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Abstract. The numerical solution of parametrized partial differential equa-

tions (P2DEs ) can be a very time-consuming task if many parameter constel-
lations have to be simulated by high-resolution schemes. Such scenarios may
occur in parameter studies, optimization, control, inverse problems or statisti-
cal analysis of a given P2DE . Reduced Basis (RB) methods allow to produce
fast reduced models that are good surrogates for the detailed numerical scheme
and allow parameter variations. These methods have gained increasing atten-
tion in recent years for stationary elliptic and instationary parabolic problems.

In the current presentation we present a RB method which is applicable
to nonlinear conservation laws with explicit finite volume discretizations. We
show that the resulting RB-method is able to capture the evolution of both
smooth and discontinuous solutions. In case of symmetries of the problem,

the approach realizes an automatic and intuitive space-compression or even
space-dimensionality reduction. We perform empirical investigations of the
error convergence and runtimes. In all cases we obtain a runtime acceleration

of at least one order of magnitude.

1. Introduction

We address the task of model reduction for parametrized evolution equations.
These are problems which are characterized by a parameter vector µ ∈ P from
some set of possible parameters P ⊂ R

p. The evolution problem then consists
of determining u(x, t;µ) on a bounded domain Ω ⊂ R

d and finite time interval
[0, T ], T > 0 such that

(1.1) ∂tu(µ) + L(t;µ)(u(t;µ)) = 0, u(0;µ) = u0(µ),

and suitable boundary conditions are satisfied. Here u0(µ) are the parameter-
dependent initial values, L(t;µ) is the parameter dependent spatial differential
operator. Usually, the initial values and solution have some spatial regularity
u0(µ), u(t;µ) ∈ W ⊂ L2(Ω).
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Evolution schemes produce discrete solutions uk
H(µ) ∈ WH , k = 0, . . . ,K in

an H-dimensional discrete space WH ⊂ L2(Ω) approximating u(tk;µ) at the time
instants 0 = t0 < t1 < . . . < tK = T . Such detailed simulations are frequently
expensive to compute due to the high space resolution and not suitable for use in
multi-query settings, i.e. multiple simulation requests with varying parameters µ.

Reduced Basis (RB) methods are increasingly popular methods to solve such
parametrized problems, aiming at reduced simulation schemes, which approximate
the detailed solutions uk

H(µ) by efficiently computed reduced solutions uk
N ∈ WN .

Here WN ⊂ L2(Ω) is an N -dimensional reduced basis space with suitable reduced
basis ΦN . The latter is generated in a problem specific way based on snapshots
of discrete solutions. Reduced basis methods in particular have been applied suc-
cessfully for various elliptic and parabolic problems, almost exclusively based on
finite element discretizations. For linear elliptic problems we refer to [PR07], lin-
ear parabolic equations are treated in [GP05], extensions to nonlinear equations
[VPP03, Gre05] or systems [Roz05] have been developed. We have proposed an
RB-formulation for linear finite volume (FV) schemes [HO08b] in case of so called
affine parameter dependence of the data functions. We recently have extended
this RB-scheme to explicit discretizations with general parameter dependence and
demonstrated the applicability to a linear evolution problem [HOR07].

In the current presentation, we adopt the latter methodology to nonlinear con-
servation laws with explicit finite volume schemes. The structure of our paper is
as follows. Section 2 explains the RB approach for general explicit discretization
schemes. The key ingredient in the scheme is an empirical interpolation step for ap-
proximating the non-linear discrete spatial differential operator evaluations. Then
a Galerkin projection step based on the reduced basis space defines the overall
RB-scheme. In the experimental Section 3 we demonstrate the applicability of the
method on both smooth and discontinuous data subject to nonlinear convection.
Experimentally, we investigate the approximation properties and demonstrate the
runtime gain compared to the full FV schemes. We conclude in Section 4.

2. Reduced Basis Method for Nonlinear Finite Volume Schemes

We now specify the considered nonlinear FV discretizations and present the
corresponding RB simulation scheme.

2.1. Nonlinear Finite Volume Schemes. As special instances of the gen-
eral evolution equation (1.1) we consider the following scalar nonlinear conservation
law on a polygonal domain Ω ⊂ R

2:

(2.1) ∂tu(t;µ) + ∇ · f(u(t;µ);µ) = 0 in Ω × [0, T ]

with suitable parametrized flux function f(·;µ), initial data u(0;µ) = u0(µ) in Ω,
Dirichlet boundary data u(µ) = udir(µ) on Γdir× [0, T ], Neumann boundary values
f(u(µ);µ) · n = uneu(µ) on Γneu × [0, T ] and possibly (for special geometries)
periodic boundary conditions on the remaining boundary ∂Ω\(Γdir ∪ Γneu).

We denote W := L∞(Ω) ∩ BV (Ω) ⊂ L2(Ω) as the exact solution space with
respect to the space variable. As numerical scheme we use an explicit first order FV
scheme. We assume a numerical grid T := {ei}

H
i=1 of H disjoint convex polygonal

elements, which form a partition of the domain Ω̄ =
⋃H

i=1 ēi. This specifies the
space of elementwise constant functions WH , which is obviously H dimensional
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with usually large H. In the following, WH will be denoted more generally as
detailed discretization space.

For simplicity we define tk := k∆t with a global time-step size ∆t > 0, which
is small enough such that it satisfies a CFL condition and we reach the end time
tK = T . For an element ei we use N (i) as an index set for its edges. The j-th edge
of ei will be denoted as eij with outer normal nij . Then, a FV scheme produces a
sequence of solutions {uk

H}K
k=0 ⊂ WH by evolution in time via

(2.2) u0
i :=

1

|ei|

∫

ei

u0, uk+1
i := uk

i −
∆t

|ei|

∑

j∈N (i)

gk
ij(u

k
i , uk

ij).

Here uk
i denotes the cell value of uk

H on element ei, |ei| denotes the area of the
element and gk

ij(u, v) denotes a numerical flux. For inner (and periodic) edges, uk
ij is

the value of uk
H across the edge j. For Dirichlet boundary edges, uk

ij is the Dirichlet

value averaged on the edge uij := 1
eij

∫

ei
udir. For Neumann edges eij the value uk

ij

can be chosen arbitrarily as gij then is not depending on its arguments, instead
the numerical flux is specified by the Neumann boundary function gk

ij(u
k
i , uk

ij) :=
∫

eij
uneu. For inner, periodic and Dirichlet boundary edges eij , we use the Engquist-

Osher flux in order to obtain low numerical viscosity in the schemes. This can be
expressed by setting cij(u) := nijf(u) for all edges, defining

c+
ij(u) := cij(0) +

∫ u

0

max(c′ij(s), 0)ds, c−ij(u) :=

∫ u

0

min(c′ij(s), 0)ds

and then choosing the numerical flux gk
ij(u, v) := |eij |[c

+
ij(u) + c−ij(v)], cf. [Krö97].

We can rewrite this FV scheme in a more simple form if we denote the cell averaging
of the initial data as a general projection operator P : W → WH and the space
discretization operator as LE(t;µ) : WH → WH . Then, the explicit FV scheme is
compactly expressed as

(2.3) u0
H := P [u0], uk+1

H := uk
H − ∆tLE(t;µ)[uk

H ], k = 0, . . . ,K − 1.

Note, that the following interpolation procedure and the reduced basis scheme
will be based on these generalized notions and is thus also applicable to other
evolution problems, discrete function spaces and discretization operators, e.g. finite
element or discontinuous Galerkin methods.

2.2. Empirical Interpolation. The application of the general evolution op-
erator LE(t;µ)[vH ] on a function vH ∈ WH is obviously both space and parameter
dependent. Hence the complexity of the computation for each new parameter is
depending on H. This can be accelerated for typical discretization operators by
suitable approximations of the form

(2.4) IM [LE(t;µ)[vH ]] :=

M
∑

m=1

ξmlm(t;µ)[vH ] ≈ LE(t;µ)[vH ]

with parameter independent but space dependent collateral reduced basis ξM :=
{ξm}M

m=1 ⊂ WH and functionals lm(t;µ) : WH → R, which must be computable
with complexity independent of H. One instantiation of such an approximation
is the empirical interpolation [BMNP04]. This method can briefly be expressed
based on a set of interpolation points TM := {xm}M

m=1 ⊂ Ω and a corresponding
nodal interpolation basis ξM , i.e. ξm(xm′) = δm,m′ for 1 ≤ m,m′ ≤ M . The set
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TM and ξM are determined in an extensive offline search procedure: A large set of

snapshots Ltrain := {LE(tki ;µi)[u
ki

H (µi)]}
Ntrain

i=1 is precomputed for a training set of
time-instants tki and parameters µi. Then the collateral basis ξM and correspond-
ing interpolation points TM are determined based on an iterative basis extension
process. In every of M iterations, the worst approximated snapshot in Ltrain is
determined in a greedy search and a new basis vector and interpolation point are
determined from this. In the experiments we applied the collateral reduced basis
generation procedure presented in [HOR07], which is based on the original method
[BMNP04]. Due to space constraints, we must refrain from giving more details
on this aspect.

For (2.4) being an interpolation, the parameter dependent functionals lm(t;µ)
must simply correspond to point evaluations lm(t;µ)[vH ] := LE(t;µ)[vH ](xm).
This is an operation that can be computed fast if LE(t;µ) is a localized discretiza-
tion operator, i.e. point values of LE(t;µ)[vH ] only depend on few neighbouring
point values of vH . For instance, finite element and finite volume operators are
localized in this sense as a point value of the result only requires the values of vH

on the neighouring grid cells and geometric information of a local subgrid.

2.3. Reduced Basis Method. The key ingredient for a good RB scheme is
the availability of a suitable low dimensional reduced basis space WN . In the exper-
iments we apply the reduced basis construction method as presented in [HO08b],
a more sophisticated method using adaptive grids was given in [HO08a]. Detailed
presentations of methods for reduced basis generation can be found in [PR07].
These methods are inherently accumulative and snapshot-based, as the collateral
reduced basis generation schemes mentioned above. Hence, an initially small (or

empty) basis is iteratively enriched using solutions uki

H (µi) for certain time steps
ki and parameters µi. We also refrain from further details here but simply assume
the availability of a well-approximating reduced basis ΦN := {ϕn}N

n=1 with basis
functions ϕn and the resulting reduced basis space WN := span(ΦN ).

The idea for the RB-scheme now is simply replacing the discrete space evolution
operator LE(t;µ)[·] in (2.3) by the interpolated operator IM [LE(t;µ)[·]], expressing
the equation in a weak form by trial functions ϕ ∈ WN and using WN as the ansatz
space for the reduced solution uk

N . Hence, we search uk
N ∈ WN such that for all

k = 0, . . . ,K − 1 and ϕ ∈ WN holds

(2.5) (u0
N , ϕ) = (P [u0], ϕ), (uk+1

N , ϕ) = (uk
N , ϕ) − ∆t(IM [LE(t;µ)[uk

N ]], ϕ).

Here we use (u, v) :=
∫

Ω
uv as an abbreviation of the L2 inner product. We obtain

the following reduced basis scheme for determining the unknown basis coefficients
of uk

N (µ).

Definition 2.1 (Reduced Basis Approximation with Empirical Interpolation
of LE). We assume that LE(tk;µ) is an arbitrary explicit space discretization
operator. We assume that an appropriate empirical interpolation scheme is de-
fined by means of interpolation basis ξM and interpolation points TM ⊂ Ω, and
a reduced basis ΦN is available. We then define the following scheme for se-
quentially computing uk

N (µ) :=
∑

n ak
n(µ)ϕn by specifying its coefficient vectors

ak = (ak
1 , . . . , ak

N )T ∈ R
N for k = 0, . . . ,K:

a0 := ((P [u0(µ)], ϕ1), . . . , (P [u0(µ)], ϕN ))
T

,(2.6)

ak+1 = ak − ∆tCElE(µ, tk)[ak].(2.7)
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Here, the corresponding vectors and matrices are defined as

(CE)nm := (ξm, ϕn) ,(2.8)
(

lE(µ, tk)[ak]
)

m
:= IM [LE(tk;µ)[uk

N ]](xm)(2.9)

for n = 1, . . . , N and m = 1, . . . ,M . The resulting sequence of functions {uk
N (µ)}K

k=0

finally defines the reduced basis approximation uN (t;µ) that coincides with uk
N (µ)

in the time-slab [tk, tk+1).

This scheme allows a full offline/online decomposition in case of a localized

discretization operator and initial data of the form u0(x,µ) =
∑Q

q=1 σq(µ)uq
0(x).

In the offline phase, the quantities Φ, ξM , CE , TM , a numerical subgrid and the
components a0,q (analogous to (2.6) but using u

q
0) are determined. In the on-

line phase these quantities are used for fast reduced simulation by starting with

a0 =
∑Q

q=1 σq(µ)a0,q and proceeding by (2.7). This is the key for efficient and
fast online simulation. In essence, the complexity of a reduced simulation step is
not depending on the detailed space dimensionality H but only polynomial in the
reduced dimensionalities N and M . Further, rigorous a-posteriori error estimators
can be derived which can also be computed rapidly in an offline/online fashion. For
details on these aspects we refer to [HOR07].

3. Experiments

For simplicity we use a discretization on uniform Cartesian grids. The specific
flux functions, initial data, boundary conditions, and parametrization are specified
in each of the following examples The implementation is based on our MATLAB
package RBmatlab.

3.1. Nonlinear Convection. In a first example, we want to demonstrate the
applicability for increasingly nonlinear convection with smooth initial data and a
single parameter. For this we model a transition between linear transport and the
Burgers equation.

We choose Ω = [0, 2] × [0, 1] with purely periodic boundary conditions and fix
the end time T = 0.3. We consider the single parameter µ := (p) ∈ P := [1, 2]
for the exponent in the nonlinear flux function f(u;µ) := vup with the space-
and time-constant velocity field v = (1, 1)T . The initial data is a smooth function
u0(x) = 1

2 (1+sin(2πx1) sin(2πx2)) for x = (x1, x2)
T ∈ Ω. We choose a 120×60 grid

for decomposing Ω. The global CFL condition then holds with K = 100 timesteps.
Figure 1 illustrates the initial data (which is independent of p) and the final

state for p = 1 resp. p = 2. We nicely see, how the model represents the transition
between linear transport (p = 1) and the nonlinear non-viscous instationary Burgers
equation (p = 2), where discontinuities develop during time.

To get an insight into the empirical interpolation procedure, we illustrate the
resulting interpolation points TM for M = 150 in Fig. 2. More precisely, we plot the
grid cells around the selected points, as the search for possible interpolation points
is restricted to the centroids of the grid cells. The order of the point selection is
indicated in gray shades. It is visible, how the first – and therefore most important
– selected points are lying around the diagonal, i.e. regions corresponding to the
extreme values of the solution. A striking point is the localization of the points
in the lower left quarter of the domain, which is due to 2 facts: The translation
symmetry of the problem defines several equivalent positions for the interpolation



6 BERNARD HAASDONK AND MARIO OHLBERGER
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Figure 1. Illustration of transport for smooth data. a) Initial
data, b) solution at end time for p = 1, c) solution at end time for
p = 2.

points in the different subregions of the domain. The search for the interpolation
points now is based on a linear row-wise search from left to right and then bottom to
top. Hence, every interpolation point is chosen in the lower left of the domain. This
is now an important result from an information-theoretic viewpoint: The model
reduction technique can realize space-compression in case of problem symmetries.
In Fig. 3 we illustrate the error convergence for the resulting reduced simulation
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Figure 2. Illustration of empirical interpolation point selection
for smooth data. The 150 grid cells around the interpolation points
are shaded in their selection order.

scheme. We select a set Mtest ⊂ P of 10 random values for p not used during basis
generation and determine maxµ∈Mtest

||uN (µ)− uH(µ)||L∞([0,T ],L2(Ω)) for different
dimensionalities N and M . We plot the resulting maximal error in a logarithmical
scale. It can nicely be seen, how a simultaneous increase of N and M reveals almost
exponential convergence along the diagonal of the plot. This simultaneous increase
is important: If M is fixed, increase of N over a certain limit gives an error increase.
If N is fixed, raising M gives no error improvement after a certain limit.
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Figure 3. Illustration of RB test-error convergence for for con-
tinuous initial data with varying dimensionalities N and M .

Table 1. Runtime comparison for detailed simulation with re-
duced simulations of varying reduced dimensionalities.

Simulation Dimensionality Runtime [s]

Detailed H = 7200 20.22

Reduced N = 20,M = 30 0.91
Reduced N = 40,M = 60 1.22
Reduced N = 60,M = 90 1.55
Reduced N = 80,M = 120 1.77
Reduced N = 100,M = 150 2.06

The main goal of RB-methods is an accurate approximation under largely re-
duced simulation time. To assess these computation times, we determine the de-
tailed and reduced simulation times over 10 random parameter drawings and report
the average runtimes in Tab. 1. The times were obtained on an IBM Lenovo Note-
book (Intel Centrino Duo, 2.0 GHz, 1024 MB RAM). It can nicely be seen, that
we obtain acceleration factors of 10-22 depending on the dimensionalities of the
reduced simulation.

3.2. Riemann Problem for Burgers Equation. In the second example we
want to demonstrate the applicability to nonlinear convection by the non-viscous
Burgers equation with discontinuous initial data, moving shock and multiple pa-
rameters.

We choose Ω = [0, 1] × [0, 1] and fix the end time T = 0.5. The Dirichlet
boundary consists of the left and right edges of the unit square, while the top
and bottom are assigned no-flow Neumann boundary conditions uneu ≡ 0. The
parametrization consists of the three parameters µ = (ul, ur, v) ∈ P := [−1, 1]3 ⊂
R

3 which model the left and right initial values and the horizontal velocity. Hence,
we choose the flux f(u;µ) := v(µ)u2 with v(µ) = (v, 0)T as space- and time-
constant velocity field. The initial data and Dirichlet boundary data is given by a
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discontinuous function for x = (x1, x2)
T ∈ Ω as

udir(x;µ) = u0(x;µ) =

{

ul for x1 ≤ 0.5,

ur otherwise.

We choose a 100 × 100 grid for decomposing Ω hence H = 10000. The global CFL
condition then holds with K = 100 timesteps. Figure 4 illustrates the initial data
and the final state for the parameters ul = 0.0, ur = 0.5, v = 0.9 in the upper
row, and for ul = 0.5, ur = 1.0, v = −0.5 in the lower row. We see, how the
model represents both rarefaction waves and moving shocks depending on different
parameter settings.
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Figure 4. Illustration of transport for discontinuous data. a) Ini-
tial data and b) solution at end time for µ = (0.0, 0.5, 0.9)T , c)
initial data and d) solution at end time for µ = (0.5, 1.0,−0.5)T .

We again illustrate the resulting interpolation points TM by their corresponding
grid cells for M = 100 in Fig. 5. The interesting fact is the localization of the
points. They exactly correspond to the 100 grid cells of a the complete lowest row
of the numerical grid. This again is due to the symmetry of the problem (which is
inherently a 1D problem extruded to 2D) and the bottom-up search of interpolation
point search. We get an even stronger result as before: The model reduction
technique can automatically detect the possibility of space-dimension reduction in
case of a symmetric problem. Hence, there is no need for a possibly faulty heuristic
dimensionality reduction by hand by eliminating some space coordinate directions:
The RB method can detect such redundancies based on an automatic procedure.

In Fig. 6 we illustrate the error convergence for the resulting reduced simulation
scheme as before based on a set Mtest ⊂ P of 10 random values and report the
maximum L∞(L2) error while varying N and M . The difficulty of the problem
is expressed by the weakly decaying error. Essentially only for the full resolution
N = M = 100 we get a sufficiently accurate model. But for these values, the model
is perfect.

We again assess the computation times. For the detailed simulation we get
the average computation times of 21.20 seconds. As the low dimensional reduced
models will not be very accurate, we omit listing their runtimes. We only determine
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Figure 5. Illustration of empirical interpolation point selection
for discontinuous data. The 100 grid cells around the interpolation
points comprise precisely one row of the grid.
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Figure 6. Illustration of RB test-error convergence for discontin-
uous initial data with varying dimensionalities N and M

the runtime for the perfect but larger reduced model of order N = M = 100. The
10 fold averaged runtime for this model is 1.36 seconds, hence an acceleration factor
of 15.6 is realized in this case.

Note that the Cartesian grids and symmetric data functions allowed to demon-
strate the space compression abilities of the scheme. Still, the methods also are
implemented for unstructured grids. We obtain similar acceleration factors for
such grids, but the symmetry and the intuitive interpretation of the interpolation
procedure could not be demonstrated so clearly.

4. Conclusion

We have presented a reduced basis method for nonlinear explicit evolution
schemes exemplified for FV discretizations. RB-methods are not only applicable
to elliptic or parabolic problems as mostly done in literature, but also to nonlinear
conservation laws. We have shown the suitability for both smooth and discontinuous
initial data, with single and multiple parameters. By suitable, fully automatical
constructions of the reduced basis and collateral reduced basis, we obtain reduced
models, that enable rapid parameter variation with accurate approximations. The
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reduced models have shown an acceleration of at least one order of magnitude in all
cases. However, the error convergence of the reduced models revealed a difference
between smooth and discontinuous data. The error decay was much faster for
the smooth data than for the moving shock front. This may offer perspectives
for more efficient solution representation: Instead of only linear superpositions of
reduced basis vectors, a moving discontinuity might be more efficiently represented
by spatial translates or more general spatial transformations of few basis functions.
By this we expect lower dimensional models with interesting simulation schemes.
We have demonstrated, that the RB methodology resp. the interpolation procedure
is able to detect spatial redundancy. In the given examples, it realized not only
spatial compression but even symmetry detection and dimensionality reduction.
The acceleration for explicit schemes is already considerable as we are able to
accelerate the cheap detailed evolution steps of complexity O(H). In combination
with implicit contributions of complexity O(H3) we expect much higher acceleration
factors.
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