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Abstract. Reduced basis (RB) methods are effective methods for medelktion of parametrized
partial differential equations @®Es). During the last years various types of stationary ame-t
dependent, linear and nonlineaflFEs have been treated. In the field of dynamical systems’rorde
reduction, these methods are largely unknown, but thedstén reduction of parametrized systems is
increasing. In the current presentation, we show that sdraeacteristic components of RB-methods
can be transfered to model reduction of parametrized dycamystems. We exemplify this for lin-
ear systems with output estimation. A so called offlinefemldecomposition is the key for efficient
simulation: In the offline phase, one prepares the reducsis lbad auxiliary parameter-independent
gquantities. These preparations allow rapid online sinmmat for varying parameters. The possibly
extensive offline phase pays off in case of a multi-query&dntvhere sufficiently many reduced sim-
ulations with different parameter constellations are t@Xgected. In addition to the effective reduced
simulation schemes, error control is possible by a posiesicor estimators. These are based on resid-
ual analysis and can also be effectively decomposed in a@netihline fashion and hence allow fast
and rigorous error guarantees.

1 Introduction

Reduced basis (RB) methods are effective methods for medektion of parametrized partial differential equa-
tions (FDEs). This are partial differential equations, where pastars characterize the system, e.g. geometry,
material, boundary-value, initial-value or control paeters. The need for parametrized reduced models can re-
sult from multi-query scenarios, where many simulationgeh@ be performed for varying parameters such as
parameter studies, parameter optimization, inverse pnodl etc. Similarly, real-time requirements can be a mo-
tivation for parametrized model reduction, e.g. controteractive simulation environments, etc. In addition to
parametrized reduced models, a fast rigorous parameperrdent quantification of the model error is required.
This is provided by RB-methods. During the last years varitypes of stationary and time-dependent, linear and
nonlinear BDEs have been treated with this technique [12, 5, 6, 8, 14Jovmview with many further recent ref-
erences is given by [11]. In the field of dynamical systemdeoreduction, these methods are partially unknown,
but the interest in reduction of parametrized systems ieaging. For example, [2] already considers solution of
parametrized systems by concatenating projection basggecfal parameter choices. Parametrized systems are
tackled with moment matching techniques in [13] and [4].

In the current presentation, we show that some charadtecisinponents of RB-methods can be transfered to
model reduction of parametrized dynamical systems. We plBnthis for linear systems with output estimation.
A so called offline/online decomposition is the key for e#fici simulation. In the offline phase, one prepares the
reduced basis and auxiliary parameter-independent digsntThese preparations allow rapid online simulations
for varying parameters with complexity independent of thiginal state dimension. The possibly extensive of-
fline phase pays off in case of a multi-query context, wheficgntly many reduced simulations with different
parameter constellations are to be expected. In addititimeteffective reduced simulation schemes, error control
is possible by a posteriori error estimators. These aredoaseesidual analysis and can also be effectively decom-
posed in an offline/online fashion and hence allow fast agorous error guarantees. In contrast to global-in-time
a priori estimates in classical MOR of dynamical systemsséha posteriori error estimates provide error bounds
for the state variable or output variable point-wise in time

In the following section, we introduce the reduced basisutition scheme for parametrized problems. Sec. 3 is
devoted to the algorithmical decomposition into an offlind anline phase. For the current formulation a posteriori
error estimation is demonstrated in Sec. 4 including a fifline-online decomposition. We conclude in Sec. 5.
We refrain from presenting experiments in this paper, bigrr® RB schemes for linear instationaryFEs, as
these are particular instances of the presented reducethsiom scheme after simple time discretization, [6, 8].



2 Parametrized Reduced Simulation Scheme

We assume the following parametrized linear dynamicaksydor a state variabbg(t) € R", inputu(t) € R™ and
output variabley(t) € RP fort € [0, )

Extt) = At X0 + B(L () )

y(t) = C(t, L)X(t) + D(t, pu(t). @

The system matrice&(t, ) € R™" B(t,u) € R™™ C(t, u) € RP*" D(t, u) € RP*M depend on a parametgre

2 < RY from a bounded parameter domaif. The parameten is assumed to be fixed during a single simulation
of the dynamical system. Occasionally, the solution angwivill be denoted as(t, u),y(t, 4) to emphasize
their parameter dependence. Given a projection mstexR™K with reduced model orddr<< nandw e R
biorthogonal, i.eWTV = ., the reduced system reads as usual [1]

510 = AR + BL () @)
9(t) = C(t, K1) +D(t, pu(t) 4)
with reduced system matrices
At,p) :=WTA®t, u)V, B(t,u) :=WTB(t, ) (5)
C(t, 1) == C(t,u)V, D(t, ) :==D(t, ) 6)
and initial condition
%(0) = %o := WTx(0). (1)

In reduced basis methods, the projection basis constructed in a simulation-based way such that colpan
spar{x(ti, 1;) }ier. Heret;, u; are suitably selected time instants and parameters@ng;) so called snapshots
of the solution. The basis matrix is commonly orthonormalized with respect to a certain pobspecific inner
product, such that the reduced system is humerically maiglest For more details on basis generation in RB-
methods, we refer to [11, 7, 8, 6]. In the following, howewse do not put any assumption on the reduced
basis apart from biorthogonality & andW. Hence in particular, the method and results are as welll fali
Krylov-subspace bases, bases obtained from balancedtoncPOD, etc.

3 Offline-Online Decomposition

For efficient computation, we put some assumptions on thageatand initial data, such that the system matrices
can be decomposed as a weighted sum of parameter-indepeadsnwhere the weights are parameter dependent.
Note that the basic idea of linear superposition of systeassafso been used in [2]. Here we perform a refined
argumentation, which results in an online simulation saheiime complexity of which is completely independent
of n.

For the systen matrices we assume the following separaldengter dependence
Qa Qs Qc
Alt.p) = ot A%, B(t,u)= Y od(t,n)BY,  C(t,u) =3 og(t,u)C™ (8)
g=1 q=1 g=1

with scalar parameter- and time-dependent coefficienttfmmoAq, og, og and parameter- and time-independent
matricesAY,BY CY of suitable dimensions and small number of compon&xLg,Qc. We assume, that the
initial data variations of the system are not arbitrary, danh similarly be described by parameter variations, i.e.
X(0) = Xo(H) with

%
Xo(H) = Y oo (k)% ©)

Making use of the assumed parameter dependence, the resioddtion can be performed rapidly in a complex-
ity, which is completely independent of This is obtained by an offline/online decomposition.

In the offline phase, the parameter-independent quantfieke reduction scheme are computed. This phase
may be arbitrary time consuming, as it will pay off in view affficiently many online simulations. First, the
biorthogonal projection matrice¢ andW may be generated by any algorithm. Then the following patame
independent components are computed:

Ad:=wTA%,  BI:=wTBY  Ci:=A%, g:=wTx (10)



In the online phase, the parameteis known and the reduced simulation matrices can be assdnmaemplexity
independent of. In particular we obtain from (8)—(9) and (10).

R Qa R R Qs R
Alt,p) =Y gt wAY B(t,u) =S og(t,p)BY, (11)
=1 g=1
R Q R R
C(t,u) =Y odt,1)CI, D(t,u) =D(t, p), Ro(H) = 509 0% ()% (12)
=1

The separable parameter dependence of the componentsastiohg assumption, as there are several methods
to obtain such exact or approximate decompositions. Rirfte dynamical system results from a discretization
of a physical problem, the physical parameters can frequésttracked through the discretization and hereby
explicitly give such a desired decomposition, as e.g. donérfite volume discretizations [8]. This clearly requires
full control over the discretization, which is realizabémn(l a good argument) for own development of discretization
code instead of using black-box discretization packagethele is some algebraic model knowledge about the
parameter dependence, e.g. the number of components acwitffieient functions are known, but the component
matrices not, these matrices can be constructed by seflintatrix equations from sample matrices and solving for
the matrix components [10]. If the matrices are given asieitfilinctionsA(,t) or can be obtained from a black-
box discretization software-package, approximation washcan be used to produce finite-sum representations,
e.g. polynomial, modal or empirical interpolation [3].

4 A Posteriori Error Estimation

A further attractive aspect of RB-methods is rigorous eammalysis. In particular a posteriori error estimates can
be obtained. For this we define the error and residual

eft, )= X(t, ) ~VA(L k), R(Ep) = At B)VR) + B(L Hu(t) —V SR(T). (13)

This residual has the notable property, that it is zero,gfdkact solutiorx(t) evolves in the column-span ¥f, i.e.
the reduced system reproduces the exact system’s solutiboutvapproximation. Further, it satisfies a so called
Galerkin orthogonalityW TR(t, ) = 0 due to (3) and the biorthogonality ® andV. The error in particular
satisfies

&(0, 1) = Xo(H) = VRo(H) = (Inxn— VW T )xo(H). (14)
For deriving a posteriori error estimators, suitable nomst be chosen. We assume, that some positive definite
inner matrixG € R™" is given and denotéx,x' ) := x" GX' as the corresponding inner product. This induces a
vector norm/|X|| = /(x,X)g onR" and a matrix-normiA | := sup -1 [|AX[|g for A € R™". For the output,
we will consider the simple 2-norm, hence define the inducatfimnorm||C|| := sup,—1 |Cx]| for C € RP*".

The matrixG can be chosen trivialls = I« in the following, which then reproduces the usual 2-ndjrthfor
vectors and matrices. However, other choice&afre possible in a problem-dependent way, which may improve
the error estimator. For demonstrating the error estimagohnique, we propose the following a posteriori error
estimators for the state variable and output:

Proposition 4.1 (A Posteriori Error Estimate)We assume thak(t, u) = A(u) is time-invariant and has eigen-
values with nonpositive real part for gll. Hence, the solutions are bounded and we assume to have aitaitep
constant G(u) with

Ca(k) = supllexpA(p)t) g - (15)
Then for the state variable the following error estimatedsol
t
[IX(t, 1) = VR(t, 1)l < Ox(t, 1) == Ca(1) [[€(0, 1)l +Cl(u)/o IR(T, 1)l dT. (16)

If we additionally assume to have an upper boun@ig > sup ||C(t, 1t)||g. then the following output error esti-
mate holds:

Iy(t, 1) = 9(t, )| < Ay(t, 1) := Co(H)Ax(t, 1). 17)

Proof. From the definition of the residual (13) we see that

VSR = AV + B(t, mult)  R(t k) (18)



Subtracting this from the original system yields the errai@ation equation

S et) =A(we LK) (19)

with initial condition (14). This linear system has the égjlsolution

oft, 1) = exp(A(H)1)e(0) + 3 R(T) exp(A(p)(t— T)dr. (20)

Due to the assumed boundednesg§efp(A(u)s)||g < Ci(u) for s€ RT we obtain the claimed bound Eqn. (16).
For the second statement, we observe that

y(t, ) =yt ) = Ct p)x(t, 1) +D(t, u(t) — C(t, u)VX(t, 1) — D(t, Lu(t) (21)
= C(t,u)(x(t, 1) = VX(t, u)). (22)
which yields Eqgn. (17) and concludes the proof. O

Note, that similar statements for non-stable systems &ssilgle, if only finite timeg € [0, T] are considered. We
remark, that the matri& in the above formulation is a degree of freedom, which candeel tio keep the constants
C1 andC; small. LetA = UJU! be an eigendecomposition Afwith unitaryU € C™" and Jordan-block matrix
J. Hence (after extending thg|| g on complex matrices) we have

lexp(ADllg = Uexpat)UY|g < [1Ullg lexaat) g U~ - (23)

s

If, for example A is symmetric, is a real diagonal matrix with negative entries. By choo$inas (a multiple of)
the identity matrix, the product remains upper bounded bgdlGy = 1 is a proper choice. In dynamical systems
obtained from PDE discretizations, the mat@xs usually chosen as the Gram-Matrix of the finite elementtefin
volume basis. Then|€| s is the real function space norm of the error in the finite eletménite volume function
space.

The above simple result is practically relevant, as a fulired/online decomposition of the error bound is possible
which enables fast and rigorous error estimation duringrétieiced simulation. This is based on the fact, that
residual norms can be determined exactly based on (13). Weinra and parameter dependency in the following
notation:

IRIZ2=R'GR = S"VTATGAVRX+Uu'B"GBu+ (%X)TVTGV(%X) (24)
+2u"BTGAVR - 2(%)2)TVTGAV>A<7 2(%)”()TVTGBU (25)
- xTM1>2+uTM2u+(%>z)TM3(%>2)+ (26)
d d
T oo =T oo =T
2u' M 4X 2(dtx) MsX 2(dtx) Meu 27)
where the matricel!1—M g are introduced as abbreviations for the matrices in (2&)-(2

Ma(t, ) = VTA(t, 1) TGA(t, )V, Ma(t, 1) = B(t,u)"GB(t, 1), M3:=V'GV (28)
Ma(t, 1) =B(t, 1) TGA(t, 1)V,  Ms(t,u) =VTGA(t,u)V, Ms(t,u) =V GB(t,u). (29)

In the offline phase, we can compute time- and parametepérdient component matrices, i.e.

MIT = VT (A% TGATY (30)
forq,q =1,...,Qaand similarly form g"*’, M 3 (not parameter dependem‘/),%q,, MJ andM{. In the online phase,
these matrices can be combined and we assemble the mafr{@83-¢29), i.e.

2 q q aq
My(t, ) i= % On(t,H)0x (8, 1M (31)

a,q

and similarlyM2,M4,Ms5,Mg. Note again, thaMs is already available from the offline phase. The quantities

X(t), %X(t) andu(t) are available during the reduced simulation, hence the bawnd can be computed online.



The initial error in the above estimate (16) can easily bés@ty ensuring, that the components of the initial data
are in the reduced space, i)é.e colspaV. For more general basis, the norm of the initial error is required for
the error estimator in (16)

1600, 1) [12 = %o ()T (Inxn = VW )T G (I nn — VW T )xo(k). (32)

This can similarly be decomposed in an offline/online fashitn the offline phase we compute the parameter
independent components

m = (6T (Inun = VW) TG (I en — VW) () (33)
forg,q =1,...,Qy,. Inthe online phase the error norm is assembled by

Qo
le(0, )| = > oo (. (34)
g.q=1

Note, that this error estimator was chosen for simple ptasen of the approach. For computation of the above
error bound, the exact integral cannot be determined but beuapproximated by some quadrature rule. Further,
the presented RB-method still is continuous in time andltesua real simulation scheme after suitable time dis-
cretization by ordinary differential equation solvers.e$k steps introduce additional (but controllable) nuraéric
errors in the above analysis. To prevent these additionaioapmation issues, a posteriori error bounds can be
derived, which are suited to specific time integration sab&(8, 6].

Better output-error estimates are possible by consideigdgcomputing a suitable dual problem and corresponding
dual error estimator [9]. In the linear time-invariant caes dual problem only has to be computed once. In the
linear variant case, however, the dual problem must be dawee for each error estimator evaluation in time, i.e.

once for each timethat the estimator is to be evaluated [6].

5 Conclusions

We presented a method for obtaining fast reduced modelsafangetrized dynamical systems, which is motivated
by RB-methods. In view of a multi-query context the resgtirffline/online decomposition is an effective algorith-
mical approach. In particular, the reduced basis is coatsd.in the offline phase, which relaxes time-constraints.
For example time-extensive greedy searches for detergsiiitable basis vectors can be performed [11]. We
presented an example of a posteriori error estimation &iestariable and system outputs. The error estimators
also allow a full offline/online decomposition. This meatit the reduced simulation not only produces the fast
reduced solution, but also a fast and rigorous estimateeoéttor. These are provided in an online complexity,
which is completely independent of the dimensionatity

If the dimensionm of the input variableu(t) is too large, the reduced scheme still may be expensive tolaien

An additional parametrization and assumption of separdeé®mposition ofi may be beneficial, i.eu(t,u) =
2821 od(t, u)ud. By choosing 'typical’ input signalsd, which may be available in practice, this equation (5) then
allows to Enodel arbitrary linear combinations of the compuisu® over time by suitable choice of coefficient
functionay.
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