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Abstract. Reduced basis (RB) methods are effective methods for model reduction of parametrized
partial differential equations (P2DEs). During the last years various types of stationary and time-
dependent, linear and nonlinear P2DEs have been treated. In the field of dynamical systems’ order
reduction, these methods are largely unknown, but the interest in reduction of parametrized systems is
increasing. In the current presentation, we show that some characteristic components of RB-methods
can be transfered to model reduction of parametrized dynamical systems. We exemplify this for lin-
ear systems with output estimation. A so called offline/online decomposition is the key for efficient
simulation: In the offline phase, one prepares the reduced basis and auxiliary parameter-independent
quantities. These preparations allow rapid online simulations for varying parameters. The possibly
extensive offline phase pays off in case of a multi-query context, where sufficiently many reduced sim-
ulations with different parameter constellations are to beexpected. In addition to the effective reduced
simulation schemes, error control is possible by a posteriori error estimators. These are based on resid-
ual analysis and can also be effectively decomposed in an offline/online fashion and hence allow fast
and rigorous error guarantees.

1 Introduction
Reduced basis (RB) methods are effective methods for model reduction of parametrized partial differential equa-
tions (P2DEs). This are partial differential equations, where parameters characterize the system, e.g. geometry,
material, boundary-value, initial-value or control parameters. The need for parametrized reduced models can re-
sult from multi-query scenarios, where many simulations have to be performed for varying parameters such as
parameter studies, parameter optimization, inverse problems, etc. Similarly, real-time requirements can be a mo-
tivation for parametrized model reduction, e.g. control, interactive simulation environments, etc. In addition to
parametrized reduced models, a fast rigorous parameter-dependent quantification of the model error is required.
This is provided by RB-methods. During the last years various types of stationary and time-dependent, linear and
nonlinear P2DEs have been treated with this technique [12, 5, 6, 8, 14]. Anoverview with many further recent ref-
erences is given by [11]. In the field of dynamical systems’ order reduction, these methods are partially unknown,
but the interest in reduction of parametrized systems is increasing. For example, [2] already considers solution of
parametrized systems by concatenating projection bases ofspecial parameter choices. Parametrized systems are
tackled with moment matching techniques in [13] and [4].

In the current presentation, we show that some characteristic components of RB-methods can be transfered to
model reduction of parametrized dynamical systems. We exemplify this for linear systems with output estimation.
A so called offline/online decomposition is the key for efficient simulation. In the offline phase, one prepares the
reduced basis and auxiliary parameter-independent quantities. These preparations allow rapid online simulations
for varying parameters with complexity independent of the original state dimension. The possibly extensive of-
fline phase pays off in case of a multi-query context, where sufficiently many reduced simulations with different
parameter constellations are to be expected. In addition tothe effective reduced simulation schemes, error control
is possible by a posteriori error estimators. These are based on residual analysis and can also be effectively decom-
posed in an offline/online fashion and hence allow fast and rigorous error guarantees. In contrast to global-in-time
a priori estimates in classical MOR of dynamical systems, these a posteriori error estimates provide error bounds
for the state variable or output variable point-wise in time.

In the following section, we introduce the reduced basis simulation scheme for parametrized problems. Sec. 3 is
devoted to the algorithmical decomposition into an offline and online phase. For the current formulation a posteriori
error estimation is demonstrated in Sec. 4 including a full offline-online decomposition. We conclude in Sec. 5.
We refrain from presenting experiments in this paper, but refer to RB schemes for linear instationary P2DEs, as
these are particular instances of the presented reduced simulation scheme after simple time discretization, [6, 8].



2 Parametrized Reduced Simulation Scheme
We assume the following parametrized linear dynamical system for a state variablex(t) ∈ R

n, inputu(t) ∈ R
m and

output variabley(t) ∈ R
p for t ∈ [0,∞)

d
dt

x(t) = A(t,µ)x(t)+B(t,µ)u(t) (1)

y(t) = C(t,µ)x(t)+D(t,µ)u(t). (2)

The system matricesA(t,µ) ∈ R
n×n,B(t,µ) ∈ R

n×m,C(t,µ) ∈ R
p×n,D(t,µ) ∈ R

p×m depend on a parameterµ ∈
P ⊂ R

d from a bounded parameter domainP. The parameterµ is assumed to be fixed during a single simulation
of the dynamical system. Occasionally, the solution and output will be denoted asx(t,µ),y(t,µ) to emphasize
their parameter dependence. Given a projection matrixV ∈ R

n×k with reduced model orderk << n andW ∈ R
n×k

biorthogonal, i.e.WTV = I k×k, the reduced system reads as usual [1]

d
dt

x̂(t) = Â(t,µ)x̂(t)+ B̂(t,µ)u(t) (3)

ŷ(t) = Ĉ(t,µ)x̂(t)+ D̂(t,µ)u(t) (4)

with reduced system matrices

Â(t,µ) := WTA(t,µ)V, B̂(t,µ) := WTB(t,µ) (5)

Ĉ(t,µ) := C(t,µ)V, D̂(t,µ) := D(t,µ) (6)

and initial condition

x̂(0) = x̂0 := WTx(0). (7)

In reduced basis methods, the projection basisV is constructed in a simulation-based way such that colspanV ⊂
span{x(ti ,µ i)}i∈I . Hereti ,µ i are suitably selected time instants and parameters andx(ti ,µ i) so called snapshots
of the solution. The basis matrixV is commonly orthonormalized with respect to a certain problem specific inner
product, such that the reduced system is numerically more stable. For more details on basis generation in RB-
methods, we refer to [11, 7, 8, 6]. In the following, however,we do not put any assumption on the reduced
basis apart from biorthogonality ofV andW. Hence in particular, the method and results are as well valid for
Krylov-subspace bases, bases obtained from balanced truncation, POD, etc.

3 Offline-Online Decomposition
For efficient computation, we put some assumptions on the matrices and initial data, such that the system matrices
can be decomposed as a weighted sum of parameter-independent parts, where the weights are parameter dependent.
Note that the basic idea of linear superposition of systems has also been used in [2]. Here we perform a refined
argumentation, which results in an online simulation scheme, the complexity of which is completely independent
of n.

For the systen matrices we assume the following separable parameter dependence

A(t,µ) =
QA

∑
q=1

σq
A(t,µ)Aq

, B(t,µ) =
QB

∑
q=1

σq
B(t,µ)Bq

, C(t,µ) =
QC

∑
q=1

σq
C(t,µ)Cq

. (8)

with scalar parameter- and time-dependent coefficient functionsσq
A,σq

B,σq
C and parameter- and time-independent

matricesAq,Bq,Cq of suitable dimensions and small number of componentsQA,QB,QC. We assume, that the
initial data variations of the system are not arbitrary, butcan similarly be described by parameter variations, i.e.
x(0) = x0(µ) with

x0(µ) =

Qx0

∑
q=1

σq
x0

(µ)xq
0. (9)

Making use of the assumed parameter dependence, the reducedsimulation can be performed rapidly in a complex-
ity, which is completely independent ofn. This is obtained by an offline/online decomposition.

In the offline phase, the parameter-independent quantitiesof the reduction scheme are computed. This phase
may be arbitrary time consuming, as it will pay off in view of sufficiently many online simulations. First, the
biorthogonal projection matricesV andW may be generated by any algorithm. Then the following parameter
independent components are computed:

Âq := WTAqV, B̂q := WTBq
, Ĉq := AqV, x̂q

0 := WTxq
0. (10)



In the online phase, the parameterµ is known and the reduced simulation matrices can be assembled in complexity
independent ofn. In particular we obtain from (8)–(9) and (10).

Â(t,µ) =
QA

∑
q=1

σq
A(t,µ)Âq

, B̂(t,µ) =
QB

∑
q=1

σq
B(t,µ)B̂q

, (11)

Ĉ(t,µ) =
QC

∑
q=1

σq
C(t,µ)Ĉq

, D̂(t,µ) = D(t,µ), x̂0(µ) = ∑
Qx0
q=1 σq

x0(µ)x̂q
0. (12)

The separable parameter dependence of the components is nota strong assumption, as there are several methods
to obtain such exact or approximate decompositions. First,if the dynamical system results from a discretization
of a physical problem, the physical parameters can frequently be tracked through the discretization and hereby
explicitly give such a desired decomposition, as e.g. done for finite volume discretizations [8]. This clearly requires
full control over the discretization, which is realizable (and a good argument) for own development of discretization
code instead of using black-box discretization packages. If there is some algebraic model knowledge about the
parameter dependence, e.g. the number of components and thecoefficient functions are known, but the component
matrices not, these matrices can be constructed by setting up matrix equations from sample matrices and solving for
the matrix components [10]. If the matrices are given as explicit functionsA(µ , t) or can be obtained from a black-
box discretization software-package, approximation methods can be used to produce finite-sum representations,
e.g. polynomial, modal or empirical interpolation [3].

4 A Posteriori Error Estimation
A further attractive aspect of RB-methods is rigorous erroranalysis. In particular a posteriori error estimates can
be obtained. For this we define the error and residual

e(t,µ) := x(t,µ)−Vx̂(t,µ), R(t,µ) := A(t,µ)Vx̂(t)+B(t,µ)u(t)−V
d
dt

x̂(t). (13)

This residual has the notable property, that it is zero, if the exact solutionx(t) evolves in the column-span ofV, i.e.
the reduced system reproduces the exact system’s solution without approximation. Further, it satisfies a so called
Galerkin orthogonalityWTR(t,µ) = 0 due to (3) and the biorthogonality ofW andV. The error in particular
satisfies

e(0,µ) = x0(µ)−Vx̂0(µ) = (In×n−VWT)x0(µ). (14)

For deriving a posteriori error estimators, suitable normsmust be chosen. We assume, that some positive definite
inner matrixG ∈ R

n×n is given and denote〈x,x′〉G := xTGx′ as the corresponding inner product. This induces a
vector norm‖x‖G :=

√

〈x,x〉G onR
n and a matrix-norm‖A‖G := sup‖x‖G=1‖Ax‖G for A ∈ R

n×n. For the output,
we will consider the simple 2-norm, hence define the induced matrix norm‖C‖G := sup‖x‖G=1‖Cx‖ for C∈R

p×n.
The matrixG can be chosen triviallyG = In×n in the following, which then reproduces the usual 2-norm‖·‖ for
vectors and matrices. However, other choices ofG are possible in a problem-dependent way, which may improve
the error estimator. For demonstrating the error estimation technique, we propose the following a posteriori error
estimators for the state variable and output:
Proposition 4.1 (A Posteriori Error Estimate). We assume thatA(t,µ) = A(µ) is time-invariant and has eigen-
values with nonpositive real part for allµ . Hence, the solutions are bounded and we assume to have a computable
constant C1(µ) with

C1(µ) ≥ sup
t
‖exp(A(µ)t)‖G . (15)

Then for the state variable the following error estimate holds:

‖x(t,µ)−Vx̂(t,µ)‖G ≤ ∆x(t,µ) := C1(µ)‖e(0,µ)‖G +C1(µ)
∫ t

0
‖R(τ,µ)‖G dτ. (16)

If we additionally assume to have an upper bound C2(µ) ≥ supt ‖C(t,µ)‖G, then the following output error esti-
mate holds:

‖y(t,µ)− ŷ(t,µ)‖ ≤ ∆y(t,µ) := C2(µ)∆x(t,µ). (17)

Proof. From the definition of the residual (13) we see that

V
d
dt

x̂(t) = A(µ)Vx̂(t)+B(t,µ)u(t)−R(t,µ). (18)



Subtracting this from the original system yields the error evolution equation

d
dt

e(t) = A(µ)e+R(t,µ) (19)

with initial condition (14). This linear system has the explicit solution

e(t,µ) = exp(A(µ)t)e(0)+
∫ t

0 R(τ)exp(A(µ)(t − τ))dτ. (20)

Due to the assumed boundedness of‖exp(A(µ)s)‖G ≤C1(µ) for s∈ R
+ we obtain the claimed bound Eqn. (16).

For the second statement, we observe that

y(t,µ)− ŷ(t,µ) = C(t,µ)x(t,µ)+D(t,µ)u(t)−C(t,µ)Vx̂(t,µ)−D(t,µ)u(t) (21)

= C(t,µ)(x(t,µ)−Vx̂(t,µ)). (22)

which yields Eqn. (17) and concludes the proof.

Note, that similar statements for non-stable systems are possible, if only finite timest ∈ [0,T] are considered. We
remark, that the matrixG in the above formulation is a degree of freedom, which can be used to keep the constants
C1 andC2 small. LetA = UJU−1 be an eigendecomposition ofA with unitaryU ∈ C

n×n and Jordan-block matrix
J. Hence (after extending the‖·‖G on complex matrices) we have

‖exp(At)‖G =
∥

∥Uexp(Jt)U−1
∥

∥

G ≤ ‖U‖G ‖exp(Jt)‖G

∥

∥U−1
∥

∥

G . (23)

If, for example,A is symmetric,J is a real diagonal matrix with negative entries. By choosingG as (a multiple of)
the identity matrix, the product remains upper bounded by 1 andC1 = 1 is a proper choice. In dynamical systems
obtained from PDE discretizations, the matrixG is usually chosen as the Gram-Matrix of the finite element / finite
volume basis. Then,‖e‖G is the real function space norm of the error in the finite element / finite volume function
space.

The above simple result is practically relevant, as a full offline/online decomposition of the error bound is possible
which enables fast and rigorous error estimation during thereduced simulation. This is based on the fact, that
residual norms can be determined exactly based on (13). We omit time and parameter dependency in the following
notation:

‖R‖2
G = RTGR = x̂TVTATGAV x̂+uTBTGBu+(

d
dt

x̂)TVTGV(
d
dt

x̂) (24)

+2uTBTGAV x̂−2(
d
dt

x̂)TVTGAV x̂−2(
d
dt

x̂)TVTGBu (25)

= x̂TM1x̂+uTM2u+(
d
dt

x̂)TM3(
d
dt

x̂)+ (26)

2uTM4x̂−2(
d
dt

x̂)TM5x̂−2(
d
dt

x̂)TM6u (27)

where the matricesM1–M6 are introduced as abbreviations for the matrices in (24)–(25).

M1(t,µ) = VTA(t,µ)TGA(t,µ)V, M2(t,µ) = B(t,µ)TGB(t,µ), M3 := VTGV (28)

M4(t,µ) = B(t,µ)TGA(t,µ)V, M5(t,µ) = VTGA(t,µ)V, M6(t,µ) = VTGB(t,µ). (29)

In the offline phase, we can compute time- and parameter-independent component matrices, i.e.

Mq,q′

1 := VT(Aq)TGAq′V (30)

for q,q′ = 1, . . . ,QA and similarly forMq,q′

2 , M3 (not parameter dependent),Mq,q′

4 , Mq
5 andMq

6. In the online phase,
these matrices can be combined and we assemble the matrices of (28)–(29), i.e.

M1(t,µ) :=
QA

∑
q,q′

σq
A(t,µ)σq′

A (t,µ)Mq,q′

1 (31)

and similarlyM2,M4,M5,M6. Note again, thatM3 is already available from the offline phase. The quantities
x̂(t), d

dt x̂(t) andu(t) are available during the reduced simulation, hence the error bound can be computed online.



The initial error in the above estimate (16) can easily be setto 0 by ensuring, that the components of the initial data
are in the reduced space, i.e.xq

0 ∈ colspanV. For more general basisV, the norm of the initial error is required for
the error estimator in (16)

‖e(0,µ)‖2
G = x0(µ)T(In×n−VWT)TG(In×n−VWT)x0(µ). (32)

This can similarly be decomposed in an offline/online fashion. In the offline phase we compute the parameter
independent components

mq,q′ := (xq
0)

T(In×n−VWT)TG(In×n−VWT)(xq′

0 ) (33)

for q,q′ = 1, . . . ,Qx0. In the online phase the error norm is assembled by

‖e(0,µ)‖2
G =

Qx0

∑
q,q′=1

σq
x0

(µ)σq′
x0

(µ)mq,q′
. (34)

Note, that this error estimator was chosen for simple presentation of the approach. For computation of the above
error bound, the exact integral cannot be determined but must be approximated by some quadrature rule. Further,
the presented RB-method still is continuous in time and results in a real simulation scheme after suitable time dis-
cretization by ordinary differential equation solvers. These steps introduce additional (but controllable) numerical
errors in the above analysis. To prevent these additional approximation issues, a posteriori error bounds can be
derived, which are suited to specific time integration schemes [8, 6].

Better output-error estimates are possible by consideringand computing a suitable dual problem and corresponding
dual error estimator [9]. In the linear time-invariant case, this dual problem only has to be computed once. In the
linear variant case, however, the dual problem must be solved once for each error estimator evaluation in time, i.e.
once for each timet that the estimator is to be evaluated [6].

5 Conclusions
We presented a method for obtaining fast reduced models for parametrized dynamical systems, which is motivated
by RB-methods. In view of a multi-query context the resulting offline/online decomposition is an effective algorith-
mical approach. In particular, the reduced basis is constructed in the offline phase, which relaxes time-constraints.
For example time-extensive greedy searches for determining suitable basis vectors can be performed [11]. We
presented an example of a posteriori error estimation for state variable and system outputs. The error estimators
also allow a full offline/online decomposition. This means,that the reduced simulation not only produces the fast
reduced solution, but also a fast and rigorous estimate of the error. These are provided in an online complexity,
which is completely independent of the dimensionalityn.

If the dimensionm of the input variableu(t) is too large, the reduced scheme still may be expensive to simulate.
An additional parametrization and assumption of separabledecomposition ofu may be beneficial, i.e.u(t,µ) =

∑Qu
q=1 σq

u (t,µ)uq. By choosing ’typical’ input signalsuq, which may be available in practice, this equation (5) then
allows to model arbitrary linear combinations of the componentsuq over time by suitable choice of coefficient
functionσq

u .
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