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Abstract. We address the task of model reduction of parametrized evolution equations. Detailed
simulations of such partial differential equations are frequently expensive to compute due to the space
resolution of the discretization and not suitable for multi-query-settings, i.e. multiple simulation re-
quests with varying parameters. Reduced basis (RB) methodsare increasingly popular methods to
solve such parametrized problems. The currently existing RB-methods for time-dependent problems
use identical dimensionalityN of the reduced model for all timesteps. This may be suboptimal, as
different solution structures may require different dimensionalitiesN at different times, or a prescribed
error tolerance should be obtained.

In the current presentation, we extend a recently introduced RB-scheme, in order to adaptively choose
N in time. This adjustment of the model dimension is based on a posteriori error estimators, which
can be computed rapidly during the online simulation. We provide experimental insights based on two
advection-diffusion problems. We demonstrate, that the trial-and-error process of theN-fixed approach
for obtaining a desired model accuracy, can be circumventedby theN-adaptive approach. In examples,
where the solution complexity is changing over time, theN-adaptive approach yields an overall gain in
computation time.

1 Introduction
We address the task of model reduction forparametrizedevolution equations. These are problems which are
characterized by a parameter vectorµ ∈ P from some set of possible parametersP ⊂ R

p, and the evolution
problem is to determineu(t,µ) ∈ L2(Ω) on an open bounded space domainΩ ⊂ R

d and finite time intervalt ∈
[0,T],T > 0 such that

∂tu(µ)+L (t,µ)(u(t,µ)) = 0 in Ω× [0,T] (1)

u(0,µ) = u0(µ) in Ω (2)

and suitable boundary conditions are satisfied. Hereu0(µ) ∈ L2(Ω) are the parameter-dependent initial values,
L (t,µ) is the parameter dependent spatial differential operator.Discretization with finite element or finite volume
schemes and first order time discretization, yields discrete solutionsuk

H(µ)∈WH ,k= 0, . . . ,K in theH-dimensional
discrete spaceWH ⊂ L2(Ω) approximatingu(tk,µ) at the time instants 0= t0 < t1 < .. . < tK = T. These discretiza-
tion schemes can compactly be expressed by the iteration

Lk
I (µ)[uk+1

H (µ)] = Lk
E(µ)[uk

H(µ)]+bk(µ) (3)

u0
H(µ) = P[u0(µ)] (4)

for k = 0, . . . ,K − 1, with initial data projection operatorP, implicit discretization contributions in the operator
Lk

I (µ) and explicit contributions in the operatorLk
E(µ). Such detailed simulations are frequently expensive to com-

pute due to the space resolution and not suitable for use in multi-query settings, i.e. multiple simulation requests
with varying parametersµ.

Reduced Basis Methodsare increasingly popular methods to solve such parametrized problems, aiming at a
problem-dependent simulation scheme, that approximates the detailed solutionsuk

H(µ) by efficiently computed
reduced solutionsuk

N ∈ WN. HereWN ⊂ L2(Ω) is anN-dimensionalreduced basis spacewith suitablereduced
basisΦN = {ϕi}

N
i=1 which is generated in a problem specific way based onsnapshotsof detailed solutions for

suitably chosen time instantski and parametersµ i ∈ P, i.e. ΦN ⊂ span{uki
H(µ i)}. A reduced basisΦN is hier-

archical in the sense, that for 1≤ N′ ≤ N the basesΦN′ := {ϕi}
N′

i=1 ⊂ ΦN spanN′-dimensional reduced spaces
WN′ := span(ΦN′) which are nested byW1 ⊂ W2 ⊂ . . . ⊂ WN−1 ⊂ WN. An important focus of RB-methods is a
posteriori error estimation of the model error

∥

∥uk
N(µ)−uk

H(µ)
∥

∥ ≤ ∆k(µ) in suitable norms‖·‖. The estimators
∆k(µ) can be rapidly computed during the reduced simulation and are rigorous and sharp upper bounds of the true
error.



Reduced basis methods in particular have been applied successfully to various elliptic and parabolic problems,
almost exclusively based on finite element discretizations. For linear elliptic problems we refer to [5], linear
parabolic equations are treated in [2], extensions to nonlinear equations [8, 1] or systems [6] have been developed.
Recently, we have proposed an RB-formulation for linear finite volume schemes [3] in case of so calledaffine
parameter dependenceof the data functions. We extended the finite volume RB-scheme to explicit discretizations
with general parametric dependence and demonstrated its applicability [4].

The currently existing RB-methods for time-dependent problems use identical dimensionalityNk := N for all
timestepsk. This may be suboptimal, as different solution structures may require different dimensionalitiesNk

at different times. Given a certain desired error thresholdε > 0, a too largeN will result in an unnecessarily
good simulation result with unnecesarily large simulationtime. On the contrary, a too smallN may result in an
intolerable error estimator value and require refined simulation. Hence it may be favourable in time-dependent
simulations, to choose the model depthNk during the reduced simulation.

The current presentation is structured as follows. In Section 2 we extend the RB-scheme of [3], in order to
adaptively chooseNk. The previous and new approach will subsequently be denotedN-fixedandN-adaptive. In
Section 3 we provide experimental insights based on the RB-scheme applied on two advection-diffusion problems.
We conclude in Section 4.

2 N-Adaptive RB-Scheme
We assume to have given a reduced basisΦN. Without loss of generality, the basis functionsϕn are assumed to be
orthonormal with respect to theL2(Ω) inner product, i.e.

〈

ϕi ,ϕ j
〉

= δi j . The reduced solutionuk
N(µ) at timetk is a

linear combination ofNk ≤ N reduced basis functionsuk
N(µ) = ∑Nk

n=1ak
nϕn. The coefficient vectorsak := (ak

n)
Nk

n=1
and dimensionsNk are defined by the reduced basis scheme. The scheme is identical to [3], except that at each
timestep, the dimensionNk+1 is adapted to a (possibly) new value depending on the currentsolutionuk

N(µ), error
estimator∆k(µ) and a desired thresholdε for the error estimator at end time.
Definition 2.1 (N-Adaptive RB-Scheme). We assume that an orthonormal reduced basisΦN and an evolution
scheme of the form (3)–(4) are given. We further assume that asequence(Nk)K

k=0 is given or can be obtained
during the simulation. The N-adaptive RB-schemethen proceeds in these steps:

• The initial coefficient vector is obtained as a projection of the detailed initial data

a0 := (〈P[u0(µ)],ϕn〉)
N0

n=1.

• For each k= 0, . . . ,K−1 and given Nk+1 we determine the next coefficient vectorak+1 by solving

Lk
I (µ)ak+1 = Lk

E(µ)ak +bk(µ)

with matrices and vectors

Lk
I =

(〈

ϕi ,L
k
I (µ)[ϕ j ]

〉)Nk+1

i, j=1
, Lk

E =
(〈

ϕi ,L
k
E(µ)[ϕ j ]

〉)Nk+1,Nk

i, j=1
, bk =

(〈

ϕi ,b
k(µ)

〉)Nk+1

i=1
. (5)

For the above simulation scheme, efficient a posteriori error estimators can be computed. A simpleL∞([0,T],L2(Ω))-
error estimator has been given in [3], which is as well valid in the currentN-adaptive case. We assume

∥

∥Lk
E

∥

∥ ≤C
and

∥

∥L−1
I

∥

∥≤ 1 (for theL2(Ω)-induced operator norms), which are satisfied for several typical PDE discretizations.
Then, the following error estimate holds:

‖uH(µ)−uN(µ)‖L∞([0,tk],L2(Ω)) ≤ ∆k(µ) (6)

Here,uH(µ),uN(µ) ∈ L∞([0,T],L2(Ω)) denote functions, which are piecewise constant in time and coincide with
uk

H , resp.uk
N on the time-slab[tk, tk+1). The error bound can be computed as

∆k(µ) := C
k

∑
k′=0

∥

∥

∥
Rk(µ)

∥

∥

∥
. (7)

As can be seen, the error bound consist of additive components
∥

∥Rk(µ)
∥

∥ which are accumulated during the simu-
lation in time. The computation is based on evaluations of suitably defined residualsRk(µ) ∈ WH .

The above simulation scheme, the residual norms and the error estimator can be computed in complexity indepen-
dent ofH, the dimensionality ofWH . Instead they can be determined polynomial inN, in case of so called affine
parameter dependence and a suitable offline-online decomposition. For details we refer to [3].

For the aboveN-adaptive approach, a heuristic rule for adjustingNk must be defined. A simple strategy is to aim
at a certain target for the a posteriori error estimator, e.g. linear development in timeTk := k ε

K and define suitable



increases and decreases in model dimension depending on thedeviation of the current estimator from the target
curve. For the experiments, we apply

N0 := N, Nk+1 := max(min(Nk +δNk
,N),1). (8)

with the increment (resp. decrement)δNk

δNk := round(S(∆k(µ)+K′(∆k(µ)−∆k−1(µ))−Tk+K′
)). (9)

Here,K′ ∈ N is a parameter indicating the number of look-ahead timesteps andS∈ R
+ a factor in the slope of the

N-increment. The above estimator simply assumes a linear growing of ∆k(µ) specified by a backward difference
and the current value of∆k(µ). The deviation of this linear extrapolation and the target value at time instantk+K′

are converted into a linear increment/decrement ofN. This choice of the sequence ofNk is an ad-hoc procedure,
which certainly leaves space for improvements.

Despite heuristics, an attractive conceptional aspect of the above scheme is equidistribution of error contributions.
A widespread target in grid-adaptive numerical simulations is the use of local error estimators, which contribute
additively to a global error estimator. The grid refinement/coarsening is performed such that the local error es-
timators are equally distributed over the domainΩ and a target threshold is reached [7]. In analogy, the above
linear target for∆k corresponds to equally sized residual norms

∥

∥Rk
∥

∥ in time. Hence, the above adaptive scheme
implicitly aims at an equal distribution of the residual norms over the time domain.

3 Experiments
The following experiments provide insights in theN-adaptive approach compared to theN-fixed approach. We
consider rectangular domainsΩ ⊂ R

2, with boundary decomposed into Dirichlet and Neumann segments ∂Ω =
Γdir ∪Γneu. We assume a linear advection-diffusion equation

∂tu(µ)+∇ · (v(µ)u(µ)−δ (µ)∇u(µ)) = 0 in Ω× [0,T] (10)

with suitable initial datau(µ) = u0(µ) for t = 0, inhomogeneuos Dirichlet datau(µ) = udir(µ) in Γdir × [0,T] and
Neumann boundary dataδ (µ)∇u(µ) ·n = uneu(µ) in Γneu× [0,T]. This can be discretized with cellwise constant
functions and Finite Volume schemes, which results in a corresponding discretization spaceWH and discretization
operatorsLk

I andLk
E as presented in [3], using an Engquist-Osher flux for the convective contributions.

3.1 Setting 1

Our default problem is a model of a fuel cell gas diffusion layer. The computational domain isΩ = [0,10−3]×
[0,2 ·10−4] discretized with a 200×40 Cartesian grid defining the finite volume cells. The time range with end
time T = 0.5 is discretized withK = 200 time intervals such that the resulting time-step size satisfies the CFL
condition and guarantees a stable simulation scheme.

The model is characterized by a 3-dimensional parameter spaceµ = (cinit ,β ,δ )∈P := [0,1]× [0,1]× [0,5·10−8].
Here, the first parametercinit models the amplitude of a wave-shaped initial distributionu0(x,µ). The second
parameter models the Dirichlet valueβ at the inlet and 1− β at the outlet of the fuel cell component. The last
parameterδ (x,µ) := δ models the global diffusivity of the gas diffusion layer. The velocity fieldv(x,µ) is not
parameter dependent, time-invariant, but spatially variant, precomputed as a pressure-gradient from an elliptic
PDE. The boundary of the domain contains further no-flow and outflow boundaries with correspondinguneu(µ),
which does not involve parameters. The basis generation procedure is based on an equidistant 53 grid in parameter
space and a greedy basis extension procedure resulting in a reduced basisΦN of N = 100 reduced basis vectors.
For further details on the model and basis generation procedure, we refer to [3].

For theN-adaptive RB-scheme, we set the look-ahead timestep numberK′ = 20 and the slope-factorS= 10, a
comment on this choice will follow below. Qualitative results of the correspondingN-adaptive RB simulation are
depicted in Fig. 1 for the parameter choiceµ = (1,0,0)T . The left plot a) illustrates the error estimator evolution
for theN-fixed approach for the two choicesN = 20,60, the estimator development for theN-adaptive approach
and the target line for the estimator. The right plot b) illustrates the adaptively adjusted model orderN during time
and the dimension of the twoN-fixed models. As expected, theN-fixed approach may result in either an overly
fine model (N = 60) or in a too coarse model (N = 20), which requires recomputation of a model with higherN.
This trial and error process of choosing a correct value ofN can obviously be prevented withN-adaptivity. The
error estimator is steered in such a way, that it approximately reaches the desired prescribed tolerance level at end
time. This in turn is a rigorous upper bound on the true simulation error.

Experimentally, there is a tradeoff between the approximation accuracy of the error estimator to the target line, and
the variability of the model order in time. This can be adjusted by variation ofS, the factor in theN-increment (9)
andK′, the look-ahead range. For example, the variability of theN-curve can be reduced by decreasingSwith the
consequence of a less tight matching of the error estimator target curve.
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Figure 1: N-fixed andN-adaptive RB simulation results over time for time-invariant example. a) Error estimator devel-
opment, b) model orderN.

There are some notable limitations, that we observed in investigation of this example. First, we lose some accel-
eration methods for theN-adaptive approach, that can be applied in theN-fixed approach in certain cases. As the
reduced system components are not time-dependent (N fixed and all data functions time-invariant), the solution
of the sequence of reduced linear equation systems over timecan be accelerated by precomputing the inverse or
an LU-decomposition of the implicit system matrix. These precomputations seem prohibitive for theN-adaptive
approach. Hence in these cases, an acceleratedN-fixed approach is very likely to be faster than a non-accelerated
N-adaptive approach. Second, in case of pure explicit discretization (Lk

I = Id, Lk
I = IN), the reducedN-fixed

scheme is already very fast (one matrix-vector multiplication), such that theNk-estimation step of the adaptive
approach is dominant and theN-adaptive approach will not result in a clear acceleration benefit.

3.2 Setting 2

As explained in the previous section, theN-adaptive approach is expected to be computationally beneficial mainly
in cases, where the solution complexity is changing over time and we have time-variant data functions and implicit
discretization components. In order to demonstrate this, we fix the unit squareΩ = [0,1]2 discretized with an
unstructured triangular grid consisting of 5248 triangles. The time discretization is specified by the end timeT = 2
andK = 500 timesteps. The parametrization of the problem is given by µ = (c1,c2,δ ) ∈ P := [0,1]3. Here, the
first two parameters are amplitude coefficients in the Dirichlet boundary values

udir(t,µ) = c1sin(−πt)χ[0,1)(t)+c2sin(−16πt +π)χ[1,2)(t) (11)

modeling a low-frequency wave ont ∈ [0,1] and a high-frequency wave ont ∈ [1,2]. The Dirichlet boundary con-
sists of the left and lower boundary of the unit square, whilethe upper and right boundary are outflow boundaries.
The initial data is consistenty chosen depending on the parameterc1 as

u0(x,µ) = c1sin(πx1)χ{x1<x2}(x)+c1sin(πx2)χ{x1≥x2}(x). (12)

The velocity field is constant and parameter-independentv(µ) := (1,1)T , the diffusivity is constant but parameter
dependentδ (µ) := δ . Therefore, the Dirichlet-values are transported diagonally into the domain. Hence, the
solution is considered to be more difficult on the time ranget ∈ [1,2]. Again, the reduced basis is generated by a
uniform grid in parameter domain and a greedy search as described in [3]. We obtain a basis withN = 64 basis
vectors. We choose the parameters of theN-estimation asK′ = 40,S= 10.

Figure 2 presents the error estimator development a) andN-development b) over time for the time-variant advection
example analogous to the previous example usingµ = (1,1,1)T . Again we see, that the control of the error
estimator towards a desired output works. TheN-fixed approaches reveal a clear increase in the error estimator
curve on the second half of the time interval, which reflects the structural difficulty of the solution. In contrast
to this, we again see, that theN-adaptive approach nicely attaches to the target curve. Thestructural complexity
of the solution aftert = 1 is reflected in the chosen dimensionN, as indeed, the required dimensionality is much
higher at this time. TheN-adaptive approach, therefore, nicely detects and adapts to the solution complexity in
time.

Figure 3 illustrates a plot of the runtime over the true error‖uH(µ)−uN(µ)‖L∞([0,T],L2(Ω)) for both theN-adaptive
and theN-fixed approach withµ = (1,1,1). The times are averaged over 10 runs determined on a Lenovo Laptop
with Intel Centrino Duo processor, 2.0 GHz, 1 GB RAM. The chosen model dimension for theN-fixed approach
ranges from 8 to 32. For theN-adaptive approach the average resulting model dimensionsrange from 10.2 to 33.5.
We observe 3 phases. For model dimension above a certain threshold (32 for thisµ, right border of the plot), the
error does not decrease any further as we reached the resolution accuracy of the reduced basis. For too low model
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Figure 2: N-fixed andN-adaptive RB simulation results over time for time-variant advection example. a) Error estimator
development, b) model orderN.

dimension (less than 8 in this example, left border of the plot), theN-fixed approach is so fast, that the additional
overhead ofN-estimation in theN-adaptive approach results in a slower adaptive simulationscheme. In the range
between these values, the curve of theN-adaptive approach is below theN-fixed approach. Hence, the adaptive
approach results in lower true error for the same computational time. Obviously, theN-adaptive approach realizes
a runtime gain over theN-fixed approach despite the additional estimation-overhead. Replacing the computational
time with the average dimensionN over time would result in an even more expressed but qualitatively identical
plot. Hence theN-adaptive approach does distribute the dimensionN over time, such that the resulting error is
smaller than taking this averageN as fixed dimension.
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Figure 3: Error over runtime [s] forN-fixed andN-adaptive RB simulations.

4 Conclusions
We have presented an extension of an RB-scheme for time-dependent problems, which supports varying model
dimensionNk over time. A heuristic way of choosingNk based on a linear growing target for the error estimator
has been presented as one particular instance. This scheme can be interpreted as an equidistribution strategy of
the residual norms in time. The resultingN-adaptive approach allows to steer the error-estimators todesired target
curves. By this, multiple simulation runs for trial-and-error with N-fixed simulations can be prevented. Due
to the rigorosity of the error estimators, this final error estimator value is a strict upper bound on the true (but
unknown) error. In the presented approach there are some parameters that can be chosen. They realize a tradeoff
between the variability of the model dimension and the smoothness of the error-estimator curve. Hence, the error
estimator can be forced to attach more closely to the target line, by accepting a larger varying/oscillating model
dimension curve. TheN-adaptive approach has a computational overhead by estimation of the model dimension.
Still, theN-adaptive approach can also be demonstrated to be beneficialin terms of runtime for obtaining a certain
error. We have demonstrated this speed advantage for a problem that is sufficiently complex, contains implicit
discretization components and has time-varying data functions. Obviously, one perspective is development of
more more sophisticated rules for the adjustment of the model dimensionN and application to other a posteriori
error estimators. Increasing and decreasing the model dimension is actually only one particular way of adjusting
the reduced space during time. A more complex and attractivequestion therefore is optimal subspace selection
over time.
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