic
quantities in the reduced-order model (ROM). This allows the re-use of the ROM after changing
the parameter so that the repeated computation of reduced-order models can be avoided. Significant
savings in simulation times for full parameter sweeps or within optimization algorithms can be achieved
this way.

In this talk, we study several approaches for computing ROMs for linear parametric systems. Pa-
rameter dependencies can be linear, polynomial, or nonlinear in general. We study methods based
on multi-moment matching. We provide an interpretation of these methods as rational interpolation
methods and combine them with optimal H2 model reduction. A further approach based on a combi-
nation of balanced truncation and sparse grid interpolation will also be discussed. Numerical results
illustrate the performance of all the methods under consideration.
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A two-grid finite-element/reduced basis scheme for the approximation of the
solution of parameter dependent P.D.E

Y. Madaya,b

a UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions,
F-75005, Paris, France

b Division of Applied Mathematics, Brown University
182 George Street, Providence, RI 02912, USA

In the frame of optimization process in industrial framework, where numerical simulation is used
at some stage, the same problem, modeled with partial differential equations depending on a param-
eter has to be solved many times for different sets of parameters. The reduced basis method may be
successful in this frame and recent progress have permitted to make the computations reliable thanks
to a posteriori estimators and to extend the method to non linear problems thanks to the “magic
points” interpolation. However, it may not always be possible to use the code (for example of finite
element type that allows for evaluating the elements of the reduced basis) to perform all the “off-line”
computations required for an efficient performance of the reduced basis method. We propose here
an alternating approach based on a coarse grid finite element the convergence of which is accelerated
through the reduced basis and an improved post processing.

This is a joint work with Rachida Chakir
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Reduced Basis Approximation and A Posteriori Error Estimation for
Parametrized Partial Differential Equations

Anthony T. Patera

Massachusetts Institute of Technology
Department of Mechanical Engineering

and
Center for Computational Engineering

We discuss reduced basis approximation and associated a posteriori error estimation for reliable
and rapid solution of parametrized partial differential equations.

The crucial ingredients are rapidly convergent Galerkin approximations over a space spanned by
“snapshots" on the parametrically induced solution manifold; effective constructions for stability-
constant lower bounds; rigorous and sharp a posteriori error estimators for the outputs/quantities
of interest; efficient POD (in time)/Greedy (in parameter) selection of quasi-optimal samples; and
Offline-Online computational procedures for very rapid response in the real-time and many-query con-
texts.

Our approach is applicable to elliptic equations, parabolic equations, and hyperbolic equations. In
this talk we focus on time-dependent phenomena including the (frequency domain) Helmholtz equation,
linear and nonlinear convection–diffusion equations, and the second-order wave equation of acoustics
and elastodynamics.
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An “hp” Reduced Basis Method for Parametrized Partial Differential Equations

Jens L. Eftanga, Anthony T. Paterab and Einar M. Rønquista

a Norwegian University of Science and Technology
b Massachusetts Institute of Technology

We consider the numerical solution of parametrized partial differential equations where there is a
premium on rapid output computation given any particular choice of the parameters over a predefined
parameter domain. The reduced basis method provides a theoretical and computational framework
specifically developed to address this class of problems; see [1]. The efficiency of the reduced basis
method rests on an assumption about parametric smoothness, i.e., the solution is assumed to vary
smoothly with the underlying parameters.

In this talk we propose an “hp” reduced basis method, where different reduced basis models (ap-
proximation spaces) are used in different parts of the parameter domain. We first adaptively partition
the parameter domain into smaller and smaller subdomains (“h”-refinement) and then construct re-
duced basis models valid within each subdomain (“p”-refinement). Of particular interest are problems
where the qualitative behavior of the solution is different in different parts of the parameter domain.
The idea is that the “local” reduced basis models can be quite small compared to the standard “global”
models, and hence reduce the online computational cost. Given any new set of parameters in the online
stage, a key challenge is to find the associated reduced basis model in a computationally efficient way.
Rigorous a posteriori error estimation plays an important role both in the offline/online parameter
domain partitioning and model construction and in subsequent certification.

We present simple test problems to illustrate both the opportunities and the challenges with the
proposed “hp” reduced basis method.

References

[1] G. Rozza, D.B.P. Huynh and A.T. Patera. Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations: application to
transport and continuum mechanics, Archives of Computational Methods in Engineering, 15(3),
229–275, (2008).
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Reduced Basis Method for Shape Design, Parametrization and Optimization

Gianluigi Rozza

École Polytechnique Fédérale de Lausanne, Switzerland

In the last decades optimal shape design problems have gained an increasing importance in many
engineering fields and especially in structural mechanics and in thermo-fluid dynamics. The problems
we consider, being related with optimal design and flow control, necessarily involve the study of an
evolving system modelled by PDEs and the evaluation of functionals depending on the field variables,
such as velocity, pressure, drag forces, temperature, energy, wall shear stress or vorticity.

Especially in the field of shape optimization, where the recursive evaluation of the field solution
is required for many possible configurations, the computational costs can easily become unacceptably
high. Nevertheless, the evaluation of an “input/output” relationship of the system plays a central role:
a set of input parameters identifies a particular configuration of the system and they may represent
design or geometrical variables, while the outputs may be expressed as functionals of the field variables
associated with a set of parametrized PDEs. The rapid and reliable evaluation of many input/output
relationships typically requires great computational expense, and therefore strategies to reduce the
computational time and effort are being developed.

Among model order reduction strategies, reduced basis method represents a promising tool for
the simulation of flow in parametrized geometries, for shape optimization or sensitivity analysis.
An implementation of the reduced basis method is presented by considering different shape or do-
main parametrizations: from simple affine maps [3] to non-affine ones [2], transforming an original
parametrized domain to a reference one. Our analysis will focus on the general properties and perfor-
mance of the reduced basis method by highlighting with several examples its special suitability and
considering parametrized wavy or curvy geometries. The proposed approach includes also a geometric
model reduction resulting from a suitable low-dimensional parametrization of the geometry based on
free-form deformations technique [4]. We focus on the possibility of handling very generic geometric
parametrizations without requiring to create “ad hoc” affine representations necessary to solve the
problem efficiently, but recovering this property by an empirical interpolation method [1] in order
to take advantage of an offline-online decomposition [3]. We present in particular some examples of
reduced basis method applied to external inviscid potential flow, internal viscous thermal flows and
steady incompressible Stokes flows for shape optimization problems in cardiovascular geometries.

In collaboration with A. Manzoni, T. Lassila and L. Iapichino.

References

[1] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera. An ‘empirical interpolation’
method: application to efficient reduced-basis discretization of partial differential equations.
C. R. Math. Acad. Sci. Paris, 339(9):667-672, 2004.

[2] G. Rozza. Reduced basis methods for Stokes equations in domains with non-affine parameter
dependence. Comput. Vis. Sci., 12(1):23-35, 2009.

[3] G. Rozza, D.B.P. Huynh and A.T. Patera. Reduced basis approximation and a posteriori error
estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Com-
put. Methods Engrg., 15:229-275, 2008.

[4] T.W. Sederberg and S.R. Parry. Free-form deformation of solid geometric models. Comput. Graph.,
20(4), 1986.
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Discrete Empirical Interpolation for Nonlinear Model Reduction

S. Chaturantabuta and D.C. Sorensena

a Rice University

A dimension reduction method called Discrete Empirical Interpolation is proposed and shown to
dramatically reduce the computational complexity of the popular Proper Orthogonal Decomposition
(POD) method for constructing reduced-order models for unsteady and/or parametrized nonlinear
partial differential equations (PDEs).

In the presence of a general nonlinearity, the standard POD-Galerkin technique reduces dimension
in the sense that far fewer variables are present, but the complexity of evaluating the nonlinear term
remains that of the original problem. Empirical Interpolation (Barrault, Maday, Nguyen and Patera,
2004) posed in finite dimensional function space is a modification of POD that reduces complexity of
the nonlinear term of the reduced model to a cost proportional to the number of reduced variables
obtained by POD.

We propose a Discrete Empirical Interpolation Method (DEIM), which is a variant of EIM that is
suitable for reducing the dimension of systems of ordinary differential equations (ODEs). In particular,
it is applicable to ODEs arising from finite difference discretization of unsteady time dependent PDE
and/or parametrically dependent steady state problems. However, the method applies to arbitrary
systems of nonlinear ODEs, not just those arising from discretization of PDEs. Our contribution is
a simplified description of EIM in a finite dimensional setting that possesses an error bound on the
quality of approximation. An application of DEIM to a finite difference discretization of the 1-D
FitzHugh-Nagumo equations is shown to reduce the dimension from 1024 to order 5 variables with
negligible error over a long-time integration that fully captured non-linear limit cycle behavior. DEIM
applied to the simulation of nonlinear miscible viscous fingering in a 2-D porous medium was able to
reduce the dimension from 15,000 to 40 variables with negligible error in the solution. Computing time
was reduced from 2,100 to 1.3 seconds.
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Model reduction of differential-algebraic equations:
algorithms and applications

Tatjana Stykel

Technische Universität Berlin

We consider moder order reduction of differential-algebraic equations (DAEs) that arise in many
application including computational fluid dynamics, circuit simulation and mechanical systems with
constrains. We present an extension of balancing-related model reduction techniques to DAEs. Im-
portant properties of these methods are that physical properties such as stability and passivity are
preserved in the reduced-order model and there exist computable error bounds. The balanced trunca-
tion methods and its relatives are based on balancing the solutions of projected Lyapunov, Lur’e or
Riccati equations. We discuss the numerical solution of these matrix equations for large-scale problems.
We also consider structure-preserving model reduction of coupled DAEs.
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POD a-posteriori error estimates for optimal control problems

Stefan Volkwein

University of Konstanz
Department of Mathematics and Statistics

The main focus of this talk is on an a-posteriori analysis for the method of proper orthogonal
decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs.
Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis
of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of
the proposed approach.
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Domain Decomposition, Model Reduction and Optimization of Time Dependent
PDE-Constrained Optimization Problems

H. Antila, M. Heinkenschlossb, R.H.W. Hoppea, D.C. Sorensenb

a University of Houston, Houston
b Rice University, Houston

We introduce a technique for the dimension reduction of a class of PDE constrained optimization
problems governed by linear time dependent advection diffusion equations [1] for which the optimization
variables are related to spatially localized quantities. Our approach uses domain decomposition applied
to the optimality system to isolate the subsystem that explicitly depends on the optimization variables
for the remaining linear optimality subsystem. We apply balanced truncation model reduction to the
linear optimality subsystem. The resulting copuled reduced optimality system can be interpreted as the
optimality system of a reduced optimization problem. We derive estimates for the error between the
solution of the original optimization problem and the solution of the reduced problem. The approach
is demonstrated numerically on an optimal control problem and on a shape optimization problem.

Also we extend our approach to the problems governed by the time dependent Stokes [2, 5] or
the linearized Navier-Stokes equations, linearized around a steady state. Although conceptually the
approach in this case is same as above, the extension requires several important changes. These are
due to the presence of the incompressibility constraints that affect the model reduction, the domain
decomposition, the copuling of both, and the analysis. As an application we will be concerned with
the optimal design of capillary barriers as a part of a network of microchannels and reservoirs on
microfluidic biochips [3]. The problem amounts to solving a shape optimization problem governed by
Stokes equations.

Our approach (in both cases) leads to a reduced optimization problem with the same structure as
the original one, but a potentially much smaller dimension. The numerical results confirms the error
estimates derived. Our approach can be extended to admit localized nonlinearities in the PDE, such
as those considered in [4] or to model reduction techniques for nonlinear systems such as POD [6].
However, currently no a-priori error estimates exists for these model reduction techniques.

References

[1] H. Antil et al. Domain decomposition and model reduction for the numerical solution of PDE
constrained optimization problems with localized optimization variables. Comput. Vis. Sci. sub-
mitted.

[2] H. Antil et al. Domain decomposition and balanced truncation model reduction for shape opti-
mization of the Stokes system. Optimization Methods and Software submitted.

[3] H. Antil et al. Modeling and simulation of piezoelectrically agitated acoustic streaming on mi-
crofluidic biochips. Lect. Notes in Comput. Sci. & Engg. 60 (2008), pp. 305–312.

[4] M. Heinkenschloss et al. Domain decomposition and model reduction of systems with local non-
linearities. Num. Math. & Adv. App. (2008) pp. 389-396

[5] M. Heinkenschloss et al. Balanced truncation model reduction for a class of descriptor systems with
application to the Oseen equations. SIAM Jour. on Sci. Comput., 30(2) (2008) pp. 1038–1063.

[6] S. Volkwein et al. Proper orthogonal decomposition surrogate models for nonlinear dynamical
systems: Error estimates and suboptimal control. Lect. Notes in Comput. Sci. & Engg. 45(2005).
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Model Reduction for Parametric Systems Using Balanced Truncation and
Interpolation

Ulrike Baura

a Chemnitz University of Technology, Germany

Model reduction is common in simulation, control and optimization of complex dynamical systems.
Quite often, these systems contain additional parameters, e.g., to allow for geometrical variation or
modifications of boundary conditions. The preservation of the parameters in the reduced-order system
is a highly desired task. Since usual approaches for model reduction of linear, time-invariant systems
are not suitable, we derive a method which preserves the parameters p = {p1, . . . , pd} in a linear system

ẋ(t) = A(p)x(t) +B(p)u(t)

with parameter-dependent matrices A(p) ∈ Rn×n, B(p) ∈ Rn×m and a matrix C(p) ∈ Rn×q in the
output equation

y(t) = C(p)Tx(t).

The matrix A(p) is assumed to be stable for all parameter values in the considered parameter interval.
The transfer function of the system is G(s, p) = C(p)T (sIn −A(p))−1B(p).

The parameter space is discretized, e.g. by sparse grids; the resulting linear, time-invariant systems
are reduced by the usual balanced truncation technique. The overall reduced-order system contain-
ing all parameters is obtained by interpolation [1]. Thereby, we will show the influence of different
interpolation methods on the numerical results.

The error between the original and the reduced-order system in frequency domain is shown in
Figure 1 for a one-parameter example from a semi-discretized diffusion-convection equation. In this
example, the parameter influences the intensity of the convection and polynomial interpolation is used
for computing the reduced transfer function Gr in the whole parameter space from six reduced-order
systems at fixed parameter points.
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Figure 1: Error between G(ω, p) and Gr(ω, p).

References

[1] Baur, U.; Benner, P.: Modellreduktion für parametrisierte Systeme durch balanciertes Abschneiden
und Interpolation, to appear in at-Automatisierungstechnik, 2009.
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Reduced-Basis Approaches for Multiscale Problems
Sébastien Boyavala, Claude Le Brisa, Tony Lelièvrea,

Yvon Madayb, Cuong Ngoc Nguyenc and Anthony T. Paterac

aUniversité Paris-Est, CERMICS (Ecole des Ponts ParisTech) & INRIA, MICMAC project
bUniversity Paris VI & Brown University cMIT

Mathematical models of multiscale problems, e.g. in material science, often rely on a separation of
scales. Assuming the separation of the macroscopic and the microscopic scales indeed usually allows
one to derive coarse-graining procedures for the explicit computation of quantities of interest at the
macroscopic scale, like in homogenization theory. But then, a large number of (decoupled) microscopic
problems, parameterized by the macroscopic scale, still have to be solved, for many values of the
macroscopic parameter ; this is the case of the cell problems in homogenization theory.

We will show how Reduced-Basis methods can efficiently handle, at a low computational cost, the
reiterated computation of many microscopic problems parameterized by the macroscopic scale, first
in the case of the two-scale homogenization of elliptic operators [1], second in the case of stochastic
differential equations coupled to an evolution problem through a mean-field assumption [3].

On the other hand, assuming a separation of scales is sometimes idealistic. It often corresponds to
thought experiences in physics. On the contrary, multiscale models in engineering are often calibrated
on data, and there is no reason then why the noisy field introduced at the macroscopic scale (by
“oscillations” of the microscopic scale) should have zero correlation length. For instance, this is the case
of uncertainty quantification for PDEs parametrized by colored noise through stochastic coefficients.
We will show then how Reduced-Basis methods can still efficiently compute the first moments of the
stochastic PDE solution, based on a Karhunen-Lœve decomposition of the random parameter field [2].

References

[1] S. Boyaval. Reduced-basis approach for homogenization beyond the periodic setting. SIAM Mul-
tiscale Modeling & Simulation, 7(1):466–494, 2008.

[2] S. Boyaval, C. Le Bris, Y. Maday, N.C. Nguyen, and A.T. Patera. A reduced basis approach
for variational problems with stochastic parameters: Application to heat conduction with variable
robin coefficient. Research Report 6617, INRIA, 08 2008. Accepted for publication in CMAME.

[3] S. Boyaval and T. Lelièvre. A variance reduction method for parametrized stochastic differential
equations using the reduced basis paradigm. In Pingwen Zhang, editor, Communication in Math-
ematical Sciences, volume Special Issue "Mathematical Issue on Complex Fluids" (submitted),
2009.
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Application of POD and DEIM to Dimension Reduction of Nonlinear Miscible
Viscous Fingering in Porous Media

Saifon Chaturantabuta and Danny C. Sorensena

a Rice University

Proper Orthogonal Decomposition (POD) in conjunction with a Discrete Empirical Interpolation
Method (DEIM) is applied to construct a reduced-order model of a finite difference discretized system
used to simulate nonlinear miscible viscous fingering in a 2-D porous medium. POD is first used to
extract a low-dimensional basis that optimally captures the dominant characteristics of the sampled
trajectory of the system. This POD basis is truncated according to decay of the singular values and the
resulting low dimensional reduced basis is then used in a Galerkin projection to construct a reduced-
order system. However, this POD based reduced system still has complexity of the full system present
in evaluation of the projected nonlinear term and hence provides no computational savings. DEIM is
applied to reduce the complexity of the projected nonlinear term to be proportional to the number
of reduced variables. Numerical results demonstrate that the dynamics of the viscous fingering in the
full-order system of dimension 15000 can be captured accurately by the POD-DEIM reduced system
of dimension 40 with the computational time reduced by factor of O(1000) as shown in Figure 1 and
Table 1.

Figure 1: Concentration plots of the injected fluid at time t = 100 and t = 250 from the full-order
system of dimension 15000 and from the POD-DEIM reduced system with both POD and DEIM having
dimension 40 with the corresponding absolute error at the grid points (Péclet number Pe = 250).

Dimension Avg Rel Error of c CPU time (sec)
Full 15000 (FD) - 2.138× 103

POD40 4.066× 10−4 2.442× 102

POD40/DEIM40 2.045× 10−3 1.275

Table 1: Average relative error of the concentration c and CPU time of full-order system, POD reduced
system, and POD-DEIM reduced system.
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An ANOVA-based Multivariate Spectral Galerkin Scheme for Parameterized
Matrix Equations

Paul G. Constantinea and David F. Gleicha

a Stanford University

We examine the model problem of a linear system of equations where the matrix of coefficients and
right hand side depend on a set of independent parameters, where we assume the system is non-singular
for any parameter value chosen from a given parameter space – typically a hyper-rectangle. We extend
the spectral Galerkin method for single parameter systems presented in [1] to the case of multiple
parameters by employing product-type orthogonal polynomials as the multivariate basis functions.

The extension to multiple parameters induces a choice in the multivariate basis functions not
present in the single parameter systems, and we use classical results from Fourier analysis to motivate
effective basis reduction strategies. We develop an iterative scheme for choosing an efficient basis set
using the so-called Sobol indices from an approximate functional ANOVA decomposition [2] of the
solution. This scheme is naturally anisotropic, i.e. if some parameters contribute to the total variance
of the solution more than others, then the ANOVA-based scheme discovers this property and exploits
it. The scheme also reveals potential decouplings in the Galerkin projection that can dramatically
reduce the required computational effort.

We derive the method in detail and present computational results for large-scale problems with up
to eleven independent parameters.
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A reduced basis method for evolution equations on parametrized geometries

Martin Drohmanna, Bernard Haasdonkb and Mario Ohlbergera

a Institute for Computational and Applied Mathematics, University of Münster, Germany
b Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Germany

Reduced basis (RB) methods are a model reduction technique for parametrized applications re-
quiring time-consuming parameter studies or rapid simulations. In this presentation, we discuss RB
methods for parametrized evolution equations. In particular, we focus on nonlinear equations with
geometry parametrizations leading to non-affine parameter dependence in the underlying partial dif-
ferential equation (PDE) transformed on a reference domain.

The main ingredient is a discrete version of the empirical interpolation [3] of the spatial discretiza-
tion operator which brings the operator into a form, where it can be computed affinely in the parameter.
This is necessary for efficient online computations. For the discrete empirical interpolation, we assume
that the discretization operator has a local stencil, which is typical for finite volume/finite element op-
erators. In addition to collateral basis vectors and corresponding interpolation points, we need further
precomputed quantities. These are a numerical subgrid and partial reconstruction of the RB vectors.
Based on these quantities, an approximation of the discretization operator can be obtained in an effec-
tive offline/online fashion. The approach was successfully applied in our previous work [1], [2] where the
numerical scheme was restricted to explicit discretization operators. Explicit discretizations of higher
order terms in the PDE, however, lead to very small time steps and are therefore computationally
expensive.

As an extension, we now demonstrate how empirical interpolation of implicit discretization opera-
tors can be integrated into a solver for nonlinear equation systems like the Newton method. Experi-
mental results are presented for a diffusion equation equation which gets transformed to a convection-
diffusion-reaction equation including an anisotropic diffusion tensor by a diffeomorphic geometry map-
ping. This demonstrates the applicability of the presented RB method and allows us to discuss the
observed computational time gain. The experiments are implemented with our RB software package
RBmatlab.
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Structure preserving Krylov-Subspace methods for solving large Lyapunov
equations

Matthias Bollhöfer and André Eppler

Technische Universität Braunschweig

We consider descriptor system arising from circuit equations.When applying model order reduction
techniques such as balanced truncation to these systems, one of the main tasks consists of solving
large scale Lyapunov equations efficiently. This is because balanced truncation desires to solve these
equations frequently. Specifically one is interested in finding the solution of generalized, projected
Lyapunov equations

EXAT +AXET = −PlBBTP Tl , X = P Tr XPr (1)

ETY A+ATY E = −P Tr CTCPr, Y = PlY P
T
l (2)

with E,A ∈ RnxnB,CT ∈ Rnxns.
When dealing with circuit equations the matrix E is usually a sparse, singular matrix.(cf.[1]) The

right hand side is a symmetric low rank matrix. It can be shown that for passive systems the solution
X is of low rank as well.So the aim is to find an iterative solver, which preserves the symmetry
structure and low rank property in every iteration step. For this purpose Krylov-subspace methods
fit perfectly.In particular we choose the Flexible-General-Minimal-Residual (cf.[2]) but other methods
are possible as well.The drawback of these methods is often the slow convergence so it is essential to use
a preconditioner which also fulfills these structure preserving properties.Here we apply the Cholesky-
Factor-Alternating-Direct-Implicit-Iteration (cf.[3]) as preconditioner rather than as a stand-alone
method since by construction this method also preserves the structure properties. The success of
the CF-ADI method strongly depends on the choice of the so called shift parameters τi. The goal
of combining these two methods is to use the robustness of the FGMRES together with the good
convergence speed of the CF-ADI method. As a first result we will demonstrate that the combined
method is less sensitive to disturbances in the shift parameters τi.
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A Numerically Robust Moment-Matching Algorithm for Multivariate
Polynomially Parameterized Systems

Ortwin Farle and Romanus Dyczij-Edlinger

Lehrstuhl für Theoretische Elektrotechnik
Saarland University

In recent years, model order reduction has been extended from the single-parameter to the multi-
parameter case. The class of multivariate polynomially parameterized systems arises naturally in
many applications, e.g. in structural mechanics or microwave engineering, and is considered in this
contribution. Projection-based order reduction methods can mainly be divided into single-point and
multi-point approaches. Multi-point methods utilize the solution vectors at different points in pa-
rameter space as projection basis, which results in high flexibility but also the need for a separate
system matrix factorization at every expansion point. In contrast, single-point methods require just
one matrix factorization, but the development of numerically stable algorithms is more challenging.

In principle, polynomially parameterized systems can be reduced to the multi-linear case by in-
troducing auxiliary unknowns, and then treated by algorithms from the literature, e.g. [1]. For com-
plicated real-world applications, however, the memory requirements of this approach are prohibitive.
For this reason, we propose a new method that can deal with polynomial dependence on multiple
parameters directly, without linearization. The main idea is to decompose the multivariate problem
into a series of single-parameter problems that are easier to handle. The key features of the proposed
method are as follows:

• Improved numerical stability compared to existing methods [2]: The reduction to single-parameter
Krylov spaces allows the application of robust univariate order reduction methods [3].

• Straightforward parallelization: As in a recent method for the multi-linear case [1], the resulting
single-parameter models are decoupled, so that the respective projection bases can be computed
independently.

• Reduced memory requirement: The number of vectors to be kept in main memory is significantly
reduced. No auxiliary matrices are needed.

In our presentation, we will introduce multivariate Krylov spaces of higher order, which form the
theoretical foundation of our solver, explain the details of the proposed algorithm, and give numerical
examples that support our findings.
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A reduced-basis approach to real-time parameter estimation
for parametrized parabolic partial differential equations

Martin A. Grepla

a RWTH Aachen

We present a reduced-basis (RB) approach to real-time parameter estimation for parametrized
parabolic partial differential equations with (non)affine parameter dependence. The fast and reliable
evaluation of the input-output relationship – afforded by the RB method and associated a posteriori
error estimators – is the basis for the efficient and robust solution of the estimation problem.
We first review the RB approximation method for linear parabolic problems with nonaffine dependence
on the parameter (cf. [3]). The method replaces the nonaffine terms with a coefficient function ap-
proximation which then permits an efficient offline-online computational decomposition (cf. [2]). We
also introduce – under certain restrictions on the function approximation – rigorous a posteriori error
estimators for the RB approximations.
We next illustrate how the RB approach lends itself naturally to existing solution methods for pa-
rameter estimation and inverse problems (cf. [5]), and furthermore allows the development of new
techniques to solve these problems. While the efficient evaluation of the input-output relationship is
essential to achieve real-time solutions, the a posteriori error bounds let us pursue a robust parameter
estimation procedure which takes into account explicitly and rigorously the uncertainty due to errors
in the measurement and in the RB approximation. To this end, we introduce the “uncertainty region”
as a measure of the degree of uncertainty in the parameter estimate. From a theoretical point of view,
the “uncertainty region” may serve as an indication of (i) the parameter identifiability of the specific
problem (cf. [1, 4]), and (ii) the sensitivity with respect to, e.g., measurement errors or sensor place-
ment. To illustrate the applicability of our method, we present numerical examples for the dispersion
of a pollutant in a flow field, i.e., the characterization of the unknown source location given sensor
measurement data.
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Certified reduced basis methods for the Fokker–Planck equation of dilute
polymeric fluids

David J. Knezevica

a Department of Mechanical Engineering, Massachusetts Institute of Technology

The flow of dilute polymeric fluids can be described by a coupled Stokes Fokker–Planck system,
where Stokes provides Fokker–Planck with a strain rate from the Newtonian solvent, and Fokker–
Planck provides Stokes with an “extra polymeric stress” due to the microscopic polymer molecules
in the fluid. The Fokker–Planck equation is posed over a high-dimensional physical–configuration
space, but through standard Lagrangian manipulations it can be reformulated as a large number
of instantiations of the Fokker–Planck equation — parametrized by the macroscopic strain rate —
over configuration space only; the components of the polymeric extra stress tensor are the output
functionals of interest for this parametrized problem. We apply the certified reduced basis method to
this parametrized Fokker–Planck equation in order to obtain a reliable and highly efficient scheme in
this many-query context.

We consider both the time-dependent and steady state cases. The new ingredients in our compu-
tational framework for the time-dependent case are a finite-time a posteriori bound for the error in
the reduced basis prediction of the output quantities of interest, and a projection-based POD-greedy
sampling procedure for the identification of effective reduced basis spaces. In the steady case, we
utilize a Successive Constraint Method (SCM) for construction of a lower bound for the inf-sup con-
stant of the Fokker–Planck convection-diffusion problem (which is non-standard due to the presence of
an unbounded convection term), and (motivated by parameter estimation applications) we introduce
parameters that characterize polymer molecule structure into the formulation.

(a) (b)

Figure 1: (a) Probability density of “model” polymer molecules in extensional flow, and (b) reduced
basis stress hysteresis plot with error boxes.
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Residual based POD Model Order Reduction of Drift Diffusion Equations
in parametrized Electrical Networks

Michael Hinze, Martin Kunkel and Morten Vierling

University of Hamburg
Department of Mathematics

Bundesstr. 55
20146 Hamburg, Germany

In order to obtain a highly accurate model for integrated circuits (e.g. electrical networks containing
semiconductors) it has been proposed by various authors to simulate the semiconductor components
by drift-diffusion (DD) equations:

div(εgradψ) = q(n− p− C),
−q∂tn+ divJn = qR(n, p, Jn, Jp),
q∂tp+ divJp = −qR(n, p, Jn, Jp),

Jn = µnq(UT gradn− ngradψ),
Jp = µpq(−UT gradp− pgradψ).

The coupling with the network DAE then yields a nonlinear partial-differential algebraic equation
(PDAE), see [2, 3].

We discretize the DD-equations in space by Raviart-Thomas elements and simulate the resulting
high dimensional DAE. Snapshots of the semiconductor state variables are selected from one or multiple
simulations with different sets of parameters (e.g. frequency of input source, length of semiconductor,
doping). From these snapshots a reduced state space approximation is obtained by applying proper
orthogonal decomposition (POD). The projection of the DD-equations onto the reduced state space
yields a nonlinear low-dimensional model for the DD-equations. This low-dimensional model then
serves as surrogate for the DD-equations in the integrated circuit.

In this talk we present an adaptive approach to construct POD models which are valid over certain
parameter ranges. We use the residual as an estimate for the quality of the reduced model. The
residual is constructed (as in [1] for the linear case) by introducing the solution of the reduced model
into the unreduced model. Then we refine the reduced model by adding snapshots from additional
simulations of the unreduced model at local maxima of the residual. Numerical results for this approach
are presented which indicate that the method is applicable despite the nonlinearities.
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Model reduction in chemical kinetics: Approximating slow attracting manifolds
by computing minimal curvature trajectories

Dirk Lebiedza, Volkmar Reinhardtb, Jochen Siehrb

a University of Freiburg
b University of Heidelberg

The need for model reduction in chemical kinetics is mainly motivated by the fact that the computa-
tional effort for a simulation of reactive flows involving multiple time scale chemical reaction processes
is computationally extremely expensive for detailed chemical reaction mechanisms with a large number
of chemical species.
In dissipative ordinary differential equation systems modeling chemical reaction kinetics, different time
scales cause anisotropic phase volume contraction along solution trajectories. Model reduction meth-
ods exploit this for simplifying chemical kinetics via a time scale separation into fast and slow modes.
The aim is to approximate the system dynamics with a dimension-reduced model after eliminating the
fast modes by enslaving them to the slow ones via computation of a slow attracting manifold. We
present a novel and efficient numerical method for computing accurate approximations of such man-
ifolds using trajectory-based optimization. We discuss Riemannian geometry concepts as a basis for
suitable optimization criteria characterizing trajectories near slow attracting manifolds. Our approach
is based on the solution of the trajectory optimization problem

min
c

∫ tf

0
Φ (c(t)) dt

subject to the constraints

dc(t)
dt

= f (c(t))

0 = g (c(0))

ck(0) = c0
k, k ∈ Ifixed.

f describes the chemical reaction kinetics for the chemical species vector c(t), chemical element mass
conservation relations are collected in g. Ifixed is the index set of reaction progress variables chosen for
parameterization of the the reduced model. The key for the identification of trajectories approximating
slow attracting manifold is the optimization criterion Φ(c(t)) which is supposed to characterize the
relaxation of “chemical forces”. From a physical point of view, curvature (in the sense of rate of change
of reaction velocity) is closely related to the geometric interpretation of force. Based on earlier ideas [1]
we recently demonstrated [2, 3] that the curvature-based criterion Φ(c) = ‖Jf (c) f‖W (Jf : Jacobian)
with a particular thermodynamically motivated normW is a suitable optimization criterion and allows
the computation of accurate approximations of slow attracting manifolds in chemical kinetics.
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Model Reduction for Partial Differential Equations with Distributed Parameters

Chad Lieberman1, Karen Willcox1, and Omar Ghattas2

1 Massachusetts Institute of Technology
2 University of Texas at Austin

Motivation. Partial differential equations (PDEs) parameterized by distributed quantities arise fre-
quently in several disciplines of engineering. In some cases, we control the parameter through
structural and material design choices; other times, we must estimate an uncontrolled parameter
in order to make subsequent decisions. Due to the complexity of simulating the governing equa-
tions, it is computationally expensive to explore the parameter space, e.g., in design optimization
and statistical inverse problems. It is necessary to develop a systematic method by which we
compute outputs of interest at much lower expense without sacrificing the integrity of the physics
important to the input-output map. Projection-based model reduction techniques express state
variables as a linear combination of basis vectors spanning a low-dimensional subspace. As a
result, the forward map from parameter to state can be computed more cheaply; the cost is
determined by the solution of a small dense linear system. The exploration of the parameter
space, however, can still be prohibitively expensive for discretized distributed parameters.

Approach. In order to address this challenge, we extend projection-based reduction to the parameter
space. We introduce an L2 map from the infinite-dimensional parameter space to one defined
by a reduced parameter basis. Design exploration and statistical sampling take place in the
reduced space at lower cost. To identify the reduced parameter and state subspaces, we utilize
the greedy algorithm [1]. Iteratively, we identify the parameter which maximizes the output error
between a refined computational model and the current reduced-order model. Through Gram-
Schmidt orthogonalization, the parameter which maximizes output error and the corresponding
state are appended to the current parameter and state bases, respectively. Reduced bases for
both parameter and state are constructed by repeating this process iteratively until the desired
reduction in the output error is achieved. Each greedy iteration requires the solution of a large-
scale nonlinear program with PDE-constraints in an offline phase. Then, the reduced model may
be used repeatedly online.

Results. Our approach is demonstrated for model groundwater statistical inverse problems in one-
and two-dimensions. From synthetic pressure head well data, we attempt to infer the hydraulic
conductivity in the subsurface. We demonstrate that a parameter- and state-reduced model is a
sufficient surrogate for a refined computational model for the Markov chain Monte Carlo (MCMC)
sampling required in the Bayesian solution to the inverse problem. In the two-dimensional model
problem, we obtain a speedup of almost two orders of magnitude in the CPU time required for
the statistical sampling. The reduction in state accelerates forward model evaluations, while
reduction in parameter permits usage of a hand-tuned Metropolis-Hastings sampler. Without
this reduction, the statistical inverse problem is beyond the current means: efficient samplers do
not exist for high-dimensional nonlinear posteriors and the forward model computations are too
costly for repeated evaluation to be feasible. Our approach makes tractable statistical inverse
problems which depend on PDEs with distributed parameters.
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A New Framework for Order Reduction of Parametric Models by Superposition
of Locally Reduced Ones

Boris Lohmanna and Rudy Eida

a Lehrstuhl für Regelungstechnik, Technische Universität München,
Boltzmannstr. 15, D-85748 Garching bei München, E-Mail: {lohmann,eid}@tum.de

Starting from a given parametric state-space model, the goal of parametric model order reduction
is finding a reduced model that preserves the parameter-dependency, thus allowing a variation of any
of the parameters without the need to repeat the reduction step.

One of the first works in this direction is [1]: Assuming a linear model with affine parameter
dependency, a projection V can be calculated, such that the reduced model not only matches some
of the first moments of the transfer function G(s,p) with respect to s, but also with respect to the
parameters. The method suffers from the curse of dimensionality where the order of the reduced system
grows very rapidly even for small numbers of parameters. Another well-known technique (also used
in TPWL) is to calculate local projection matrices from several local models in the parametric space,
merge them together, and then apply a common order reducing projection to the original parametric
(or nonlinear) model. Also this method leads to a relatively high reduced order. In [2], a TBR-based
method using an interpolation and a soft switching between the reduced order transfer functions of
different non-parametric models (obtained by varying the parameters using sparse grids) is suggested.

In this contribution, a novel framework, inspired from the work in [3], for the reduction of linear
parametric systems is introduced. It consists of an interpolating representation of the linear parametric
model as:

ẋ =
s∑

i=1

ωi(p) [A(pi)x + Bu] , y = Cx, (1)

and then separately reducing all the local models by using separate q-dimensional subspaces as follows:

ẋr =
s∑

i=1

ωi(p)
[
ṼT
i A(pi)Ṽixr + ṼT

i Bu
]
, y = CṼxr. (2)

The main features of the new approach are: 1) The parametric matrix A(p) needs only to be known
and evaluated at s discrete values of the vector p (no analytical or affine dependency needed; also B
and C may depend on p), 2) the order of the reduced model will equal q, independent of the number
s of local models considered, 3) by suitable state transformations, the state vector of the reduced
interpolating model is given a clear physical interpretation, 4) the reduction method to be applied can
be freely chosen, e. g. TBR or Krylov-subspace method, 5) when using a Krylov-subspace reduction
method, it is possible to show that the moments are matched for any parameter value, 6) the framework
can be applied to nonlinear reduction as well.
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Stabilized reduced basis approximation of the incrompressible three-dimensional
Navier–Stokes equations in parametrized deformed domains

Simone Deparisa and Alf Emil Løvgrenb

a Modeling and Scientific Computing, Ecole Polytechnique Fédérale de Lausanne
b Center for Biomedical Computing, Simula Research Laboratory

In this work we are interested in the numerical solution of the steady incompressible Navier-Stokes
equations for fluid flow in pipes with varying orientations and cross-sections. We intend to compute
a reduced basis element approximation of the solution, employing the geometry as a parameter in the
reduced basis method. This has previously been done in a spectral element PN − PN−2 setting in 2D
for the steady Stokes equations[1, 2]. To compute the necessary basis functions in the reduced basis
method, we propose to use a stabilized P1 − P1 finite element method for solving the Navier-Stokes
equations on different geometries. By employing the same stabilization method in the reduced basis
approximation, we avoid having to enrich the velocity basis in order to satisfy the inf-sup condition.
This reduces the complexity of the reduced basis method for the Navier-Stokes problem, while keeping
the good approximation properties. We present numerical results for selected parameter dependent 3D
pipes. The reduced basis approximation error relative to the finite element solution shows exponential
convergence with respect to the number of basis functions.

References

[1] A. E. Løvgren, Y. Maday, and E. M. Rønquist, A Reduced Basis Element Method for the Steady
Stokes Problem, M2AN 40 (2006) 3, 529-552.

[2] A. E. Løvgren, Y. Maday, and E. M. Rønquist, The Reduced Basis Element Method for Fluid
Flows, Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics,
edited by C. Calgaro, J.-F. Coulombel, and T. Goudon, Birkhäuser Verlag (2007), 129-154.



Contributed Talks 31

Accelerated a posteriori error estimation for the reduced basis method with
application to 3D electromagnetic scattering problems

Jan Pomplun and Frank Schmidt

Zuse Institut Berlin, Takustr. 7, 14 195 Berlin, Germany

We present a new technique for fast estimation of error bounds in the reduced basis context,
efficiently applicable to real world 3D problems. Geometric parametrizations of complicated 2D or even
simple 3D structures easily leads to affine expansions consisting of a high number of terms (100-1000)
[1]. Application of state-of-the-art reduced basis techniques for computation of error bounds becomes
practically impossible. As way out we propose a new error estimator which leads to substantial savings
regarding online and offline computational times and memory consumption.

We apply the reduced basis method and the developed estimator to inverse scattering applications
in electromagnetics and examples from computational lithography in 2D and 3D as shown in Figure 1.

(a) (b)

Figure 1: (a) 3D periodic grating for reduced basis computations. (b) Intensity of electric field obtained
from FEM computation.
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Multi-level trust region POD algorithms

Ekkehard W. Sachsa and Matthias Schua

a University of Trier

Optimization problems with parabolic differential equation constraints are by themselves often
difficult to solve. If, in addition an integral term is added to the PDE, its numerical solution becomes
more complex and also more expensive. One example for such a problem is the calibration of improved
option pricing models, namely jump-diffusion models, which are gaining importance in practice (cf.
[1], e.g.). Discretizing the space variable by a finite element approach requires first a proper variational
formulation. A general optimal control problem would then be given by

min
u
J(y, u)

s.t. d
dt〈y(t), v〉H + a(u; t; y(t), v) = 〈f(u; t), v〉H , v ∈ V , t ∈ (0, T ] (1)

i.c.〈y(0), v〉H = 〈y0, v〉H

with hopefully an elliptic time- and control-dependent bilinear form a. The time variable can be
discretized by a finite difference approach, which in case of integro differential equations generally leads
to dense stiffness matrices. Implicit methods are hard to implement and using these for a solution is
quite expensive.

We propose to use proper orthogonal decomposition (POD) in order to avoid the solution of
these large, dense, linear systems of equations. Given one solution of the full discretized problem for
a specific control uk we accumulate significant information of this solution in only a few new basis
functions Ψ1, . . . ,Ψp via POD. We can use these basis functions in the variational formulation (1)
instead of the finite element functions, that are normally used to discretize V. The result is a much
smaller system, but well-known error estimates for PDEs, see e.g. Kunisch, Volkwein [4], can be
extended also to PIDEs and numerical results show that the finite element and the POD solution are
very close.

However these error estimates only hold true for unchanged controls, and if we veer away from the
starting control uk, where the POD model is based on, the results get worse. The solution is to use
the model in a trust region framework. The usually used quadratic model function here is replaced
by a model function based on the POD model and one only has to find an appropriate minimizer of
the reduced function in the trust region in each step. To verify the POD model, the full finite element
solution has to be calculated once per step, what is the most expensive part of the algorithm.

To further reduce the costs of the algorithm a multi-level approach is introduced. A hierarchy of
grids from coarse to fine is set up (cf. [3]) and controlled via a nested iteration. Gratton, Sartenaer
and Toint [2] could even show convergence for quadratic model functions. We show some promising
numerical results using a multi-level strategy in the trust region POD algorithm in the context of
calibrating option pricing models.
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Reduced-basis a posteriori error estimation for the parametrized steady
incompressible Navier-Stokes equations

Karen Veroy-Grepla

a AICES, RWTH Aachen

We review the recent work on a posteriori error estimation techniques for reduced-basis (RB)
approximations for quadratically nonlinear elliptic partial differential equations, particularly for the
steady incompressible Navier-Stokes equations. The key ingredient is the Brezzi-Rappaz-Raviart
(BRR) theory (cf. [1, 2, 6, 8]) for analysis of variational approximations of nonlinear PDEs. Typically,
the BRR framework provides a non-quantitative a priori or a posteriori justification of asymptotic
convergence. However, we show that the RB context is a unique opportunity to render the BRR the-
ory completely predictive. We elucidate the application of the BRR theory in our context, i.e., in the
construction of rigorous, quantitative, sharp, and inexpensive (real-time) a posteriori error estimators
for RB approximations to quadratically nonlinear PDEs (cf. [3, 5, 9, 12]). The main components
are appropriate approximations and associated computational procedures for (a) the dual norm of the
requisite residuals, (b) an upper bound for the L4(Ω)−H1(Ω) Sobolev embedding continuity constant
(cf. [10, 11]), (c) a lower bound for the Babuška inf-sup stability factor (cf. [4, 7]), and (d) the adjoint
contributions associated with the output. In all these components – as in the reduced-basis approx-
imations – we exploit affine parametric structure and offline-online computational decompositions to
provide real-time response.
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H2,α–norm optimal model reduction for computation
of a parametrized volume source in laser welding

Georg Vossen, Wolfgang Schulz and Markus Niessena

a Lehr- und Forschungsgebiet für Nichtlineare Dynamik, RWTH Aachen

The physical phenomena in laser welding processes can yet not completely be described by math-
ematical models. It is therefore common to describe the effects of the heat energy by means of a
parametrized volume source. The parameters of the volume source are obtained in several steps by a
calibration of computed and experimental values of the temperature. In each step, a time-dependent
partial differential equation on a domain of up to three spatial dimensions has to be solved.

This procedure can be mathematically modelled by the optimization problem

Minimizep∈P ||T − Te||2Ωe×(0,tf ) + γ||p||2P (1)

where T is the solution of the parametrized partial differential equation

Tt + v∇T = κ∆T + f(p), T ∈ Ω× (0, tf ) (2)

with appropiate initial and boundary conditions. Here, T denotes the temperature on a spatial domain
Ω ⊂ R3 and the time interval [0, tf ], v the convection velocity and κ the thermal diffusivity. The
parameters p ∈ P of the volume source are to be determined such that the temperature is close to
experimental data Te for the temperature on a domain Ωe × (0, tf ) with Ωe ⊂ Ω while γ is a small
regularization parameter. The overall computation time for solving Problem (1) numerically is very
high since the partial differential equation (2) has to be solved in each iteration step of the optimization
routine. This precludes the direct application of this method for real–world problems.

In this talk, we present a method for finding a reduced model to compute the temperature T on
Ωe × (0, tf ) from the parametrized partial differential equation (2) subject to the parameters p. After
linearization of f and spatial discretization of (2), p can be interpreted as the input of a large–scale
linear dynamical system with the temperature T on Ωe × (0, tf ) as the output of the system. We
use a model reduction method where the transfer function is approximated optimally with respect to
the H2,α–norm. The reduced system satisfies certain tangential interpolation conditions and can be
computed with the algorithm MIRIAm [1], [2]. Instead of Problem 1, one can then solve

Minimizep∈P ||Tr − Te||2Ωe×(0,tf ) + γ||p||2P (3)

where Tr is the output of the reduced system. We present a numerical solution for Problem (3) and
results for the error ||p̄ − p̄r|| where p̄ and p̄r are the optimal solutions for Problem (1) and (3),
respectively.
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On combining model reduction and Gauss-Newton algorithms for inverse PDE
problems

Mikhail Zaslavsky and Vladimir Druskin

Schlumberger, Cambridge, USA

We suggest an approach to speed up the Gauss-Newton solution of inverse PDE problems by
minimizing the number of forward problem calls. The acceleration is based on effective incorporation
of the information from the previous iterations via a reduced order model (ROM).

Let
A(ρ)uk = sk, k = 1, ...,ms (1)

be a FE or FD approximation of a linear second order PDE with symmetric (or complex symmetric)
operator with variable coefficient. Here ρ is a finite-dimensional vector of the discrete PDE coefficient,
ms is the number of sources. Let

F (ρ) ∈ Cms×mr

be the matrix with elements uTi rj , where r1, . . . , rmr is a linearly independent set of weight functions
rj ∈ CN (corresponding to receivers). In the inverse problem we reconstruct the distribution of ρ
under known measurement at receivers.

Due to the nonlinear dependence of F on ρ the conventional Gauss Newton algorithm may require
many iterations. Instead we propose a so-called Model Reduction Gauss-Newton (MRGN) algorithm,
that converges much faster with approximately the same cost as the GN per iteration. Basic idea
of that algorithm is that on the n-th iteration we construct a multivariate rational (with respect to
the components of ρ) approximation Fn(ρ) of function F (ρ) such that Fn(ρ) is easily computable
and maxρ ‖Fn − F‖ → 0. The approximation is designed with the help of Galerkin and pseudo-
Galerkin methods for self-adjoint and complex symmetric problems respectively. In order to construct
Fn we use all the information from previous steps. Therefore the constructed ROM generates effective
multivariate rational interpolation matching the forward solutions and the Jacobians from the previous
iterations. Numerical examples for the inverse conductivity problem for the 3D Maxwell system show
significant accelerations.
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Combining moment matching and balanced truncation for order reduction of
bilinear systems

Tobias Damma

a University of Kaiserslautern

As a first step from the linear to the nonlinear world, bilinear systems are of special interest. For
example the method of Carleman linearization allows to approximate nonlinear systems with affine
control input by high-dimensional bilinear control systems.

There have been several attempts to transfer methods of model order reduction like balanced
truncation and moment matching from linear to bilinear systems (see the references). In this talk we
review these results, and point out some extensions. In particular, we suggest a mixed approach which
combines the two methods. The results are illustrated by a number of examples of large-scale bilinear
systems.
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Snapshot-based Approximation of Frequency-weighted Gramian Matrices for
Model Reduction in Multibody Dynamics

Jörg Fehra, Michael Fischera, Bernard Haasdonkb and Peter Eberharda

a Institute of Engineering and Computational Mechanics, University of Stuttgart
b Institute of Applied Analysis and Numerical Simulation, University of Stuttgart

One important issue for the simulation of flexible multibody systems is the reduction of the flexible
body’s degrees of freedom. By the use of second order frequency weighted Gramian matrix based
reduction techniques the distribution of the loads is taken into account a priori and very accurate
models can be obtained within a predefined frequency range. Furthermore, an energy interpretation of
the reduction procedure and a priori error bounds are available [1]. Hence, using this method only the
load distribution, the frequency range of interest and a measure for the desired accuracy have to be
provided by the user. That is why the method is especially attractive as far as engineering applications
are concerned. However, the calculation of the frequency weighted Gramian matrices requires high
computational effort. Hence, appropriate approximation schemes have to be used to find the dominant
eigen space of the matrices.
The matrix integral needed for calculating the Gramian matrices can be approximated by quadratures
using integral kernel snapshots. This method can be viewed as an extension of the Poor Man’s TBR [2]
scheme for second order systems. The number and location of these snapshots have a big influence
on the reduction results. In Reduced Basis methods, sophisticated snapshot-selection methods are
used for basis construction [3]. In the current study we transfer some of these methods to Gramian
matrix based model reduction. The method can be viewed as an automatic determination of optimal
frequency weighting and as an adaptive learning of quadrature rules.
In a first step, a greedy search algorithm is used for the calculation of the next snapshot at the
maximum of an error measure calculated for the finite training set ωt ∈ Ftraining of training frequencies
ωt. Possible error measures are the absolute error e = ‖H(ωt) − H̄(ωt)‖F or the relative error ε =
(‖H(ωt)−H̄(ωt)‖F )/‖H(ωt)‖F between the transfer matrix of the original model H(ωt) and the reduced
model H̄(ωt). By a sensitivity analysis the appropriate size of the training set and the correct error
measure are determined. The results of the greedy search algorithm are compared with uniformly and
randomly chosen basis construction strategies. Then, an adaptive basis construction scheme, derived
from [3], is used for further improvement of the snapshot selection. Due to the fact that only the
dominant eigen space of the POD Kernel is used as projection matrix the influence of some snapshots
on the reduced system is marginal. These snapshots are removed from the training set as well as from
the POD kernel. Afterwards, based on a newly developed strategy, the training set is extended by using
frequencies originating in more influential regions. The applicability of the approaches is demonstrated
on a small academic benchmark model but is additionally tested for a demanding technical system with
more than 30 000 degrees of freedom.
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Efficient reduced models and a posteriori error estimation
for parametrized dynamical systems by offline/online decomposition

B. Haasdonka and M. Ohlbergerb

a Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Germany
b Institute of Computational and Applied Mathematics, University of Münster, Germany

Reduced basis (RB) methods are effective methods for model reduction of parametrized partial
differential equations (P2DEs). During the last years various types of stationary and time-dependent,
linear and nonlinear P2DEs have been treated [2, 3]. In the field of model order reduction for dynamical
systems [1], these methods are largely unknown, but the interest in reduction of parametrized systems
is increasing. In the current presentation, we show that some characteristic components of RB-methods
can be transferred to model reduction of parametrized dynamical systems [4]. We exemplify this for
linear systems with output estimation. We assume an affine decomposition of the system components
in parametric coefficient functions and parameter-independent components. In particular, this covers
more than linear or polynomial parametrizations. An offline/online decomposition is the key for efficient
simulation: In the offline phase, one prepares the reduced basis and auxiliary parameter-independent
quantities. These preparations allow rapid online simulations for varying parameters. The possibly
extensive offline phase pays off in case of a multi-query context, where sufficiently many reduced
simulations with different parameter constellations are expected. In addition to the effective reduced
simulation schemes, rigorous error control is possible by a posteriori error estimators for the state and
output. These are based on residual analysis and can also be effectively decomposed in an offline/online
fashion and hence allow fast and rigorous error guarantees. The output estimates can be improved by
primal-dual techniques similar to [3] and corresponding a posteriori error estimators can be derived.
Experiments with simple dynamical systems demonstrate the applicability of the reduced parametrized
systems and the reliability of the error estimators.
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Error Estimators for Projection-Based Order Reduction Methods

N. Junga,b and O. Rain b and K. Schumacherb and R. Eid a and B. Lohmanna

a Institute of Automatic Control, Technical University of Munich, 85748 Garching, Germany
b Corporate Research, CR/ARH2, Robert Bosch GmbH, 70049 Stuttgart, Germany

In order reduction of systems in engineering applications it is a priori unclear how small a reduced
system could be and it is necessary to control the error made by reduction. Thus we present error
estimators ensuring that the error which is made by the reduction does not exceed a given tolerance
and allowing a suitable choice of the reduced dimension. The error estimators are applicable to linear
PDEs. We consider time discrete state space systems of the form Exk − Exk−1 = ∆tAxk + ∆tBuk

where k = 1, ...,K indicates the discrete time step.

We present two different residuum-based strategies to estimate the error between the full order and
the reduced order approximation without computing the full order one. The first error estimator, see
Figure 1 b), is applicable to coercive problems and measures the error in the energy norm. The energy
norm,

∥∥xk
∥∥2

E
= (xk)TExk−∆t

∑K
k=1(xk)TAxk, is physically motivated and the derivation is according

to [1]. After an offline/online decomposition the computational complexity is independent of the full
order dimension. The disadvantage is that this error estimator is restricted to coercive problems and
the error might be overestimated. The second error estimator demands weaker assumptions on the
system than coercivity. The exact error is computed in a problem specific norm that is an upper bound
for the L2 space-time norm. The exactness is shown in Figure 1 c). In general, the error estimators
are applicable to projection-based reduction methods, e.g. Krylov Reduction Method or the Proper
Orthogonal Decomposition.
As an example we apply the theory to the academic Benchmark problems, CD player and the beam
model. We compare the different reduction methods and the error estimators to each other. Concerning
the CPU times, the speed-up factor achieved by calculating the error estimator instead of the real error
is up to 100. Additionally, we consider a solenoid actuator, see Figure 1 a). Similar actuators are used
in the common rail injectors. The underlying PDEs are the heat equation and the Maxwell equations.
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Figure 1: a) Solenoid actuator structure; comparison of the real error and the b) first error estimator
and c) second error estimator applied where the reduced model is achieved by Krylov reduction method.
The order of the reduced system is r.
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Model Reduction Method in Multi-Parameter Domain

Mykhaylo Krasnyka, Michael Mangoldb and Achim Kienlea,b

a Otto-von-Guericke-Universität, Magdeburg
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The reduction process is a construction of a low-order model that minimizes the defined error
between the solution of the detailed reference model and the reduced low-order one. In this work,
projection methods are used. Depending on the projection error definition, different methods can be
constructed. For example, the efficient reduced-basis method is proposed in [1] using L-infinity norm for
the error. Another option is to use L2-norm that will lead to “Proper Orthogonal Decomposition”-type
methods with spatially-distributed basis functions and time-dependent coefficients [2] or, vice versa,
time-distributed basis functions and coefficients of a reduced model that are spatially distributed [3].
In applications it is also quite important to estimate the approximation quality of the reduced model
with some quantitative measure.

In this contribution, we propose an extension of the model reduction based on the POD-like ap-
proach that differs from the original one in a way that the reduction is performed for snapshot solutions
distributed not only in time and space but also in a multi-parameter space. The reduction procedure
can be used for the construction of a low-order model with an approximation quality chosen in advance.
The reduction method consists of three steps:

• Finding of the optimal basis set of spatially orthonormal functions that is a best approximation
to the model reference data.

• Computing of coefficient matrices of the reduced model with a Galerkin approximation.

• Optimization or calibration of the model coefficients to minimize the approximation error.

The necessity of the calibration is shown in recent studies [4]. In this work, the last step is crucial
in the model reduction and can not be avoided. >From this point of view, the first two steps can
be treated as a computation of an initial point for the calibration process. Results of the reduction
procedure are shown by an example of the confined square cylinder wake flow in laminar regimes.
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Shape optimization in cardiovascular geometries using
reduced basis and free-form deformations

Toni Lassilaa, Andrea Manzonib and Gianluigi Rozzab

a Helsinki University of Technology
b École Polytechnique Fédérale de Lausanne

Optimal shape design problems play an important part in structural mechanics and fluid dynamics;
however, they require large computational effort and one option to counter this is to use model order
reduction. Reduced Basis methods (RB) coupled with a suitable tool for shape parametrization are a
very promising tool in flow control and shape optimization problems. An implementation of the reduced
basis method for the resolution of viscous interior flows in parameterized geometries is presented. We
discuss some applications based on Free-Form Deformation (FFD) techniques [1] for the reduction of
the number of parameters, combined with reduced basis methods for the reduction of the dimension of
the parameterized PDE system compared with the one obtained with finite element methods (FEM).

The proposed approach includes two different types of model reduction: a geometric reduction
resulting from a suitable low-dimensional parameterization of the geometry and a linear system re-
duction by using RB methods [2, 3, 4] to solve the partial differential equations. In particular, we
focus on the possibility of handling very generic geometric parameterizations and solving the problem
efficiently, taking advantage of an offline-online decomposition [3]. For this reason, all problems are
treated with the empirical interpolation method [5]. We present in particular some examples of reduced
basis methods applied to steady incompressible Stokes equations for shape optimization problems in
cardiovascular modelling.
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A Matlab-Toolbox for Parametric Reduction of Multi-Field FE-Models

Jan Mohring

Fraunhofer Institut für Techno- und Wirtschaftsmathematik

Figure 1: Illustration of the Fraunhofer parametric model reduction toolbox.

Up to now there seems to be no software package covering all aspects of designing mechatronic
systems for active noise and vibration control: on the one hand coupled FE models of structure, aero
acoustics, or piezo actuators, and on the other hand DAE’s describing electronic components or meth-
ods for controller design and parametric optimization. Therefore, we have developed a toolbox which
enables engineers to transfer and reduce automatically linear multi-field ANSYS models into paramet-
ric Matlab state space models. Note that the considered FE models are, in general, characterized by
large non-symmetric and singular matrices due to fluid-structure coupling or neglecting piezo induc-
tance. Hence, neither the built in model reduction of ANSYS can be applied, which is restricted to
symmetric systems with proportional damping, nor the one of Matlab, which requires small full storage
systems. Therefore, we implemented a modal reduction for singular non- symmetric systems.

The other focus of the article will be on parametric model reduction. Fitting models to mea-
surements or optimizing designs requires parameterized models allowing fast evaluation. Common
approaches rely on expansions of the full system matrices with respect to the parameters. However,
this requires FE-meshes to be smoothly deformable into each other, which is a hard restriction for
more realistic geometries. Alternatively, transfer functions can be interpolated rather than system
matrices. This gives good results away from poles, but fails close to them. Therefore, we follow an-
other approach: models are reduced independently to systems with standardized structure and size
and interpolated only on this level. The main result is related to finding system realizations suitable
for interpolation. It is motivated why realizations for new parameter sets should be chosen as close
as possible to some reference realization. The corresponding similarity transform is found by solving
a generalized Lyapunov equation. Results are illustrated by applying the toolbox to some benchmark
problems, e.g. finding optimal positions of piezo patches for active noise reduction.
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An Error Bound for Linear Spline Interpolation Based
Parametric Model Reduction

Nguyen Thanh Son and A. Bunse-Gerstner

University of Bremen

Large dynamical systems whose behavior depend on a small number of parameters occur in various
fields of application. They may be design parameters in the design of micro-electronic-mechanical
systems for instance and very many simulations have to be performed varying these parameters. If
reduced models are needed for the simulations it is crucial to preserve the parameters in the reduced
model. One possible approach consists in reducing the original system for certain (few) parameters
points and receive a global reduced system by interpolation. Here we consider linear time invariant
systems depending on one parameter in an interval and suggest a linear spline interpolation based
reduction. The reduced system is asymptotically stable for all parameters, if this holds for the reduced
systems at the given points. An error bound for the global system is presented, which only requires a
Lipschitz condition for the parameter.
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In this presentation we are going to discuss two issues concerning efficient reduced basis methods for
parametrized evolution equations [1]. The first issue is a methodological aspect and aims at adaptivity
in both the offline phase and the online phase in order to obtain accelerations over corresponding
non-adaptive approaches. In the offline phase, a compact reduced basis can be constructed by a greedy
search using adaptive grids in parameter space and incremental training set extension with overfitting
control [2]. In the online phase, the model dimension can be adjusted over time according to the
solution complexity [3]. Both adaptive approaches considerably rely on the availability of a posteriori
error estimators that can be computed efficiently.

The second issue concerns implementational questions that are related to coupling the reduced
basis library RBmatlab [6] with available Finite Element, or Finite Volume libraries. In particular, we
present an abstract interface for such coupling with the numerical software environment DUNE and
the module DUNE-FEM [4, 5].
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On Dominant Poles and Model Reduction of Time-Delay Systems
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Time-delay systems (TDS’s) appear in a wide variety of problems (e.g. the electronic signal of the
control of a robot [3]). There is a tendency to analyze and design systems of ever increasing size. Large
scale models are more difficult to analyze. As a result it is also harder to develop control algorithms.
Model order reduction (MOR) is of great importance since it reduces the size of the model while keeping
most of its characteristics. The dominant pole algorithm (DPA) has proven to be an efficient tool for
reducing the computational complexity of the solution of ODE’s arising from large interconnected
electrical networks [2]. We introduce the dominant pole algorithm as a new MOR method for TDS’s.

Consider the TDS,

Σ =





ẋ(t) = A0x(t) + A1x(t− τ) + bu(t)

y(t) = c∗x(t) + du(t),
(1)

where A0,A1 ∈ Rn×n, b, c,x(t) ∈ Rn×1, d, y(t) ∈ R and where τ > 0 is the delay and n is the
dimension of the system. The idea of MOR is to approximate Σ by Σ̃ with dimension k � n. The
transfer function of the system (1) is

H(s) = c∗(sI−A0 −A1e
−sτ )−1b + d.

If all eigenvalues are simple then H can be expressed as,

H(s) =
∞∑

i=1

Ri
s− λi

. (2)

It turns out that the residues Ri in (2) can be computed from the right and left eigenvectors, xi,yi
respectively, as

Ri =
(c∗xi)(y∗ib)

y∗i (I + λiτI− τA0)xi
, (3)

where λi is the corresponding eigenvalue. Unlike the ODE case, Σ has no finite dimension linearization
and the proof of (3) relies on a more general theory [1]. Using this result, we can adapt the dominant
pole algorithm (DPA) to TDSs. We will present the theory for DPA for delay systems, develop an
algorithm and show numerical results for an acodemic example.
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