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Abstract. We address the task of model reduction of parametrized #wnlequations. Detailed
simulations of such partial differential equations arejfrently expensive to compute due to the space
resolution of the discretization and not suitable for mqliery-settings, i.e. multiple simulation re-
quests with varying parameters. Reduced basis (RB) methagicreasingly popular methods to
solve such parametrized problems. The currently existiBgnithods for time-dependent problems
use identical dimensionaliti of the reduced model for all timesteps. This may be suboptias
different solution structures may require different dirsienalitiesN at different times, or a prescribed
error tolerance should be obtained.

In the current presentation, we extend a recently introdiRIB-scheme, in order to adaptively choose
N in time. This adjustment of the model dimension is based onstepiori error estimators, which
can be computed rapidly during the online simulation. Werjgl® experimental insights based on two
advection-diffusion problems. We demonstrate, that tlaé-énd-error process of thé-fixed approach
for obtaining a desired model accuracy, can be circumvenetieN-adaptive approach. In examples,
where the solution complexity is changing over time, éhadaptive approach yields an overall gain in
computation time.

1 Introduction

We address the task of model reduction f@rametrizedevolution equations. These are problems which are
characterized by a parameter vecfoe & from some set of possible parametersC RP, and the evolution
problem is to determina(t, 1) € L2(Q) on an open bounded space dom@irc RY and finite time intervat €
[0,T],T > 0 such that

au(p) +2 @t u)(ut,p)) = 0 in Qx[0,T] @
uOu) = ug(M) in Q @)

and suitable boundary conditions are satisfied. Hitgl) € L?(Q) are the parameter-dependent initial values,
Z(t,u) is the parameter dependent spatial differential operBliiscretization with finite element or finite volume
schemes and first order time discretization, yields diecrelutionsu'ﬁ () € #4,k=0,...,KintheH-dimensional
discrete spac#j; C L2(Q) approximatingu(t*, i) at the time instants 8 t® < t* < ... <tK = T. These discretiza-
tion schemes can compactly be expressed by the iteration

LU ()] = LER)[u (0] +6(w) 3)
up (1) Pluo()] 4)
fork=0,...,K —1, with initial data projection operatd?, implicit discretization contributions in the operator
L'f(u) and explicit contributions in the operath(u). Such detailed simulations are frequently expensive to-com

pute due to the space resolution and not suitable for use fti-query settings, i.e. multiple simulation requests
with varying parameterg.

Reduced Basis Methodse increasingly popular methods to solve such paramdtfizeblems, aiming at a
problem-dependent simulation scheme, that approximhtesidtailed solutionsﬁ(u) by efficiently computed
reduced solutionsh € WN. Herey C LZ(Q) is anN-dimensionalreduced basis spaogith suitablereduced

basis®y = {¢i}i'\‘:1 which is generated in a problem specific way basedmapshotof detailed solutions for

suitably chosen time instanks and parameterg; € 2, i.e. dy C spar{uﬁ(ui)}. A reduced basisby is hier-
archical in the sense, that for<LN’ < N the basesby := {¢i}i’":/1 C @y spanN’-dimensional reduced spaces
My := spar{®y/) which are nested by C #5 C ... C #N-1 C #n. An important focus of RB-methods is a
posteriori error estimation of the model erdtuk (1) — uf (1)|| < A%(p) in suitable normg|-||. The estimators
A¥(u) can be rapidly computed during the reduced simulation a@digorous and sharp upper bounds of the true
error.



Reduced basis methods in particular have been applied ssfatlg to various elliptic and parabolic problems,
almost exclusively based on finite element discretizatioRer linear elliptic problems we refer to [5], linear
parabolic equations are treated in [2], extensions to neali equations [8, 1] or systems [6] have been developed.
Recently, we have proposed an RB-formulation for lineatdinolume schemes [3] in case of so calkftine
parameter dependenaé the data functions. We extended the finite volume RB-se&htnexplicit discretizations
with general parametric dependence and demonstratedolisaiplity [4].

The currently existing RB-methods for time-dependent [ewis use identical dimensionalify® := N for all
timestepsk. This may be suboptimal, as different solution structurey mequire different dimensionalitied

at different times. Given a certain desired error threstzold 0, a too largeN will result in an unnecessarily
good simulation result with unnecesarily large simulatiome. On the contrary, a too small may result in an
intolerable error estimator value and require refined satorh. Hence it may be favourable in time-dependent
simulations, to choose the model depthduring the reduced simulation.

The current presentation is structured as follows. In 8ac# we extend the RB-scheme of [3], in order to
adaptively choos&lk. The previous and new approach will subsequently be derdttidedandN-adaptive In
Section 3 we provide experimental insights based on thedkiBrae applied on two advection-diffusion problems.
We conclude in Section 4.

2 N-Adaptive RB-Scheme

We assume to have given a reduced bexjs Without loss of generality, the basis functiofisare assumed to be
orthonormal with respect to tHe?(Q) inner product, i.e<¢i, ¢j> = §j. The reduced solutiodi,(u) attimet® is a

linear combination ok < N reduced basis functiong (i) = N, aken. The coefficient vectorak := (8N

and dimension®\k are defined by the reduced basis scheme. The scheme is a¢at]8], except that at each
timestep, the dimensioN“*! is adapted to a (possibly) new value depending on the cumiuﬁonuh(u), error
estimatorA¥(u) and a desired threshoifor the error estimator at end time.

Definition 2.1 (N-Adaptive RB-Scheme)We assume that an orthonormal reduced bagisand an evolution
scheme of the form (3)—(4) are given. We further assume tlseqaence{Nk)Ezo is given or can be obtained
during the simulation. The fddaptive RB-schemtihen proceeds in these steps:

¢ The initial coefficient vector is obtained as a projectidrite detailed initial data

& = ((P[uo(k)], $)N-1-
« Foreach k=0,...,K — 1 and given N1 we determine the next coefficient veabt?! by solving
Li(p)att = LE (a4 b (p)
with matrices and vectors
k k k k NK+ENE k K Nk+
L= ((oLiwio)), - LE=((atkmwlol)) . b= ((oubw)) - ®

For the above simulation scheme, efficient a posteriorr@stimators can be computed. A simpf([0, T],L?(Q))-
error estimator has been given in [3], which is as well vaiidhie curreniN-adaptive case. We assuerb‘éH <C
and||L; *|| < 1 (for theL?(Q)-induced operator norms), which are satisfied for sevepit#y PDE discretizations.
Then, the following error estimate holds:

Nk+1

ij=1’

Ut (1) = Un (1) ook 20y < A() (6)

Here,uq (), un(p) € LW([O,TL, L?(Q)) denote functions, which are piecewise constant in time ainttizle with
ul, resp.uf on the time-slatit*, t“+1). The error bound can be computed as

k
A1) ::ckZOHRk(u)H. @)

As can be seen, the error bound consist of additive compsnhéﬁ(u) H which are accumulated during the simu-
lation in time. The computation is based on evaluations tébly defined residuale(u) € M.
The above simulation scheme, the residual norms and theestinator can be computed in complexity indepen-

dent ofH, the dimensionality o##},. Instead they can be determined polynomiaNinn case of so called affine
parameter dependence and a suitable offline-online decsitigpo For details we refer to [3].

For the abovéN-adaptive approach, a heuristic rule for adjustigmust be defined. A simple strategy is to aim
at a certain target for the a posteriori error estimator, llgar development in timé* := kg and define suitable



increases and decreases in model dimension depending denlaion of the current estimator from the target
curve. For the experiments, we apply

NO:=N, NK1:=maxmin(N“+ 3NK N),1). (8)
with the increment (resp. decremenity
SNK 1= round (A% () + K/ (A%(p) — AL () — T, ©)

Here,K’' € N is a parameter indicating the number of look-ahead timesiedS < R* a factor in the slope of the
N-increment. The above estimator simply assumes a lineaviggoof Ak(u) specified by a backward difference
and the current value @(). The deviation of this linear extrapolation and the targétig at time instark + K’
are converted into a linear increment/decremerit o his choice of the sequence NF is an ad-hoc procedure,
which certainly leaves space for improvements.

Despite heuristics, an attractive conceptional aspedteoébove scheme is equidistribution of error contributions
A widespread target in grid-adaptive numerical simulaithe use of local error estimators, which contribute
additively to a global error estimator. The grid refinemeoaétsening is performed such that the local error es-
timators are equally distributed over the dom&irand a target threshold is reached [7]. In analogy, the above
linear target foA* corresponds to equally sized residual noﬁfﬁgﬂ in time. Hence, the above adaptive scheme
implicitly aims at an equal distribution of the residual msrover the time domain.

3 Experiments

The following experiments provide insights in thieadaptive approach compared to thdixed approach. We
consider rectangular domaifsc R?, with boundary decomposed into Dirichlet and Neumann sedsia) =
I4ir UM new We assume a linear advection-diffusion equation

au(p) +0- (v(p)u(p) —8(u)Bu(p)) =0 InQx[0,T] (10)

with suitable initial datai(p) = up(u) fort = 0, inhomogeneuos Dirichlet datéut) = ugir (1) in iy x [0, T] and
Neumann boundary datgp)0u(u) - n = Upey(U) in Treyx [0, T]. This can be discretized with cellwise constant
functions and Finite Volume schemes, which results in assponding discretization spa#g and discretization
operatorsL'f and L'E as presented in [3], using an Engquist-Osher flux for the ective contributions.

3.1 Setting1

Our default problem is a model of a fuel cell gas diffusionelayThe computational domain & = [0,103] x
[0,2-1074] discretized with a 20& 40 Cartesian grid defining the finite volume cells. The timegeawith end
time T = 0.5 is discretized wittK = 200 time intervals such that the resulting time-step sitisfies the CFL
condition and guarantees a stable simulation scheme.

The model is characterized by a 3-dimensional parameteegpa (Cpit, 3,0) € & :=[0,1] x [0,1] x [0,5-1078].
Here, the first parametex,;; models the amplitude of a wave-shaped initial distributig(x, ). The second
parameter models the Dirichlet valyeat the inlet and 1 3 at the outlet of the fuel cell component. The last
parameted(x, 1) := & models the global diffusivity of the gas diffusion layer. elaelocity fieldv(x, u) is not
parameter dependent, time-invariant, but spatially wériprecomputed as a pressure-gradient from an elliptic
PDE. The boundary of the domain contains further no-flow anflaw boundaries with correspondinge (),
which does not involve parameters. The basis generatiaegwe is based on an equidistafigbid in parameter
space and a greedy basis extension procedure resultingetiuaed basi®y of N = 100 reduced basis vectors.
For further details on the model and basis generation proegdve refer to [3].

For theN-adaptive RB-scheme, we set the look-ahead timestep nukiber20 and the slope-fact@®= 10, a
comment on this choice will follow below. Qualitative retsubf the correspondinly-adaptive RB simulation are
depicted in Fig. 1 for the parameter chojeze= (1,0,0)7. The left plot a) illustrates the error estimator evolution
for the N-fixed approach for the two choic&6= 20,60, the estimator development for tNeadaptive approach
and the target line for the estimator. The right plot b) dtates the adaptively adjusted model orbeduring time

and the dimension of the twid-fixed models. As expected, tiefixed approach may result in either an overly
fine model N = 60) or in a too coarse modeal(= 20), which requires recomputation of a model with higNer
This trial and error process of choosing a correct valull @bin obviously be prevented wit-adaptivity. The
error estimator is steered in such a way, that it approxilpagaches the desired prescribed tolerance level at end
time. This in turn is a rigorous upper bound on the true sitmeerror.

Experimentally, there is a tradeoff between the approXonaiccuracy of the error estimator to the target line, and
the variability of the model order in time. This can be adpaisby variation ofS, the factor in theN-increment (9)
andK’, the look-ahead range. For example, the variability ofMheurve can be reduced by decreasBith the
conseqguence of a less tight matching of the error estimatget curve.



X107 error estimator evolution model dimension N
T T T T T T 100 T T

T T
— — N-fixed, N=20
N-fixed, N=60
N-adaptive |
+.10 - N-adaptive-targef

80

PR 70l

- 60

0.6 -7 1 50F

. - ol
’
04 ’ 1
/ i 20k
/
/ .

20— —mmim NN S =Ty

0F

T n n " " . . " o . . . . . . . . .
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
a) time index k b) time index k

Figure 1: N-fixed andN-adaptive RB simulation results over time for time-invariant example. @y Estimator devel-
opment, b) model ordeX.

There are some notable limitations, that we observed irstigation of this example. First, we lose some accel-
eration methods for thi-adaptive approach, that can be applied inRkfixed approach in certain cases. As the
reduced system components are not time-dependéefik¢d and all data functions time-invariant), the solution
of the sequence of reduced linear equation systems overcamde accelerated by precomputing the inverse or
an LU-decomposition of the implicit system matrix. Thesequmputations seem prohibitive for thieadaptive
approach. Hence in these cases, an accelekfecdd approach is very likely to be faster than a non-acesder
N-adaptive approach. Second, in case of pure explicit diget@®n Q_',‘ =1d, LK = Iy), the reducedN-fixed
scheme is already very fast (one matrix-vector multipi@at such that th\X-estimation step of the adaptive
approach is dominant and theadaptive approach will not result in a clear acceleratiendfit.

3.2 Setting 2

As explained in the previous section, tNeadaptive approach is expected to be computationally bxakfhainly

in cases, where the solution complexity is changing ovee timd we have time-variant data functions and implicit
discretization components. In order to demonstrate thesfiwthe unit squar€ = [0,1)? discretized with an
unstructured triangular grid consisting of 5248 trianglBse time discretization is specified by the end time 2
andK = 500 timesteps. The parametrization of the problem is givep b= (c1,¢,,8) € &2 := [0,1]3. Here, the
first two parameters are amplitude coefficients in the Diethoundary values

Ugir (t, i) = C1SIN(—T11t) X[o,1) (1) + C2SiN(— 1671t + 77) X|1,2) (t) (11)

modeling a low-frequency wave dre [0, 1] and a high-frequency wave ore [1,2]. The Dirichlet boundary con-
sists of the left and lower boundary of the unit square, wthieeupper and right boundary are outflow boundaries.
The initial data is consistenty chosen depending on thenpeberc; as

Uo(X, 1) = C1SIN(TIX1) X {x; <o} (X) + C1 SIN(TX2) X (x>, } (X)- (12)

The velocity field is constant and parameter-independgm := (1,1)", the diffusivity is constant but parameter
dependend(u) := &. Therefore, the Dirichlet-values are transported diatipriato the domain. Hence, the
solution is considered to be more difficult on the time rangd1,2]. Again, the reduced basis is generated by a
uniform grid in parameter domain and a greedy search asibdedan [3]. We obtain a basis witN = 64 basis
vectors. We choose the parameters ofMhestimation aX’ = 40,S= 10.

Figure 2 presents the error estimator development aNadelvelopment b) over time for the time-variant advection
example analogous to the previous example uging (1,1,1)". Again we see, that the control of the error
estimator towards a desired output works. Théixed approaches reveal a clear increase in the error dstima
curve on the second half of the time interval, which reflebts gtructural difficulty of the solution. In contrast
to this, we again see, that tiNeadaptive approach nicely attaches to the target curve.srhetural complexity
of the solution aftet = 1 is reflected in the chosen dimensiNnas indeed, the required dimensionality is much
higher at this time. Th&l-adaptive approach, therefore, nicely detects and adaftetsolution complexity in
time.

Figure 3 illustrates a plot of the runtime over the true efi@y (1) — un(H) || =(o.1),.2(q)) for both theN-adaptive
and theN-fixed approach withu = (1,1,1). The times are averaged over 10 runs determined on a Lengtop.a
with Intel Centrino Duo processor, 2.0 GHz, 1 GB RAM. The dmsodel dimension for thd-fixed approach
ranges from 8 to 32. For th¢-adaptive approach the average resulting model dimensamge from 10.2 to 33.5.
We observe 3 phases. For model dimension above a certaghthde(32 for thisu, right border of the plot), the
error does not decrease any further as we reached the ree@uaturacy of the reduced basis. For too low model
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Figure 2: N-fixed andN-adaptive RB simulation results over time for time-variant advection el@rmpError estimator
development, b) model ordéy.

dimension (less than 8 in this example, left border of the)ptbe N-fixed approach is so fast, that the additional
overhead oN-estimation in théN-adaptive approach results in a slower adaptive simulatitveme. In the range
between these values, the curve of Nvadaptive approach is below tiefixed approach. Hence, the adaptive
approach results in lower true error for the same computatibme. Obviously, th&-adaptive approach realizes
a runtime gain over thi-fixed approach despite the additional estimation-ovethBaplacing the computational
time with the average dimensidw over time would result in an even more expressed but quaétstidentical
plot. Hence theN-adaptive approach does distribute the dimendloover time, such that the resulting error is

smaller than taking this avera@jeas fixed dimension.
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Figure 3: Error over runtime [s] foN-fixed andN-adaptive RB simulations.

4 Conclusions

We have presented an extension of an RB-scheme for timeadepeproblems, which supports varying model
dimensionNk over time. A heuristic way of choosirg* based on a linear growing target for the error estimator
has been presented as one particular instance. This sclzemni®e dnterpreted as an equidistribution strategy of
the residual norms in time. The resultiNgadaptive approach allows to steer the error-estimataiesoed target
curves. By this, multiple simulation runs for trial-and-aar with N-fixed simulations can be prevented. Due
to the rigorosity of the error estimators, this final errotiraator value is a strict upper bound on the true (but
unknown) error. In the presented approach there are soraenpgars that can be chosen. They realize a tradeoff
between the variability of the model dimension and the simoeds of the error-estimator curve. Hence, the error
estimator can be forced to attach more closely to the tanget by accepting a larger varying/oscillating model
dimension curve. Thdl-adaptive approach has a computational overhead by esimtthe model dimension.
Still, the N-adaptive approach can also be demonstrated to be bengfigains of runtime for obtaining a certain
error. We have demonstrated this speed advantage for aepnabht is sufficiently complex, contains implicit
discretization components and has time-varying data iomgt Obviously, one perspective is development of
more more sophisticated rules for the adjustment of the hdideensionN and application to other a posteriori
error estimators. Increasing and decreasing the modelndiime is actually only one particular way of adjusting
the reduced space during time. A more complex and attragtiestion therefore is optimal subspace selection

over time.
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