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Universit ät Stuttgart

A Training Set and Multiple Bases Generation
Approach for Parametrized Model Reduction Based on

Adaptive Grids in Parameter Space
Bernard Haasdonk, Markus Dihlmann, Mario Ohlberger

Berichte aus dem Institut für
Angewandte Analysis und Numerische Simulation

Preprint 2010/006



Institut für Angewandte Analysis und Numerische Simulation (IANS)
Fakultät Mathematik und Physik
Fachbereich Mathematik
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: ians-preprints@mathematik.uni-stuttgart.de

WWW: http://preprints.ians.uni-stuttgart.de

ISSN 1611-4176

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.



Abstract

Modern simulation scenarios require real-time or many-query responses from a simulation
model. This is the driving force for increased efforts in Model Order Reduction (MOR) for
high dimensional dynamical systems or partial differential equations (PDEs). This demand
for fast simulation models is even more critical for parametrized problems. Several snapshot-
based methods for basis construction exist for parametrized model order reduction, e.g. Proper
Orthogonal Decomposition (POD) or Reduced Basis (RB) methods. They require the careful
choice of samples for generation of the reduced model. In the current article we adress two
types of grid-based adaptivity that can be beneficial in such basis generation procedures. First,
we describe an approach for training set adaptivity. Second, we introduce an approach for
multiple bases on adaptive parameter domain partitions. Due to the modularity, both methods
also can easily be combined. They result in efficient reduction schemes with accelerated
training times, improved approximation properties and control on the reduced basis size.
We demonstrate the applicability of the approaches for instationary PDEs and parametrized
dynamical systems.

keywords: parametrized model order reduction; reduced basis methods; adaptive param-
eter grids; snapshot and parameter selection

1 Introduction

Many modern numerical simulation scenarios are characterized by high dimensionality in the solu-
tion variable. Frequently, further dimensions of complexity are added by time-dependence, where
the solution variable can considerably vary over time, or by parameter-dependence, where the prob-
lem and therefore the solution is changing for each newly given parameter. This is the motivation
of increased efforts in research directions for model order reduction (MOR), where low dimensional
substitute models are created based on high dimensional and therefore computationally expensive
simulation models. In particular, Reduced Basis (RB) methods [13, 14] are increasingly popular
methods for complexity reduction in problems, where parametrized partial differential equations
(PDEs) or dynamical systems are to be solved repeatedly for varying parameters µ ∈ P from some
compact parameter domain P ⊂ R

p. Examples for such simulation scenarios are multi-query or
real-time settings, such as design, control, optimization, or inverse modelling based on PDEs. In-
stead of repeated computation of expensive detailed solutions u(µ) ∈ X from a high dimensional
space X for varying parameter vector µ, a problem-specific, typically low dimensional, subspace
XN ⊂ X is constructed in a preprocessing step, which approximates the solution under parameter
changes. Based on this reduced basis space, a reduced model is devised by Galerkin projection
which inexpensively computes approximations uN (µ) ∈ XN of the unknown solution for any (and
typically many) new choices of the parameter. We refrain from further details on RB-methods for
parametrized partial differential equations but refer to [14] for an overview for elliptic problems,
or [10] for evolution equations.

Recently, the reduced basis approach was also formulated in the context of dynamical systems
[11] of the form

d

dt
x(t) = A(µ)x(t) + B(µ)u(t),

x(0) = x0(µ)

with parameter dependent system matrices A(µ) ∈ R
n×n,B(µ) ∈ R

n×m and initial values x0(µ) ∈
R

n on the time interval t ∈ [0, T ]. The expensive solutions u(µ) ∈ X are given by the continuous
trajectories, e.g. u(µ) := x(·;µ) ∈ X = C([0, T ], Rn). A reduced basis Φ can be identified with
a pair of biorthogonal projection matrices (V,W) ∈ R

n×N , N << n,WT V = IN such that the
reduced system is given as

d

dt
x̂(t) = Â(µ)x̂(t) + B̂(µ)u(t),

x̂(0) = x̂0(µ)
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with reduced matrices Â(µ) = WT A(µ)V, B̂(µ) = WT B(µ) and initial data x̂0(µ) = WT x0(µ).
The inexpensive approximations uN (µ) ∈ XN are thus given as the reduced trajectories uN (µ) :=
Vx̂(·;µ) ∈ XN ⊂ X. See [11] for an extension by an output equation. Given an arbitrary
positive definite symmetric matrix G ∈ R

n×n, which defines an inner product on state space by
〈x1,x2〉G = xT

1 Gx2, and a computable upper bound C1(µ) ≥ supt ‖exp(A(µ)t)‖
G

an a-posteriori
error bound is derived as supt∈[0,T ] ‖x(t) − Vx̂(t)‖

G
≤ ∆(µ,Φ) with a-posteriori error estimator

∆(µ,Φ) := C1(µ)

(

‖e(0;µ)‖
G

+

∫ T

0

‖R(τ ;µ)‖
G

dτ

)

.

The initial error is thereby defined as e(0;µ) := x(0;µ) − Vx̂(0,µ) and the residual is given as
R(t;µ) := A(t;µ)Vx̂(t;µ)+B(t;µ)u(t)−V d

dt
x̂(t;µ). All of these parameter dependent quantities

can be computed efficiently during the reduced simulation by a proper offline-online decomposition
as described in [11].

The crucial ingredient for all reduced basis methods is the choice of a reduced basis Φ the span
of which yields the reduced basis space XN . Methods for reduced basis construction typically are
based on snapshots, i.e. {u(µi)}

N
i=1 for certain selected parameter vectors {µi}

N
i=1. Such snapshots

can be used directly as basis vectors (after recommended orthonormalization) giving a Lagrangian
Reduced Basis. Another possibility is to apply Proper Orthogonal Decomposition (POD) tech-
niques as a data compression step for large sets of snapshots (in particular for time-sequences).
In certain cases, the selection of snapshots is possible by solving an optimization problem, c.f. [2]
for optimal parameter selection or [17] for an optimal choice of snapshots in time. In some simple
cases optimal snapshot locations are known a-priori [13]. These approaches though are not yet
available for more complex scenarios, which is the reason, why general-purpose algorithmical basis
generation procedures need to be devised. In case of availability of a-posteriori error estimators,
a well established approach is the greedy procedure [16, 7, 13], which accumulatively determines
snapshots based on a (typically large) set of training parameters Mtrain. We will recall details in
Sec. 2. An extension of this approach for time-dependent problems is the POD-greedy procedure
introduced in [10] and successfully used in further applications [12].

In this presentation we propose extensions of these greedy and POD-greedy procedures, which
are based on adaptive grids in parameter space, steered by a-posteriori error estimators or other
indicators. The first approach is based on adaptive training set extension, which results in a
reduction of the basis generation time (offline). The second approach gives explicit control of
the reduced simulation time (online) by generating multiple bases with limited dimensionality on
adaptive partitions of the parameter domain.

We briefly mention several further existing approaches, which are related to our proposals.
The idea of a multistage greedy algorithm can be found in [15], which makes use of a sequential
decomposition of a large training set. We will comment on this in Sec. 3. Further, the idea
of parameter domain partition was inspired by similar approaches for stationary elliptic [4] and
instationary parabolic approaches [5, 3]. In contrast to these references, which use Voronoi-type
bisections leading to unstructured meshes with possibly degenerated elements, we apply adaptive
hexaedral meshes of arbitrary dimension.

The structure of the presentation is as follows. In Sec. 2 we introduce the basic notation
and briefly recall the meanwhile standard approaches for parameter selection in reduced basis
generation. Section 3 presents an approach for adaptive extension of the training set and Sec. 4
a multiple bases approach using an adaptive parameter space partitioning. Experiments in Sec. 5
investigate the benefits of the training set extension and parameter domain partitioning separately
and in a combined fashion. We conclude in Sec. 6 with a summary and comments on possible
future improvements.
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2 Notation

We introduce the (few) required notation:

• P ⊂ R
p compact parameter domain; without loss of generality a hypercube, as any compact

parameter set can be covered by such.

• M a non-conform adaptive hexaedral grid in the p-dimensional parameter domain with sets
of leaf-elements E(M) and vertices V (M). The centroid of an element e ∈ E(M) will be
denoted with c(e).

• X space of detailed solutions, this can be X = H1
0 (Ω) as a solution space of elliptic PDEs, or

X = C([0, T ], Rn) as the space of continuous trajectories in state space R
n of a dynamical

system, etc.

• A detailed solution scheme, which can produce a detailed solution u(µ) ∈ X for any admis-
sible parameter µ ∈ P.

• Φ = {ϕ1, . . . , ϕN(Φ)} a reduced basis of size N(Φ), i.e. N(Φ) being the reduced dimension.

• XN ⊂ X the reduced solution space based on Φ, i.e. XN := span(Φ) for stationary problems,
or XN := C([0, T ], span(Φ)) for time-dependent problems.

• a reduced solution scheme, which can produce a reduced solution uN (µ) ∈ XN for any
admissible parameter µ ∈ P.

• ∆N (µ) an error indicator, measuring the error between the detailed and reduced solutions,
or between outputs of these, i.e. ‖u(µ) − uN (µ)‖ ≤ ∆N (µ) for suitable norm on X.

In particular, the error indicators ∆N (µ) can be any a-posteriori error estimators used in RB-
methods [14, 10]. If such estimators are not available, also the true error can be used, in which
case, the evaluation of this quantity is expensive as it involves the computation of a detailed
solution, but still may be feasible in view of our adaptive approach. Further, we deliberately
do not differ between stationary or instationary problems. As the reduced solutions and error
estimators depend on the reduced basis that is used, we occasionally emphasize this dependency
by the basis as additional argument uN (µ,Φ),∆N (µ,Φ).

The standard greedy procedure [16, 7, 13] for the construction of a reduced basis Φ is based on a
finite training set of parameters Mtrain ⊂ P, a given desired error tolerance εtol > 0 and optionally
an initial choice of basis Φ0, which is to be extended. It is an accumulative basis construction
procedure. It consecutively determines the µ

∗ ∈ Mtrain that is worst resolved with the current
reduced basis (as measured by the chosen error indicator ∆(µ,Φ)), performs a detailed simulation
u(µ∗) and uses this for extension of the basis Φ, until the error over Mtrain is less than εtol. For
stationary problems, the step of basis extension is a simple inclusion of the solution snapshot u(µ)
into the basis. For instationary problems, this extension-step must extract a few vectors from
the detailed solution trajectory. This can either be based on residual increment criteria [6] or
on orthogonal projections of the trajectory combined with temporal compression techniques [10].
The latter in particular turned out to be quite successful and is meanwhile standard and denoted
POD-greedy procedure.

Despite the wide applicability of the (POD-)greedy algorithm, some problems remain, which
will be adressed in the subsequent exposition:

1. Overfitting: In case of too small training set, the error on Mtrain may be nicely decreasing
or can ideally be reduced to 0 with growing basis dimension, but the error for independent
test parameters remains large.

2. Training times: In case of too large training set, the training time can be exorbitant, in
particular in instationary scenarios without or with merely expensive error estimators.
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3. Basis size: The (POD-)greedy algorithm will produce a basis satisfying the desired error
threshold εtol on the training set. But the resulting basis size may be much too large,
resulting in too high online simulation times.
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Figure 1: Illustration of overfitting for the model from [10]. The maximum error estimator on a
random test set is plotted over the dimension N of the reduced basis space for the POD-greedy

algorithm with a fixed training set corresponding to the vertices of a uniform Cartesian parameter
grid with 43, 63, and 103 nodes.

3 Adaptive Training Set Extension

We now elaborate on a method that has been briefly explained in [9], adressing the first two issues
raised above: “overfitting” and “training times”. Fig. 1 gives some typical results of the (POD-
)greedy basis generation procedure with the model problem from [10]. In particular, we choose 3
different sizes of (fixed) training parameter sets, generate bases with the POD-greedy procedure
and monitor the maximum test error estimator over an independently drawn test parameter set.
Each curve corresponds to one of the training sets. We see that in these cases the convergence
rate of the test error estimator breaks down if N increases, while (not shown) the training error
estimator is nicely decreasing with growing basis size. This indicates, that the (POD-)greedy
algorithm tends to overfit if the training set is kept fixed and is too small.

On the other hand, if larger training sets are chosen, the breakdown of the convergence rate
can be shifted towards larger values of N . Unfortunately, such a procedure usually comes with an
immense increase in computational costs.

The underlying reason for both overfitting and too long training times is the unknown ideal
size and distribution of the training set. Hence, the main component of our first approach is
an adaptive training set extension procedure to adapt the number and location of the training
parameters to the given problem.

In detail, we propose an extension of the (POD-)greedy algorithm by early stopping, which is
a technique used in machine learning to prevent overfitting of iterative learning procedures. In
particular, we enable the (POD-)greedy algorithm with additional input arguments as indicated
in Fig. 2: an additional validation set Mval of parameters, an additional tolerance level ρtol and
a maximum target basis size Nmax. Note that by setting ρtol = Nmax = ∞ the algorithm is the
traditional (POD-)greedy procedure. The validation set Mval is used to monitor an additional
validation error of the current basis. If the ratio of the validation error and the training error
exceeds the tolerance ρtol > 0, we conclude that the basis construction process is overfitting on
the training set and the early stopping of the (POD-)greedy procedure is initiated. Such cases of
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EarlyStoppingGreedy(Φ0,Mtrain, εtol,Mval, ρtol, Nmax)
1 Φ := Φ0

2 repeat

3 µ
∗ := arg maxµ∈Mtrain

∆(µ,Φ)
4 if ∆(µ∗) > εtol

5 then

6 ϕ := ONBasisExt(u(µ∗),Φ)
7 Φ := Φ ∪ {ϕ}
8 ε := maxµ∈Mtrain

∆(µ,Φ)
9 ρ := maxµ∈Mval

∆(µ,Φ)/ε
10 until ε ≤ εtol or ρ ≥ ρtol or |Φ| ≥ Nmax

11 return Φ, ε

Figure 2: The early-stopping (POD-)greedy search algorithm, for ρtol = ∞, Nmax = ∞ recovering
the standard (POD-)greedy procedure.

AdaptiveTrainExtension(Φ0,M0, εtol,Mval, ρtol, Nmax)
1 Φ := Φ0,M := M0

2 repeat

3 Mtrain := V (M)
4 [Φ, ε] := EarlyStoppingGreedy(Φ,Mtrain, εtol,Mval, ρtol, Nmax)
5 if ε > εtol

6 then

7 η = ElementIndicators(M,Φ, ε)
8 M := Mark(M,η)
9 M := Refine(M)

10 until ε ≤ εtol or |Φ| ≥ Nmax

11 return Φ, ε

Figure 3: The adaptive training set extension procedure based on an adaptive grid in parameter
space.

detected overfitting indicate that Mtrain is too small for the desired model accuracy. For use in
later approaches, the early stopping can also be induced by further criteria, in particular the basis
construction procedure is stopped, if the maximum number of basis vectors Nmax is exceeded.
However, in this section we set Nmax = ∞ and hence do not pose a bound on the basis size |Φ|.
The role of Nmax will be crucial in the next section.

Our adaptive approach illustrated in Fig. 3 is based on an adaptive grid M covering the
parameter set, i.e. P =

⋃

e∈E(M) e, the vertices of which are taken as training set of the (POD-

)greedy algorithm, Mtrain := V (M). In case of detected overfitting by early stopping, we conclude
a necessary refinement of the parameter grid. In the spirit of local grid adaptation in finite
element methods, element indicators η(e) are computed, which are related to the model-error
on these parameter cells. A marking and refinement strategy results in uniform or local grid
refinement. A subsequent restart of the greedy search over the now extended set of grid-vertices
is performed, using the previously obtained basis as new initial basis, until the desired accuracy
εtol is obtained. This completes the description of the adaptive training set extension procedure

for the case of uniform global refinement. For the case of local refinement, the definition of
the element indicators and the refinement rule need to be specified. We first define preliminary
element indicators η̃(e) for elements e ∈ E(M) of the parameter mesh by taking the maximum of
the error estimator values in the vertices µ ∈ V (e) and the barycenter µ = c(e) of an element e,
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i.e.

η̃(e) :=

(

max
µ∈V (e)∪{c(e)}

∆(µ,Φ)

)

.

As it is well known for adaptive methods, such an indicator may have problems to detect local
maxima of the error in cases where the starting parameter mesh is too coarse to resolve some
detailed structures. It may happen, that the error indicator of a coarse cell is small or zero, and
hence, the element is never refined in the refinement process. In order to circumvent such stalling
problems we add some penalization term, which penalizes elements with long non-refinement
history. We therefore define the final element indicators η(e) as

η(e) := γ(e)s(e) + η̃(e)/ε,

where γ(e) > 0 denotes a weighting parameter depending on the local mesh size, s(e) counts the
number of precedent refinement steps that did not lead to a refinement of element e and ε is the
maximum error estimator on V (M). Thus, elements that are not detected by the point evaluation
of the estimator, are penalized from one refinement step to the next, which asymptotically leads
to a refinement of all elements. In each refinement step a fixed fraction Θ ∈ (0, 1] of the elements
are refined, where the elements with the highest estimator value η(e) are chosen. Experiments
with this adaptive training set extension algorithm are presented in Section 5.

We conclude this section with a comment on the relation to the multistage greedy used in [15].
Similar to our approach the training times are reduced, as a basis on a coarser training set can
already be sufficient for a finer set or ultimatively the complete parameter space. The approach,
however, does not offer a local adaptation of the training set or means for overfitting prevention.

4 Adaptive Parameter Domain Partition

We now turn to point (3), “basis size”, listed in Sec. 2. The following problem is frequently
observed: For high dimensional or extensive parameter domains – even more expressed in insta-
tionary problems with large time-intervals – the solution variations can be very large. Of course,
the (POD-)greedy algorithm will produce a global basis with the desired accuracy εtol. But this
may only be obtained by a large reduced basis, e.g. size N = 1000−10000. This basis size may be
prohibitive, as the online simulation of the reduced model requires operations with full matrices of
this size. This may infer higher online computational cost than the original detailed model based
on possibly much larger but usually sparse matrices. Hence, in addition to a guaranteed accuracy
target εtol, a basis generation algorithm also should allow a limitation of the online-complexity.
This can be obtained by directly limiting the reduced basis size by an upper bound Nmax.

The key for realizing simultaneously accuracy and limited online-complexity, is a partition of
the parameter space into several subdomains with small reduced bases for each of the subdomains.
The method is a slight modification of similar approaches [4, 5, 3], now using structured meshes.

Being agnoscent of the future parameters, multiple reduced bases for all subdomains must be
generated in the offline phase. Then, in the online phase the correct basis is selected for any given
new parameter, and the reduced simulation can be performed. The partition of the parameter
space can simply be fixed a-priori and the standard (POD-)greedy algorithm be run on each part.
This may give smaller bases per subdomain, but by re-applying the above argumentation, the
bases still can happen to be too large as we do not have a size control. Therefore, we now propose
an adaptive partition approach for sub-dividing the parameter domain based on adaptive grids in
the parameter domain.

The adaptive parameter domain partition procedure is now as follows, c.f. Fig. 4: Given a target
accuracy εtol and maximum basis size Nmax, we start with a coarse grid M, which defines an initial
parameter domain partition by its leaf elements. For each leaf element of the grid we initiate a
standard (POD-)greedy (or any other) basis construction process. Now, an early stopping on
the current element/subdomain is induced if Nmax is exceeded. If this happens, it indicates that
the corresponding parameter subdomain inhibits a too complex solution variety, which cannot be
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AdaptiveParamPartition(M0, εtol, Nmax)
1 M := M0,Φ(e) := ∅ for e ∈ E(M)
2 repeat

3 for e ∈ E(M) with Φ(e) = ∅
4 do Φ0 := InitBasis(e)
5 Mtrain := Mtrain(e)
6 η(e) := 0
7 [Φ(e), ε(e)] := EarlyStoppingGreedy(Φ,Mtrain, εtol, ∅,∞, Nmax)
8 if ε(e) > εtol

9 then η(e) := 1,Φ(e) := ∅
10 ηmax := maxe∈E(M) η(e)
11 if ηmax > 0
12 then M := Mark(M,η)
13 M := Refine(M)
14 until ηmax = 0
15 return M, {Φ(e), ε(e)}e∈E(M)

Figure 4: The adaptive parameter domain decomposition procedure producing an adaptive grid
in parameter domain and corresponding sequence of reduced bases.

covered by a small basis. Consequently the element is refined into several parameter subdomains
and the basis generation per subdomain is restarted. The algorithm ends with possibly many
subdomains, but each subdomain basis satisfying both the prescribed accuracy and the basis size

constraints. Hence, we obtain simultaneous control over the online accuracy and online complexity
by accepting higher offline computation cost and offline data storage.

We emphasize that this parameter domain partition approach is not related to the training set
extension approach of the previous section, although both can be beneficially combined, as will
be demonstrated later.

Overall, compared to a (POD-)greedy procedure on the complete parameter domain, the ap-
proach is characterized by increased offline computation and storage requirements, as now many
bases must be computed and stored and several computations are discarded during the refinement
process. However, we obtain control over the online complexity. Note that, as also remarked in
[5, 3], for time-dependent problems εtol and Nmax cannot be independently chosen arbitrary small.
For a given εtol > 0 a POD of a solution trajectory for any fixed µ

∗ ∈ P will result in a required
basis size of NPOD(µ∗, εtol) ∈ N basis vectors for approximating the trajectory with accurary εtol.
Then, the requirement of choosing Nmax > supµ∈P NPOD(µ, εtol) will imply that a sufficiently
refined mesh M will result in a partition with bases satisfying the accuracy requirement. On the
contrary, if Nmax is fixed and too small, the refinement process will in general not terminate with
a set of bases satisfying the accuracy constraint.

We remark, that there are some computational methods for considerably speeding up the offline
basis construction process. First, the calculation of the detailed solutions, can be beneficially
cached during the basis-generation of the different subdomains. Due to many shared edges/faces,
basis generation on different subdomains requires computation of many identical trajectories.
These can be computed once and stored for later use. A second aspect concerns the early stopping:
The required computation of Nmax basis vectors for deciding the failed accuracy and required
refinement of a given element is very expensive and superfluous, as this basis is discarded in
the refinement process. Hence, methods are desired, which allow to decide earlier, whether a
refinement will be required. A simple approach consists of extrapolation of the training error
convergence in the (POD-)greedy algorithm: Frequently an exponential decrease of the training
error can be observed in the (POD-)greedy procedure. Hence, a suitable extrapolation of the error
convergence curve towards Nmax can be peformed during basis construction. By this, at an early
stage N << Nmax the decision of failing accuracy and required refinement could be taken.
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We conclude with some comments on comparison with the hp-adaptive RB approach from
[4, 5, 3]. Conceptionally the approaches are very similar and we do not expect large practical
differences. We only see some conceptional differences. We have a larger grid-management over-
head compared to the binary bisections of the given references and cannot yet provide rigorous
theoretical statements. In contrast, we maintain control over position, shape and size of the el-
ements/subdomains, while arbitrary bisections can lead to degenerate elements. This property
in particular simplifies a combination of our partition approach with the adaptive training set
extension, as demonstrated in Sec. 5 below.

5 Experiments

We consider applications of the approaches on dynamic, i.e. instationary time-dependent problems
based on the RB-methods for linear evolution schemes [10] and linear dynamical systems [11]. In
the following two subsections we separately present results on the adaptive training set extension
and adaptive parameter domain partition approaches. In the last subsection we illustrate experi-
ments, where both approaches are combined. The experiments are based on our software-package
RBmatlab. In particular the library provides an adaptive hypercube grid implementation for arbi-
trary dimensions p ∈ N. The grid refinement is based on isotropic refinement, i.e. every hypercube
is divided into 2p children.

5.1 Adaptive Training Set Extension

We report in more detail on the results from numerical experiments of [8]. In particular, we
apply the basis construction methods to a parametrized partial differential equation. We choose
the model problem described in [10, Sec. 7] for our numerical experiments concerning the basis
enrichment. The model represents an instationary advection-diffusion problem in the gas-diffusion
layer of a fuel-cell. The velocity field is precomputed and the detailed discretization u(µ) is
obtained by an implicit/explicit finite volume scheme of first order in space and time. The problem
is characterized by a three-dimensional parameter space modeled by µ = (cinit, δ, β)T ∈ P =
[0, 1] × [0, 5 · 10−8] × [0, 1]. The first parameter cinit is the amplitude of a sinus-shaped initial-
data distribution, δ is the global diffusion coefficient on the domain, and β, 1 − β model the
concentrations at the boundary of two gas-inlets. As error measure ∆(µ,Φ) we choose an L2

a-posteriori error estimator, for details we refer to [10].
We generate reduced bases with three approaches (not considering parameter domain parti-

tioning). First, the vertices of a uniform fixed Cartesian grid are chosen as the training set Mtrain

without any adaptive refinement (uniform-fixed). Second, a uniform Cartesian grid is used with
global uniform refinement during the basis-construction (uniform-refined) and third, a Cartesian
grid with local adaptive refinement (adaptive-refined) is applied. For an initial experiment we use
a restricted two-dimensional parameter space P = [0, 1]× [0, 5 ·10−8] for the parameters µ = (β, δ)
and fix cinit = 1. The resulting errors ∆(µ,Φ) over the 2D parameter space are visualized loga-
rithmically in Fig. 5. The fixed grid approach in a) clearly demonstrates overfitting with respect
to the grid-vertices and error values varying over several orders of magnitude. In particular, it has
a low error in the upper (high diffusivity) and very high errors in the lower part (low diffusivity) of
the parameter domain. The uniformly refined approach in b) is slightly advantageous concerning
these aspects. The locally refined grid in c) demonstrates considerable improvements concerning
equal distribution of the error and the prevention of overfitting. A very notable aspect here, is
the agreement with physics: From the problem setting, we know, that the parameters β, 1− β are
Dirichlet boundary values. Hence, largest error reduction is expected for low and high values of β.
Similarly, for small values of the diffusivity parameter δ the solution structure is maintained over
time. Hence, more difficult approximation is expected for such small diffusivities as is reflected by
many required snapshots in these regions. These expectations are perfectly fullfilled by the locally
refined grid.

Quantitative results are illustrated in Fig. 6 for the full 3D parameter space P and different
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initial grid sizes (vertex numbers ranging from 23 to 53). In Fig. 6 a) we illustrate the model-
error (measured as maximum error estimator over a randomly generated test set) for the refined
approaches and the fixed grid setting. We clearly see, that the model-error is reduced for the uni-
formly refined approach and even more expressed for the locally refined approach. The overfitting
indeed seems to be prevented as is expected from the motivation and construction of the adaptive
training set extension approach. Fig. 6 b) quantifies the improvement of the error-distribution by
monitoring the ratio of maximum to minimum test error. We see, that the local refined approach
guarantees a nice equi-distribution of the model-error over the parameter domain in contrast to
the other approaches, where the minimum and maximum error values vary over some orders of
magnitude. Finally, in Fig. 6 c) the maximum test error decrease of a) is related to the corre-
sponding training time, i.e. the CPU time for the overall basis construction. With respect to
this last criterion, the local refinement approach is consistently superior to the non-adaptive and
adaptive approaches using uniform grids.

a) b)

c)

Figure 5: Demonstration of the overfitting phenomenon for a basis of size N = 130 in two-
dimensional parameter space µ = (β, δ) ∈ P = [0, 1] × [0, 5 · 10−8] with a) the uniform-fixed, b)
the uniform-refined and c) the local adaptive-refined grid approach.

5.2 Adaptive Parameter Domain Partitioning

We apply the multiple bases approach with adaptive parameter domain partitioning (not con-
sidering training set adaptivity) to a dynamical system describing an advection problem taken
from [11]. The problem is defined on a rectangular domain Ω = [0, 2] × [0, 1] and time interval
[0, T ], T = 1. The initial condition u0(·,µ) is equal to zero on the whole domain Ω except for
the region around the coordinate xC = (0.75, 1) on the top edge, where a cone with center xC

and amplitude µ0 ∈ [0, 1] is placed. The velocity field on the domain is chosen as a weighted
superposition of two divergence free parabolic velocity fields in x1− and x2− direction. By the
free weighting parameter µ1 ∈ [0, 1] the strength of the velocity field in x1-direction can be set.
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Figure 6: Quantitative comparison of the basis-generation approaches with respect to a) maximum
test error, b) ratio of maximum to minimum test error and c) maximum test error over training
time.

This allows to choose between a flow in x2-direction only for µ1 = 0 and a mixture of both flow
directions for µ1 > 0. For µ1 = 0.5 the velocity fields in both directions are equally strong. The
overall parametrization is given by µ = (µ0, µ1)

T ∈ P = [0, 1] × [0, 1].
For comparison, we generate reduced bases for the problem using three different approaches.

The first approach is a standard (POD-)greedy approach using no parameter domain partitioning.
The second approach uses a fixed parameter domain partitioning, dividing the parameter domain
into four equally spaced subdomains and generating bases for each of the parts. The third approach
consists of generating multiple bases on an adaptive parameter domain partitioning. For all
three basis generation methods the training set Mtrain consists of the vertices of a uniform fixed
Cartesian grid over the domain or subdomain. To ensure comparability, the target training error
is εtol = 1 · 10−4 in all three cases.

In Fig. 7 we see the experimental results. The parameter domain P = [0, 1] × [0, 1] is plotted
with its partitions indicated by blue lines. The red dotted lines represent the grid providing the
parameters in Mtrain. Blue dots mark the vertices used for basis generation. The numbers in
the parameter grid subdomains show the resulting basis size of the (POD-)greedy algorithm while
the colors indicate the estimated error on the domain. The standard (POD-)greedy algorithm in
a) produces a rather large basis of 172 vectors to obtain a training set error smaller than ǫtol.
The fixed parameter domain partition in b) reaches the same training set error with significantly
smaller bases of sizes between 95 and 113 basis vectors. Furthermore, the colors in the plot show
that in comparison to a) the maximal error on the domain is kept almost constant on a value of
about 0.1. Finally, our adaptive parameter domain partition approach in c) produces an adaptive
partitioning of the domain. The size of each of the bases in the partitions is limited by N = 100
while simultaneously the prescribed accuracy of the solution is reached. Furthermore, we see that
the approximation error on the whole domain is smaller. In Fig. 7 we nicely see, that the physical
meaning of parameters and their influence on the solution is reflected in the distribution of the
basis sizes in b) and the repartition of subdomains in c). The higher the value of the parameter µ1,
the higher the velocity in x1-direction, the more volatile is the evolution of the solution. Hence,
more basis vectors are required for an approximation of the solution. The parameter µ0 scales the
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Figure 7: Demonstration of different basis generation approaches using the standard (POD-)greedy
procedure on each subdomain. The colors indicate the test error over the parameter domain. a)
No parameter domain partition (ε < εtol,N very large), b) uniform parameter domain partition
(ε ≤ εtol,N large), c) adaptive parameter domain partition (ε ≤ εtol,N ≤ Nmax).

solution by varying the amplitude of the initial cone, hence larger maximum errors are obtained
at the upper limit of the µ0 interval. However, it is hard to compare the above reduced models,
as the final training set accuracy, which is the stopping criterion for the training algorithms, is
heavily depending on the training set size. This quantity is in general not predictive for the final
test behaviour as argued earlier. Therefore, we now address the test error estimator as reasonable
quality measure of a basis. For this, we randomly draw 500 parameter samples Mtest from the
parameter space and determine the maximum test error estimator εtest,max := maxµ∈Mtest

∆(µ,Φ)
and the average test error estimator εtest,av := 1

|Mtest|

∑

µ∈Mtest
∆(µ,Φ). The second relevant

quality criterion is the reduced online simulation time, as this was the original motivation for the
current approach. As the basis dimension now is varying for the parameters, the online simulation
time similarly is non-constant. Therefore, we also compute the average online-simulation time over
Mtest as runtime measure. Fig. 8 shows the results of these measurements for various reduced
bases. When demanding an accurate model over the entire parameter domain using a standard
approach, we see that we have to pay the price of high online-simulation times due to large sizes of
the bases. The online simulation time rises exponentially with increasing demands on the model-
error. In contrast, using a multiple bases approach, the online-simulation time can be kept on a
low level while providing approximations with a high accuracy.

5.3 Combination of Both Adaptive Approaches

As the building block of the parameter domain partition algorithm is a basis generation algorithm
producing a basis on a subdomain of the parameter domain, we can also apply the adaptive training
set extension algorithm of Sec. 3 instead of the standard (POD-)greedy. Hence, on each adaptively
determined subdomain of P an adaptive training set extension is performed to construct a basis.
The results are illustrated in Fig. 9. The adaptive training set extension algorithm successfully
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Figure 8: Comparison of different basis generation approaches regarding the maximal test error
on the domain versus final (average) online-simulation time.

identifies regions of high model error and induces a refinement of the parameter domain partitions
in these regions. The model error – especially in the lower part of the domain – is reduced
significantly.
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Figure 9: Demonstration of the adaptive parameter domain partition approach using the local
adaptive training set extension method on each sub-domain. In a) the basis size was limited to
Nmax = 120 and in b) the limit was Nmax = 100. We see that for the same training error of
εtol = 0.0001 a smaller basis size limit leads to a finer partition of the parameter domain.

For this approach we conducted the same error analysis and online runtime measurement as in
Sec. 5.2, which is based on 500 randomly chosen parameter samples. The results for the methods
of Fig. 7 a),b),c) and 9 b) are given in Tab. 1. In the first three lines we present quantitative
support for Fig. 8. We again see that even though the size of the basis is limited in the adaptive
parameter domain partition approach, the maximal test error as well as the average test error on
the domain are considerably smaller compared to the approach without partition. From the last
line in Tab. 1 it can be seen that the combination of both adaptive approaches outperforms all
other approaches by far. While the online simulation time of the combined approach is comparable
to the pure parameter domain partititon approach, the error on the test set is reduced by two
orders of magnitude.

Note that for this example, a non-isotropic adaptive grid would be beneficial. As the µ samples
with maximum error are always located at the right border of the parameter domain, we would only
need refinement in this parameter direction. This would result in fewer number of subdomains
and hence overall reduced offline computation time and storage. A further acceleration of the
offline-phase could be achieved by applying the early stopping algorithm, which extrapolates the
error convergence curve of the (POD-)greedy algorithm during basis-generation, as explained in
Sec. 4.
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εtest,max εtest,av t̄sim,reduced

no parameter domain partition 1.08 · 10−1 1.17 · 10−2 1.31 s

fixed parameter domain partition 1.01 · 10−1 1.44 · 10−2 0.804 s

adaptive parameter domain partition 4.85 · 10−2 4.62 · 10−3 0.804 s

adaptive p-domain partition + training set 2.06 · 10−4 7.90 · 10−5 0.756 s

Table 1: Results of the test error calculation for the bases generated during the experiments. The
table shows the maximal error on the parameter domain, the average error over the domain and
the average time for an online simulation of the reduced model. The errors were calculated using
a sample of 500 randomly chosen parameter vectors. The bases were generated with the same
training error εtol = 0.0001 and the adaptive bases had a limited size of Nmax = 100.

6 Conclusions and Outlook

We addressed the task of reduced basis construction based on snapshots and presented two different
approaches that use adaptive grids in the parameter domain. The approaches are applicable to
time-dependent and stationary problems, for PDEs or state-space dynamical systems, as long as
an error indicator is available. In particular, as error indicator both a-posteriori error estimators
or true errors can be chosen. Furthermore, the error can be considered for the field-variable, the
state-vector or even for output functionals.

The main aspect of the first approach, the adaptive training set extension procedure, is the
“right guess” of the training set size and the location of its points. This is obtained by applying
overfitting control and adaptive training set extension based on adaptive grids in the parameter
space. The procedure prevents phenomena of standard methods, where overfitting for too small
training sets and high training times for too large training sets can be observed. In comparison
to fixed training set approaches, the adaptive training set extension produces reduced bases with
better model accuracy and more uniform distribution of the model-error over the parameter space.
The basis computation time for equal accuracy is reduced.

The second approach, the multiple bases approach on adaptive parameter domain partitions,
is a method to handle large parameter domains, where single-basis approaches for the reduced
model would not be feasible. The partition and computation of many separate bases clearly
comes with increased offline computation and storage costs. However, by the rigorous control
of the maximum basis size, an explicit mean for online simulation time control is obtained. In
particular, the numerical experiments demonstrate that by comparing models with equal test
error, the adaptive parameter domain partition approach indeed results in models with smaller
online-runtime.

Overall, the adaptive training set extension procedure is a method yielding efficient offline

economization of the basis generation, while the adaptive parameter domain partition approach
guarantees an efficient online phase. Both methods can be combined to obtain the benefits of both
approaches.

There are several perspectives for improvement of the proposed algorithms. First, the appli-
cation to the choice of interpolation points in interpolatory MOR [1] approaches seems straight-
forward. Also there, the location and number of interpolation points is an open question, which
can very likely be addressed and solved by adaptive approaches. The parameter space dimensions
were still quite decent. Higher parameter dimensions may be solved by similar approaches using
adaptive random point sets or sparse grids. The parameter domain partition approach allows
several aspects for further development. One point would be to realize adaptive non-isotropic
refinement of a parameter domain partition grid. By respecting different parameter ranges, dif-
ferent parameter influences, etc. problem specific directions for refinement can be identified. A
further open issue is the redundancy in different subdomain bases: The single bases of different
subdomains are developed independently. They may contain identical or similar basis vectors.
This seems a clear possibility for memory savings by suitable shared basis-vectors or sub-bases. A
further aspect of improvement is the reuse of old bases. In its generality, the parameter domain
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partition approach performs a restart of the basis generation procedure on refined elements. Thus,
previously computed bases of coarser parameter subdomains are dismissed. Here we see room for
improvement by reusing information throughout the refinement process.
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parametrized parabolic partial differential equations. In In Proceedings of ICOSAHOM 2009,
2010.

[6] M.A. Grepl. Reduced-basis Approximations and a Posteriori Error Estimation for Parabolic

Partial Differential Equations. PhD thesis, Massachusetts Institute of Technology, May 2005.

[7] M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approximations of
parametrized parabolic partial differential equations. M2AN, Math. Model. Numer. Anal.,
39(1):157–181, 2005.

[8] B. Haasdonk and M. Ohlberger. Basis construction for reduced basis methods by adaptive
parameter grids. In P. Dı́ez and K. Runesson, editors, Proc. International Conference on

Adaptive Modeling and Simulation, ADMOS 2007. CIMNE, Barcelona, 2007.

[9] B. Haasdonk and M. Ohlberger. Adaptive basis enrichment for the reduced basis method
applied to finite volume schemes. In Proc. 5th International Symposium on Finite Volumes

for Complex Applications, pages 471–478, 2008.

[10] B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of
parametrized linear evolution equations. M2AN, Math. Model. Numer. Anal., 42(2):277–302,
2008.

[11] B. Haasdonk and M. Ohlberger. Efficient reduced models for parametrized dynamical sys-
tems by offline/online decomposition. In Proc. MATHMOD 2009, 6th Vienna International

Conference on Mathematical Modelling, 2009.

[12] D.J. Knezevic and A.T. Patera. A certified reduced basis method for the Fokker-Planck
equation of dilute polymeric fluids: FENE dumbbells in extensional flow. Technical report,
MIT, Cambridge, MA, 2009.

18



[13] A.T. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation

for Parametrized Partial Differential Equations. MIT, 2007. Version 1.0, Copyright MIT 2006-
2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical
Engineering.

[14] G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a posteriori
error estimation for affinely parametrized elliptic coercive partial differential equations: ap-
plication to transport and continuum mechanics. Arch. Comput. Meth. Eng., 15(3):229–275,
2008.

[15] S. Sen. Reduced basis approximations and a posteriori error estimation for many-parameter
heat conduction problems. Numerical Heat Transfer, Part B: Fundamentals, 54(5):369–389,
2008.

[16] K. Veroy, C. Prud’homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for
reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differ-
ential equations. In In Proceedings of 16th AIAA computational fluid dynamics conference,
2003. Paper 2003-3847.

[17] S. Volkwein and K. Kunisch. Optimal snapshot location for computing POD basis functions.
ESAIM: Mathematical Modelling and Numerical Analysis, 2010. to appear.

Bernard Haasdonk
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart,
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: haasdonk@mathematik.uni-stuttgart.de

Markus Dihlmann
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart,
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: dihlmann@mathematik.uni-stuttgart.de

Mario Ohlberger
Institute of Computational and Applied Mathematics, University of Münster,
Einsteinstr. 62,
48149 Münster,
Germany
E-Mail: mario.ohlberger@math.uni-muenster.de

19


