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1. INTRODUCTION

Simulations of complex parametrized PDEs often require
high dimensional discrete models due to the need of a high
space resolution of the discretization. As a consequence
these models are not suited for real-time applications or
multi-query tasks like parameter optimization, statistical
analysis or inverse problems because the calculation of so-
lutions for many different parameters can take an excessive
amount of time. This is the motivation for the development
and the application of model reduction techniques for
parametrized models.

The reduced basis method is such a model order reduc-
tion technique (see e.g. Rozza et al. (2008)). For any
given parameter the parametrized problem is solved in
a reduced space of low dimension. This low dimensional
reduced basis space is constructed by “snapshots” of true
solutions stemming from the original high dimensional
space for selected parameters. Thereby, the reduced space
is adapted to represent well all parameter-dependent solu-
tions. However, if the problem depends on a wide range
of parameters or if the variability of the solution with
respect to the parameter is very high, it is possible that the
reduced space requires a high number of basis functions
in order to provide good global approximations. This is
the case especially in evolution problems where an entire
trajectory of solutions has to be approximated. There
exist approaches to treat high parameter complexity in
reduced basis methods as in Eftang et al. (2010, 2011);
Haasdonk et al. (2011); Dihlmann et al. (2011). Yet, the
offline time for basis generation can be very high in these
approaches. Another difficulty is the fact that the control
of the approximation error is not flexible during the online

phase. In cases where the approximation is not satisfactory
one can not easily extend the reduced basis online.

We propose a new approach for the online construction of
a reduced space in reduced basis methods for evolution
problems. The approach is able to generate online an
adapted low dimensional reduced space from a database
of precomputed small reduced basis entities. In the online
phase, for any given parameter, we enrich the reduced basis
step by step via a proximity search in the parameter space
until the desired approximation accuracy is fulfilled. This
results in a locally adapted small reduced space and hence
in a more efficient online simulation phase. Furthermore
we are flexible in the control of the approximation error
and can assure the fulfillement of an approximation ac-
curacy requirement. Similar methods have been proposed
in Amsallem and Farhat (2011) and Baur et al. (2011)
in the setting of dynamical systems using a POD model
order reduction. An approach that also makes use of sin-
gle precomputed bases for individual parameters in the
framework of Krylov-subspace methods is to be found in
Lohmann and Eid (2009).

The paper is structured as follows: In Section 2 we begin
with introducing the problem setting and briefly describing
the framework of the reduced basis method. In Section 3
we present the offline and online procedure of the new
approach. The method is demonstrated in a numerical
experiment in Section 4 and we conclude in Section 5.

2. PROBLEM SETTING AND STANDARD
REDUCED BASIS APPROACH

We consider the discretized general linear parameter-
dependent evolution equation
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represent the implicit and explicit discrete operators re-
spectively, while LIm,h,LEx,h are the spatial discrete op-
erators obtained by a spatial discretization (e.g. Finite
Volumes or Finite Elements). The parameter stems from
a set of parameters µ ∈ P ⊆ Rp.

In order to realize an efficient offline/online splitting in
the procedure, we assume parameter separability of the
operators LIm,h(tk,µ), LEx,h(tk,µ) and the right hand
side bh(tk,µ) so that both can be expressed as linear
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The reduced basis method for model reduction of evolution
equations consists of four main ingredients:

(1) Galerkin projection: The high dimensional evolution
scheme (1) is projected onto a reduced space XN =
spanΦN = span{ϕ1, . . . , ϕN} which is spanned by
basis vectors ϕi, 1 ≤ i ≤ N and which is of low
dimension N � dim(Xh). Consequently the obtained
reduced evolution scheme is of low dimension and
can be solved rapidly to find the reduced solution
uN (µ) = {uk

N
(µ), 0 ≤ k ≤ K} ∈ (XN )K+1.

(2) A-posteriori error estimation: RB-methods provide a
rigorous upper bound for the approximation error
�uk

h
(µ)−uk

N
(µ)� ≤ ∆k

ΦN
(µ) which can be calculated

rapidly during online simulations (see Grepl and
Patera (2005); Haasdonk and Ohlberger (2008)).

(3) POD-Greedy sampling: The reduced spaceXN is con-
structed offline using the POD-Greedy algorithm by
successively adding POD-modes of solution trajecto-
ries for selected parameters to the global reduced ba-
sis (see e.g. Haasdonk and Ohlberger (2008); Knezevic
and Patera (2009); Eftang et al. (2011)).

(4) Offline/Online decomposition: The computational
procedure can be divided into a preparing offline
phase and an O(dim(Xh))-independent online phase.

3. NEW APPROACH: RAPID ONLINE
CONSTRUCTION OF A REDUCED SPACE

The POD-Greedy algorithm provides a reduced basis space
which is (nearly) optimally suited to approximate the
solution manifold over the whole parameter domain P. In
our approach we propose to construct online a reduced
space which is suited to locally approximate the solution
manifold in a small region around the parameter µ∗ for
which we want to calculate uN (µ∗). As this is only a
local approximation of the solution manifold around µ∗

the reduced space can be of very small dimension and
consequently online simulations are more performant. We
first show how to construct a dictionary of bases consisting
of precomputed solutions. Based on this dictionary we will
explain the online simulation procedure and present four
different approaches to construct online a locally adapted
reduced space.

3.1 Offline phase: Construction of the dictionary

We construct a “dictionary” of reduced bases

D = {be|1 ≤ e ≤ E} (5)

consisting of entities be := (Φe,µe) where the µe ∈ MD
stem from a given set of parameters MD with |MD| = E.
The entity bases Φe = {ϕe,1, . . . , ϕe,Nmax,e

} consist of
basis functions ϕe,i ∈ Xh and are obtained by solving the
high dimensional evolution scheme (1) for all parameters
µe ∈ MD and performing a POD

Φe = POD(uh(µe), εPOD) (6)

over the obtained trajectories

uh(µe) := {uk

h(µe)|0 ≤ k ≤ K}.

The POD returns a POD space Xe,εPOD
= spanΦe in two

steps. First the optimality condition
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Then POD(uh(µe), εPOD) returns the basis Φe spanning

the space Xe,εPOD
:= X

m(εPOD)

e where m(εPOD) is the
smallest natural where R(uh(µe),X

m
e ) ≤ εPOD.

As later in the online phase we will solve a Galerkin-
projected evolution scheme, we precompute the Gram ma-
trix G and the projections of the parameter-independent
components of the operators and the right hand side

�
G(e1,e2)

�
i,j

= �ϕe1,i, ϕe2,j� (9)
�
Lq

Im(e1,e2)

�

j,i

=
�
L
q

Im,h
ϕe1,i, ϕe2,j

�
(10)

�
Lq

Ex(e1,e2)

�

j,i

=
�
L
q

Ex,h
ϕe1,i, ϕe2,j

�
(11)

(bqe)i = �bq
h
, ϕe,i� (12)

for all e1, e2 = 1, . . . , E, i = 1, . . . , |Φe1| and j =
1, . . . , |Φe2|. Thereby, we cover in advance the projection of
the operators for all possible combinations of basis vectors.



3.2 Online Phase 1: Online construction algorithms for

the localized reduced space

Based on the dictionary of bases D we propose four
different methods for incremental online construction of
parameter-dependent bases Φ(µ∗).

Initialization Assume a parameter µ∗ to be given. For all
four online construction methods, we initialize the online
basis with the Ninit nearest entity bases. That is: For an
empty collection of entity indices I(µ∗) = ∅ we repeat the
following Ninit times:

ē = arg min
1≤e≤E,e/∈I(µ∗)

�µ∗
− µe�Rp , (13)

I(µ∗) = I(µ∗) ∪ ē (14)

and then set the initial basis Φ(µ∗) as

Φ(µ∗) =
�

e∈I(µ∗)

Φe. (15)

Online POD In general we can not guarantee linear in-
dependence of Φ(µ∗), let alone orthogonality. Hence, we
apply an online POD on the basis to ensure linear indepen-
dence and also to ensure a good condition number of the
arising reduced matrices. During this POD, the given basis
is replaced by a linearly independent orthogonal set of
functions spanning the same space as Φ(µ∗) or a subspace:
Given an online POD-tolerance εOnline

POD
, let

{λ1, . . . , λN̄} ⊂ R, {v1. . . . , vN̄} ⊂ R|Φ(µ∗
)|

be the set of all eigenvalues and matching eigenvectors
of the Gram matrix GΦ for the basis Φ(µ∗). Without
loss of generality we assume {λ1, . . . , λN̄} to be sorted in
descending order. Here we used the notation GZ for the
Gram matrix GZ ∈ RM×M , (GZ)i,j = �ζi, ζj� of a given
basis Z = {ζ1, . . . , ζM}.

Now, let N with

1 ≤ N ≤ N̄ := |Φ(µ∗)|

be the smallest natural number such that
N̄�

i=N

λi ≥ εOnline

POD but
N̄�

i=N+1

λi < εOnline

POD .

Then, the transition from the above-computed basis Φ(µ∗)
to the POD-basis Φ(µ∗) is represented by the matrix
CI(µ∗

) ∈ RN̄×N with

C
I(µ∗

)

ij
=

vj,i�
λj

, 1 ≤ i ≤ N̄ , 1 ≤ j ≤ N, (16)

where vj,i denotes the i-th entry of the eigenvector vj ∈

RN̄ . Given this matrix CI(µ∗
) the final (POD-)basis Φ(µ∗)

is given as:

Φ(µ∗) = {ϕ1, . . . , ϕN} (17)

ϕk =
N̄�

j=1

C
I(µ∗

)

jk
ϕj , (18)

where we used the notation Φ(µ∗) = {ϕ1, . . . , ϕN̄}.

In the following we use the rapidly evaluable a-posteriori
error estimator ∆K

Φ
(µ) fulfilling

sup
0≤k≤K

�uk

h(µ)− uk

N (µ)� ≤ ∆K

Φ (µ). (19)

Here uk

N
is the approximation using the reduced basis

Φ. Given this estimator, we check if the error tolerance
∆K

Φ(µ∗)(µ
∗) ≤ εtol is fulfilled already. If so, we end the

basis construction. If the error tolerance is not fulfilled
yet, we start the basis enrichment.

Basis enrichment In this step of the basis construction,
we add additional functions to the given basis Φ(µ∗)
until the desired error tolerance is reached. As in the
initialization of the basis, we continue adding the “next
nearest” entity be until the error tolerance is fulfilled. The
distance between the parameter µ∗ and an entity be is not
necessarily measured by the euclidean distance between
parameters but by a more general distance function d :
Rp × N → R≥0. Our enrichment algorithm is:
Repeat

ē = arg min
1≤e≤E,e/∈I(µ∗)

d(µ∗, e), (20)

I(µ∗) = I(µ∗) ∪ ē, (21)

Φ(µ∗) =
�

e∈I(µ∗)

Φe (22)

Φ(µ∗) = onlinePOD(Φ(µ∗)) (23)

until ∆K

Φ(µ∗)(µ
∗) ≤ εtol.

It remains to state the possible choices for the distance
function d. We will introduce four different distance func-
tions: The Euclidean, Greedy-Extended, Greedy-Min and
Greedy-Max functions.

Euclidean Here we choose

d(µ∗, e) = �µ∗
− µe

�Rp . (24)

This distance function measures the distance of the
given parameter µ∗ and a given entity be by the eu-
clidean distance of µ∗ and the parameter µe in be. The
evaluation of this distance function should be very rapid.

Greedy-Extended In this case the distance function d
is given as

d(µ∗, e) = ∆K

Φ(µ∗)∪Φe
(µ∗), (25)

which means that we use the ability of the enlarged basis
Φ(µ∗)∪Φe to approximate the high dimensional solution
for µ∗ as an indicator for the distance between µ∗ and
be. The evaluation of this distance function might be
a bit more costly as a reduced simulation and error
estimator evaluation have to be performed.

Greedy-Min Choosing

d(µ∗, e) = ∆K

Φ(µ∗)(µ
e), (26)

the distance between µ∗ and be is quantified by the
ability of the functions in Φ(µ∗) to represent the solution
to µe. This means that the distance between µ∗ and be
is smaller the more the functions in Φ(µ∗) resemble the
high dimensional solution to µe.

Greedy-Max The distance function

d(µ∗, e) =
�
∆K

Φ(µ∗)(µ
e) + 1

�−1

, (27)

performs the exact opposite of the Greedy-Min distance
function: Here, an entity be is considered “closer” to µ∗

the less the high dimensional solution to µe ressembles
the functions in Φ(µ∗).



3.3 Online phase 2: Performing online simulations

In the online phase rapid solution approximations for the
high dimensional evolution scheme (1) for a desired pa-
rameter µ∗ are performed. This is done using the reduced
basis Φ(µ∗) constructed by one of the methods described
above. We substitute the detailed solution uk

h
(µ) in (1)

by its approximation uk

N
(µ) =

�N

i=1
ak
i
(µ)ϕi and per-

form a Galerkin projection onto the reduced space XN =
span(Φ(µ∗)) ⊆ Xh. This leads to the low dimensional
”reduced” evolution scheme
(G−∆tLIm)a

k+1 = (G+∆tLEx)a
k +∆tb

a0n =
�
u0

h(µ
∗), ϕn

�
n = 1, . . . , N.

(28)

Here, for the sake of readability, we used the abbreviations
ak := (ak1(µ), . . . , a

k

N (µ))T , (29)
G := GΦ(µ∗), (30)

LIm := LIm(t
k+1,µ), (31)

LEx := LEx(t
k,µ), (32)

b := b(tk,µ∗). (33)

We use the parameter separability of the operators and
the right hand side to assemble LIm,LEx and b for all
k = 1, . . . ,K in (28) rapidly by
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where (Lq

I(µ∗)), (L
q

I(µ∗)) and bqI(µ∗) are the parts actually

needed from the projected components calculated in (10)-
(12). They are defined blockwise by

(Lq

Im,I(µ∗))
k,l = Lq

Im,(ιk,ιl)
(37)

(Lq

Ex,I(µ∗))
k,l = Lq

Ex,(ιk,ιl)
(38)

(bqI(µ∗))
k = bqιk . (39)

with ιk ∈ I(µ∗) and ∀k, l = 1, . . . , |I(µ∗)|. Furthermore,
I(µ∗) = {ι1, . . . , ιNI} is the index set of entities chosen for
the online basis construction and CI(µ∗

) is the transition
matrix defined in (16).

All the matrices and vectors in (28) are of dimension
RN×N or RN . As N � dim(Xh) is small, this evolution
scheme can be solved rapidly.

4. EXPERIMENTS

4.1 Setting

In the numerical experiments we treat the parametrized
advection-diffusion problem

∂tu(·, t,µ) =∆ (ku(·, t,µ))−∇ · (v(µ)u(·, t,µ))) (40)

u(·, 0) = u0 (41)

a)

b)

Fig. 1. Solutions to the advection diffusion problem in a)
with µ = [0.75, 0.5] and in b) with µ = [0.25, 0.5] at
time instants t = 0.5 and t = 1.

on a two dimensional physical domain Ω = [0, 2] × [0, 1].
We assume Dirichlet boundary conditions u(µ) = udir on
Γ × [0, T ]. The velocity v is supposed to be a divergence
free parameter- and time-dependent velocity field of the
form

v(x, t;µ) =
�
µ1(1− t) · 5(1− x2

2),−µ2(1− t)(4− x2

1)
�T

with x = (x1, x2)T ∈ Ω. The parameters µ stem from
a two dimensional parameter domain µ ∈ P = [0, 1]2.
This can be discretized with cell-wise constant functions
and a Finite Volume scheme using an Engquist–Osher
flux, which results in a corresponding discretization space
Xh and discretized operators LIm,h and LEx,h as well
as in a discrete right hand side bh for including the
boundary conditions. We chose a space discretization
into 128 × 64 intervals and a rectangular grid leading
to 8192 degrees of freedom. In order to satisfy the CFL
conditions we discretized in time into 1024 time steps.
We chose an explicit/implicit discretization scheme with
LIm,h containing the discrete diffusion operator and LEx,h

the discrete advection operator. Solutions for some chosen
parameters and at different time instances are shown in
Figure 1.

We constructed a reduced basis using the POD-Greedy
algorithm (Haasdonk and Ohlberger (2008)) with a tol-
erance of ε = 0.01 and a dictionary following the new
approach. For both methods the same training/dictionary
set MD of 100 parameters,obtained from a 10×10 uniform
mesh over the parameter domain, was used. The construc-
tion of the POD-Greedy basis took about 464 minutes
while the construction of the dictionary took about 51
minutes. This difference in the offline time is due to the fact
that the POD-Greedy performs a costly Greedy-search
over the whole training set in every iteration during the
extension algorithm. However, the dictionary is built up
by just computing the solution for all µe ∈ MD and
performing a POD for each of the solution trajectories.

4.2 Tests

The approaches were tested by conducting online simu-
lations for 50 randomly chosen test parameters. In ta-
ble 1 the different distance functions (Euclidean, Greedy-
Extended, Greedy-Min, Greedy-Max) are compared to a
standard reduced basis procedure. We set the online error
tolerance for our approach to εtol = 0.01 and list the mean
estimated error ∆∅ over the test set of parameters, the
mean effectivity of the error estimator η∅, the maximum
value of the error estimator ∆max, the mean online simu-
lation time (including the online construction of the basis



Table 1. Mean error, estimator effectivity, max-
imum error, mean online simulation time and
mean basis size for the different methods and

a grid with 8192 elements.

Scheme ∆∅ η∅ ∆max t∅ N∅

Euclidean 5.12e−3 11.65 9.69e−3 3.24 58
Greedy-Extended 5.36e−3 11.51 9.69e−3 15.26 58

Greedy-Min 5.68e−3 11.52 9.69e−3 24.44 59
Greedy-Max 6.05e−3 12.16 9.69e−3 38.06 69
Standard RB 8.06e−3 20.12 1.02e−2 5.43 205

for our approach) t∅ and the mean basis size N∅. Here the
effectivity η of an error estimator is defined as

η :=
∆K

Φ
(µ)

�uK

h
(µ)− uK

N
(µ)�

. (42)

We directly see the big advantages of our approach: Using
the Euclidean distance function we gain a smaller mean
error estimator at a smaller online simulation time and
also a smaller maximum error estimator. Also, due to the
more compact reduced basis, the effectivity of our error
estimator is better.

While the results using the Euclidean distance function are
pretty convincing, the different Greedy distance functions
seem to give a rather poor performance for our approach.
Regarding both approximation error and simulation time
they are outperformed by the standard reduced basis ap-
proach and also by our approach using the Euclidean dis-
tance function. The poor approximation quality using the
Greedy distance functions is due to the fact that we were
not able to use the full dictionary while computing the
minimum in (20). The repeated reduced simulations that
take place in the Greedy distance functions just take too
long for those approaches to be feasible with unstructured
dictionaries larger than about 15 entities. Therefore, in
those cases, we evaluated the distance function in only 15
entities, hence the poor performance regarding approxi-
mation quality. The high runtime of those algorithms is to
be understood with the same explanation.

Another advantage of our approach is the guaranteed
fulfillment of the given online error tolerance εtol if the
dictionary is fine enough. The fulfillment of the tolerance
cannot be guaranteed in standard reduced basis methods
as is to be seen in table 1. Here, the maximum error
using the standard RB approach is larger than the given
tolerance of εtol = 0.01.

To underline the flexibility of the online basis construction
we conducted another test. Here we did not prescribe an
error tolerance for the approximation error but we set a
desired online simulation time. Again we conducted online
simulations for 50 randomly chosen parameters using the
standard reduced model generated with a POD-Greedy
algorithm (with a variable number of basis functions) and
the online basis construction procedure using the euclidean
distance measure. The results are shown in Figure 2.

Here we see another nice ability of our approach: Given a
desired online runtime, we are able to compute a pretty
compact, parameter adapted basis that outperforms the
standard approach regarding approximation error by two
orders of magnitude. The estimated error in case of the
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Fig. 2. The estimated approximation error plotted over
the online simulation time for two reduced models
generated with the standard POD-Greedy approach
and with the online euclidean basis construction.

online constructed basis can be kept at an almost constant
level of 0.0022 while the estimated error in the standard
RB case rises to 0.247 for very short online simulation
times.

5. DISCUSSION

We presented new online basis enrichment procedures for
the reduced basis method in the case of evolution equa-
tions, where instead of using a reduced space suited for
the whole parameter domain a local reduced space using
precomputed basis entities is constructed in the online
phase for a desired parameter by combining precomputed
basis entities.

As the constructed reduced space is locally adapted, it
can be of smaller dimension than the reduced space in
standard RB-methods. Hence, the online complexity is
lower and online simulations are faster. Of course, to ob-
tain an overall better performance the online construction
procedure has to be efficient and fast. Note that due to
the smaller dimension of the adapted reduced space, the
error estimators are much more effective.

Another advantage is the flexible control of the approxi-
mation error. In standard RB-methods the (POD-)Greedy
basis generation assures that the approximation error tol-
erance is fulfilled on a set of training points stemming
from the parameter domain. Yet, it is possible that this
error tolerance is violated when performing simulations
for parameters outside the training set. In our approach
we adapt the reduced space so that the approximation
error is lower than a given tolerance for the actually given
parameter. Thereby we can guarantee the fulfillment of ap-
proximation error requirements for any parameter chosen
from the parameter domain as long as the dictionary is
sufficiently large. Furthermore the error tolerance for the
online phase can be chosen almost freely without the need
of reconducting a costly offline phase.

Although the offline time to generate the database of
solutions is in general lower than the offline time to



generate a reduced basis using the POD-Greedy algorithm,
the storage cost for the offline data is higher in our
approaches. This is due to the fact, that we have to store
a wide range of POD-compressed solution trajectories
and projected operator components to allow all possible
combinations of dictionary elements. A way to reduce the
size of the storage requirements could be to restrain the
number of possible combinations for each basis-entity and
thereby omit entries in the matrices of projected operator
components.

Another approach to construct online an even more com-
pact reduced basis is the application of an “online POD-
Greedy” algorithm where in the basis extension steps not
the whole basis entity in a dictionary entry is added to the
actual basis, but we orthogonalize the entity basis to the
actual reduced basis and add the first mode of a POD over
this orthogonalised trajectory as a new basis vector to our
actual reduced basis. However, as even the simpler Greedy
approaches in this work turned out to be too slow, one
would first have to introduce a more sophisticated distance
measure in order to get a competitive online POD-Greedy
approach.
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