
A Software Framework for Reduced Basis
Methods using DUNE-RB and RBMATLAB

Martin Drohmann, Bernard Haasdonk, Sven Kaulmann, and Mario Ohlberger

Abstract Many applications from science and engineering are based on parametrized
evolution equations and depend on time–consuming parameter studies or need to en-
sure critical constraints on the simulation time. For both settings, model order reduc-
tion by the reduced basis approach is a suitable means to reduce computational time.
The method is based on a projection of an underlying high–dimensional numerical
scheme onto a low–dimensional function space. In this contribution, a new software
framework is introduced that allows fast development of reduced schemes for a
large class of discretizations of evolution equations implemented in DUNE. The ap-
proach provides a strict separation of low–dimensional and high–dimensional com-
putations, each implemented by its own software package RBMATLAB, respectively
DUNE-RB. The functionality of the framework is exemplified for a finite–volume
approximation of an instationary linear convection–diffusion problem.

1 Introduction

The reduced basis methods have gained increasing attention in recent years for
stationary–elliptic, instationary–parabolic problems and various systems. In this
contribution, we address the task of model reduction for parametrized scalar evolu-
tion equations. The functionality of the software framework described in this paper
is restricted to linear problems, but during the development of the software con-
cept, we always bear in mind, that an extension to non–linear problems based on
empirical operator interpolation is possible (cf. [3]).

M. Drohmann, S. Kaulmann, and M. Ohlberger
Institute of Computational and Applied Mathematics, University of Münster, Einsteinstr. 62, 48149
Münster, e-mail: mdrohmann, s kaul01, ohlberger@uni-muenster.de

B. Haasdonk
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, 70569 Stuttgart
e-mail: hassdonk@mathematik.uni-stuttgart.de

1

2 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

Software engineering is a major problem for the development of reduced basis
methods, because a reduced basis framework for a certain problem involves many
steps, which can be expensive in both development and execution time. In this pre-
sentation, we show how to develop an extendible framework for linear evolution
equations, based on our DUNE module DUNE-RB and the Matlab based software
package RBMATLAB. This separation into two software packages serves two pur-
poses: First, the use of a high-level programming language like Matlab with a vast
library of mathematical methods accelerates the development and improvement of
the abstract reduced basis methods, while the underlying discretizations can still
be implemented efficiently in DUNE-RB. Second, it makes use of the decompo-
sition of the reduced basis method into two computationally different phases, fre-
quently denoted by the offline-/online-decomposition. During the computationally
and time demanding offline-phase a low–dimensional function space, spanned by
high–dimensional solution snapshots, is generated, which can be used to reduce the
model order of the problem to only few degrees of freedom. Therefore, during the
online-phase, reduced simulations can be computed in real-time and independently
from the original discretization and high–dimensional model data. In this phase, an
interactive user interface, like the one offered by Matlab, turns out to be a useful gift.
We would like to mention, that a similar approach for finite–element discretizations
based on the numerical software package libmesh has recently been developed for
a variety of problems with an affine parameter dependence of the underlying data
functions. [7]

Section 2 contains a very basic description of the reduced basis method for linear
evolution equations. In sections 3.1 and 3.2 the two software packages RBMATLAB
and DUNE-RB are introduced in detail, in terms of functionality and the specifi-
cation of their interfaces. Finally, Section 4 elaborates on an example implemen-
tation for a finite–volume discretization of a linear convection–diffusion problem.
We describe how to implement this scheme in DUNE-RB and how to reduce it in
RBMATLAB.

2 Reduced Basis Method

In this section, we give a very short introduction to the reduced basis method for
linear evolution equations. For a detailed description of the framework, including
discussions on the efficiency of reduced simulations and the generation of reduced
basis spaces by the “POD-Greedy” - algorithm, we refer to [6, 9].

The present study assumes problems of the following kind: For every parameter
vector µ ∈D ⊂Rp, we are looking for a solution trajectory u(µ) : [0,Tmax]→W ⊂
L2(Ω) fulfilling some linear evolution equation of the form

∂tu(t; µ)+L [u(t; µ)] = 0, u(0; µ) = u0(µ)

A Software Framework for Reduced Basis Methods using DUNE-RB and RBMATLAB 3

with suitable boundary conditions. Here W ⊂ L2(Ω) is a Hilbert space of functions
on the spatial domain Ω and L : W → R denotes a spacial differential operator.

There is a large number of available numerical schemes for solving problems
of this kind. Many of those, which are frequently used, like finite–element, finite–
volume or discontinuous Galerkin discretizations can be cast into a framework,
where the solutions are approximated in a discrete function space Wh ⊂ W of di-
mension H. First–order time discretizations then lead, for a given parameter vector
µ , to a sequence of solution snapshots uk

h(µ) ∈Wh for k = 1, . . . ,K computed by an
initial projection of the initial data function

u0
h(µ) = Ph [u0(µ)] (1a)

with a projection operator Ph : W →Wh and iterative solutions of the equation

uk+1
h +∆ tkL I

h (µ)
[
uk+1

h (µ)
]
= uk

h(µ)−∆ tkL E
h (µ)

[
uk

h(µ)
]

(1b)

for k = 1, . . . ,K with suitable time–step sizes ∆ tk. In the present study, we make the
assumption that both the discrete operators L I

h (µ), L
E

h (µ), the initial data function
Ph [u0(µ)] and the constant function b(µ) depend affinely on the parameter, i.e.
they can be written in separable forms

L I
h (µ) =

QI

∑
q=0

σI(µ)L
I,q

h , L E
h (µ) = b(µ)+

QE

∑
q=0

σE(µ)L
E,q

h ,

Ph [u0(µ)] =

Qu0

∑
q=0

σ
q
u0
(µ)uq

0, b(µ) =
Qb

∑
q=0

σ
q
b (µ)b

q,

(2)

with parameter dependent coefficient functions σ
q
I ,σ

q
E ,σ

q
u0 ,σ

q
b : D→R, constant

functions uq
0,b

q ∈ W and linear operators L I,q
h ,L E,q

h : W → W depending on the
space variable only.

If we assume that there is an N � H dimensional orthonormal basis ΦN :=
{ϕn}N

n=1 for another discrete function space Wred ⊂ Wh which somehow is a good
approximation of the manifold of sought solutions

{
uk

h(µ) | µ ∈D ,k = 0, . . . ,K
}

,
the numerical scheme (1a)-(1b) can be reduced by a Galerkin projection onto this
so–called reduced basis space. For this, let Pred : Wh→Wred be a Galerkin projec-
tion operator fulfilling the equation

〈u−Pred [u] ,ϕ〉= 0 ∀u ∈Wh ∀ϕ ∈Wred.

Then for each µ ∈ D , sequences of low–dimensional solution snapshots uk
red(µ) ∈

Wred for k = 0, . . . ,K are obtained through the reduced numerical scheme

u0
red(µ) = Pred ◦Ph [u0(µ)] , (3a)

uk+1
red +∆ tkPred ◦L I

h

[
uk+1

red (µ)
]
= uk

red(µ)−∆ tkPred ◦L E
h

[
uk

red(µ)
]
. (3b)

4 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

These reduced solutions approximate the actual numerical solution in the higher
dimensional discrete function space. In order to understand, why the above numer-
ical scheme (3a)-(3b) can be computed efficiently, we switch to a vector based for-
mulation of the numerical scheme by identifying the reduced solution sequences
uk

red(µ) = ∑
N
n=1 ak

n(µ)ϕn with their coefficient vectors

ak(µ) :=
(

ak
1(µ), . . . ,a

k
N(µ)

)t
∈ RN

and compute these vectors for each parameter vector µ ∈D with the scheme

a0(µ) = u0(µ), (4a)

ak+1(µ)+∆ tLI(µ)
[
ak+1(µ)

]
= ak(µ)−∆ tkLE(µ)

[
ak(µ)

]
, (4b)

where the N-dimensional vectors u0(µ) and b(µ) and the N ×N sized matrices
LI and LE are given by linear combinations of precomputed vectors or matrices,
respectively.

LI(µ) =
QI

∑
q=1

σ
q
I (µ)L

q
I , LE(µ) = b(µ)+

QE

∑
q=1

σ
q
E(µ)L

q
E ,

u0(µ) = b(µ)+
Qu0

∑
q=1

σ
q
u0
(µ)uq

0, b(µ) =
Qb

∑
q=1

σ
q
b (µ)b

q.

The entries of the precomputed vectors uq
0 and bq are computed as the projections

onto the basis functions(
uq

0

)
n :=

∫
Ω

uq
0ϕn,

(
bq

0

)
n :=

∫
Ω

bq
ϕn (5a)

and the matrices Lq
I and Lq

E are weighted gramian matrices with entries

(
Lq

I

)
nn′ :=

∫
Ω

L I,q
h [ϕn′]ϕn,

(
Lq

E

)
nn′ :=

∫
Ω

L E,q
h [ϕn′]ϕn (5b)

In order to gain control of the approximation error induced by the Galerkin projec-
tion onto reduced basis space, efficiently computable a posteriori error estimators
are necessary. For linear problems, such estimators η(µ) assessing the error be-
tween reduced and detailed simulations maxK

k=0

∥∥uk
h(µ)−uk

red(µ)
∥∥ ≤ η(µ) can be

deduced in a way such that they integrate into the concept of offline-/online decom-
position.

For details on a posteriori error estimators and the generation of a reduced basis
space Wred with the so–called “POD–Greedy” algorithm, we refer to [6].

A Software Framework for Reduced Basis Methods using DUNE-RB and RBMATLAB 5

3 Software Concept

As mentioned in the introduction, the generation of the reduced basis method is split
into two parts. The low–dimensional computations and abstract algorithms for the
generation of the reduced basis methods are implemented in RBMATLAB, whereas
DUNE-RB provides algorithms and data structures for the manipulation of the high–
dimensional reduced basis space, and implements interfaces to several classes of
parametrized high–dimensional problems, e.g. to linear evolution equations of the
form (1a)-(1b). The two software packages can communicate by

1. either compiling DUNE-RB as a mex-library, which allows it to be called directly
from the Matlab prompt, or

2. via TCP/IP communication over sockets.

Both methods rely on an encapsulation of Matlab data structures. For the first choice
the memory handling of these data structures is kept in Matlab, whereas in the
second case, data needs to be copied between both processes and re-instantiated
on the DUNE-RB side as C++ data structures. Nevertheless, the second approach
is assessed as more advantageous by the authors, because the compilation as a
mex-library sets certain requirements on compilers and compiler options, as well
as library dependencies. Furthermore, the TCP/IP interface allows to easily run
the high–dimensional and the low–dimensional computations on different hardware
platforms, each suitably chosen for its needs (server/client model).

In this section, the structure and the capabilities of both software packages are
presented with a focus on the user interface methods for an already implemented
numerical scheme. The implementation of a particular numerical scheme and the
realization of a resulting reduced basis method for a parametrized linear evolution
equation is then described in Section 4.

3.1 RBMATLAB

The Matlab based software package RBMATLAB can be seen as a user interface for
both the offline and the online phase of a reduced–basis–method execution cycle.
Figure 1 illustrates the course of action for all reduced basis method implementa-
tions independent from the underlying problem. The headers in the boxes are code
snippets as they are executed in RBMATLAB. Gray shaded boxes indicate interface
functions where the arguments and return values are communicated to DUNE-RB
via TCP/IP sockets and the actual computations are executed with DUNE. Steps 1
and 3 gather high–dimensional information needed for the generation of the reduced
basis and step 4 finally reduces this data for use with efficient simulations by the re-
duced scheme. The actual implementation for these high–level functions is specified
by the central object called model. The crucial attributes, this objects specifies, are
(i) the problem type of the underlying parametrized partial differential equations

6 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

1. model data=gen model data(model)

Constructs model specific high dimensional data for simulations, e.g. the grid.

2. sim data=detailed simulation(model, model data)

Computes a solution trajectory {uk
h(µ)}K

k=0 via the numerical scheme (1a)-(1b).

3. detailed data=gen detailed data(model, model data)

Generates reduced basis space Wred by calling the interface methods
detailed data=init data basis(model, detailed data)

Initialize reduced basis space

and
detailed data=rb extension PCA(detailed data, µ, m)

Extend reduced basis space by PCA({Pred[uk
h(µ)]−uk

h(µ)]}K
k=0,m)

4. reduced data=gen reduced data(model, detailed data)

Generates reduced vectors and matrices u(µ), b(µ), LI(µ) and LE(µ) by calling
the interface method
[L I, L E, b, ...]=rb operators(model, detailed data)

Generates reduced vectors and matrices (5a)-(5b)

rb sim data=rb simulation(model, reduced data)

• Computes a solution trajectory
{

uk
red(µ)

}K
k=0 via the numerical scheme (3a)-(3b).

• Computes efficient a posteriori estimator η(µ) estimating the error
maxK

k=0

∥∥uk
red(µ)−uk

h(µ)
∥∥.

Fig. 1 Illustration of the course of action for reduced basis methods in RBMATLAB. Method
calls delegated to DUNE-RB are surrounded with gray shaded boxes. The data structures
model data, sim data and detailed data are high–dimensional and depend on O(H),
reduced data, [L I, L E, b, ...] and rb sim data are low–dimensional data
structures depending on O(N).

and their discretizations, (ii) the chosen reduced basis generation strategy and (iii)
the link to the numerical scheme in DUNE-RB.

Apart from linear evolution problems of the form (1a)-(1b) there is also support
for non–linear problems and discretization schemes where the data fields do not
depend affinely on the parameter as required in (2). For this purpose, RBMATLAB
provides the method of empirical operator interpolation proposed in [3].

For the reduced basis generation, RBMATLAB implements some variants, which
are all an adaptation of the aforementioned “POD–Greedy”-algorithm. Noteworthy
are the possibilities to adaptively refine the subset of the parameter space D from
which the reduced basis functions are chosen [5] and to generate smaller reduced
basis spaces for different subspaces of the parameter space [4].

For rapid prototyping, RBMATLAB contains a library of finite–volume discretiza-
tions for partial differential equations, which is based on triangular or rectangu-
lar grids in two dimensions and implements the interface for communication with
the reduced basis algorithms in RBMATLAB. This interface can actually be imple-
mented by arbitrary software packages providing numerical schemes for partial dif-
ferential equations. In the next section, we focus on the software package DUNE-RB
bringing the flexibility and power of DUNE to the reduced basis world.

A Software Framework for Reduced Basis Methods using DUNE-RB and RBMATLAB 7

3.2 DUNE-RB

The DUNE module DUNE-RB for the high–dimensional computations is based on
the discretization module DUNE-FEM providing a layer of abstraction for discrete
function spaces and differential operators [2]. DUNE-RB extends the concepts from
DUNE-FEM and provides interface classes for (i) solution trajectories

{
uk

h(µ)
}K

k=0,
(ii) reduced basis spaces Wred and (iii) decomposed discrete operators of the form
Lh [·] = ∑

Q
q=1 σq(µ)L q

h [·], where the notations are adopted from Section 2. This
section gives an overview of the available implementations for these interfaces in
DUNE-RB. In the end of this section, we elaborate on the implementation of the
communication interface to RBMATLAB and further low–level functionality.

Interface classes: (i) The data structure for storing either a solution trajectory or
reduced basis functions can in both cases be seen as a list of discrete functions from
the high–dimensional function space Wh. Such lists are given as implementations
of an abstract DiscreteFunctionListInterface class. At the moment
DUNE-RB provides the two implementations DiscreteFunctionList_xdr
for efficient storage of the discrete functions on the harddrive in the xdr format
and DiscreteFunctionList_mem holding all the discrete functions in main
memory.

(ii) The reduced basis space class ReducedBasisSpace is derived from
the DUNE-FEM interface DiscreteFunctionSpaceInterface with a base
function list implemented as a DiscreteFunctionListInterface. In con-
trast to classical finite–element spaces implemented in DUNE-FEM, this class offers
additional methods for manipulating the space by adding and changing global basis
functions.

(iii) DUNE-FEM introduces the concept of local operators which are defined
by iteratively applying the operator to local representations of the argument’s or
destination’s functions living on a grid entity and its neighbours only. This con-
cept allows to implement matrix–free discrete operators saving memory and band-
width, and to concatenate these operators without the overhead of further grid iter-
ations, which are very expensive at least for unstructured grids. DUNE-RB extends
this concept by LocalParametrizedOperatorInterface classes, enrich-
ing the local operator implementation by the method coefficient() scaling the
operator’s output by the parameter dependent coefficient function. A sum of such
parametrized and locally implemented operators is managed by decomposed opera-
tors implementing the DecomposedOperatorInterface. Such instances are
actually discrete operators by their own, evaluating to the entire sum, but also pro-
viding access to the coefficients– and parameter–independent operator parts, which
are needed for construction of reduced matrices.

Decomposed operators are implemented for general finite–volume operators for
various numerical flux implementations, like the Lax–Friedrichs flux. The decom-
position of these operators is derived automatically from the affinely parameter de-
pendent decomposition of the used data functions. This will be described in more
detail, in Section 4.2.

8 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

Communication interface: The communication interface to RBMATLAB is sim-
ply achieved by instantiating an RBSocksServer object provided with a template
parameter derived from RBMatlabBase. The class given as the template parame-
ter needs to call the derived method registerFunction("op", mp) for each
operation "op" that shall be available for triggering from the other side, binding it
to a program entry point given by the second argument mp. Calling the method
run() on the server object then puts the program into “listening” mode awaiting
orders from RBMATLAB.

Furthermore, this DUNE module provides a singleton class Parameter, which
globally manages the parameter vector µ ∈D in such a way that variables depending
on the parameter vector simply delegate the evaluation of these magnitudes to the
Parameter singleton instance.

4 Example: Linear evolution equation

In this section, we analyze the reduced basis method for a linear instationary
convection–diffusion problem implemented in DUNE for two and three dimensions.
The considered problem looks as follows: For each parameter vector µ ∈D , we are
looking for solutions u(t; µ) ∈ BV (Ω)∩L∞(Ω)⊂ L2(Ω) fulfilling the equations

∂tu(t; µ)+v(µ)∇u(t; µ)−D(µ)∆u(t; µ) = 0 in Ω × [0,Tmax] (6a)
u(0; µ) = u0 in Ω ×{0} (6b)
u(t; µ) = udir on Γdir× [0,Tmax] (6c)

(v(µ)∇u(t; µ)) ·n = 1 on Γneu× [0,1] (6d)

on a rectangular domain Ω := [0,1]d with d ∈ {2,3} and Tmax = 1.0. In our
computations, we consider a three dimensional parameter space D := [0,0.001]×
[0.3,1]× [0.3,1] and the parametrized data functions are given by D(x; µ) = µ1
and v(µ) = (µ2,µ3,0.1). The Dirichlet boundary function is given by udir = 0.01
and the initial data function u0(x) = exp(−10‖x−0.5‖2)χ‖x−0.5‖2≤0.2 implements a
non–smooth circle–shaped concentration. The domain’s boundary is separated into
an “inflow” boundary Γdir := {0}× [0,1]∪ [0,1]×{0}with a Dirichlet condition and
an “outflow” Neumann boundary Γneu := ∂Ω\Γdir.

4.1 Finite–volume discretization

The problem is discretized with a purely explicit finite–volume scheme, where the
convection part is discretized by a Lax–Friedrichs flux. For a discretization of the
form (1a)-(1b), we therefore need to specify the operator L E

h (µ). In our example,
the implicit operator L I

h (µ) is set to zero. For the time discretization we choose a

A Software Framework for Reduced Basis Methods using DUNE-RB and RBMATLAB 9

global time–step size ∆ t, which is small enough such that a CFL–type condition is
fulfilled for all parameters µ ∈D . Before we define the implemented discretization
operator, however, we need to fix some notations concerning the tessellation of the
domain: T := {ei}H

i=1 denotes a numerical grid consisting of H disjoint polygonal
elements forming a partition of the domain Ω̄ =

⋃H
i=1 ēi. For each element ei, i =

1, . . . ,H, we assume that there exist

• certain points xi lying inside the element ei, such that points in adjacent elements
are perpendicular to the corresponding edges and

• a set of indices N (i) := Nin(i)∪Ndir(i)∪Nneu(i) counting the element’s edges
ei j for j ∈ N (i), where Nin corresponds to edges between inner elements of
the domain or elements adjacent by cyclical boundary conditions, Ndir includes
those edges on the Dirichlet boundary and Nneu those ones on the Neumann
boundary of the domain.

On each edge ei j, we denote their barycenters by xi j and their outer unit normals by
ni j.

Furthermore, we define the finite–volume space Wh as the span of base func-
tions ψi ∈ W , i = 1, . . . ,H being piecewise constant on the i-th cell ei and vanish-
ing elsewhere. For a function uh ∈ Wh its degrees of freedom (DoFs) are given by
uh,i = uh(xi), allowing a DoF–wise definition of the explicit discretization operator

(
L E

h (µ) [uh]
)

i =
1
|ei| ∑

j∈Nin(i)
glf

i j(uh,i,uh, j)+gdiff
i j (uh,i,uh, j)

+
1
|ei| ∑

j∈Ndir(i)
glf

i j(uh,i,udir(xi j))+gdiff
i j (uh,i,udir(xi j))

+
1
|ei| ∑

j∈Nneu(i)

∫
ei

uneu

(7)

with numerical fluxes, c.f. [8]

glf
i j(u,v) :=

1
2

(
v(µ) ·ni j(u+ v)+

1
λ
(u− v)

)
and (8)

gdiff
i j (u,v) :=

|ei j|
|xi− x j|

D(xi j; µ)(u− v). (9)

Remark 1. In order to fullfil the requirements on the separable form of the operator
as stated in (2), it suffices to require the data functions u0,udir,D and v to be affinely
parameter dependent. It can be easily observed that a decomposition into a sum of
products of purely parameter and space dependent data functions is inherited by
these linear numerical fluxes and, therefore, leads to the desired decomposition of
the discrete operator.

10 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

4.2 Implementation

A major design principle of DUNE-RB is to enable quick development of new nu-
merical schemes without knowledge of the reduced basis method framework. For
this purpose, DUNE-RB provides code snippets for easy construction of programs
run as a TCP/IP server controlled by RBMATLAB.

Listing 1 (Excerpt from a typical main file)

12 typedef DefaultDescr
13 < LinEvolExplicitDiscretization,
14 ConvDiffModel > Description;
15

16 typedef ProblemTraits
17 < LinEvolDefault, LinEvolFacade,
18 RBSocksServer, Description > ServerTraits;

23

24 %#include <dune/rb/matlab/duneserver/main.inc>
25 #include <main.inc>

Listing 1 shows an example code file for such a server, where the developer only
needs to provide two Traits class declarations. The ServerTraits class pro-
vides the full declaration of the server by specifying the interface methods made
available in RBMATLAB (in this case LinEvolFacade) and the actual entry
points of these commands (LinEvolDefault). The latter one, of course, depends
on the problem definition and the discretization method, specified by the typedef
Description This class again consists of

• an abstract problem type LinEvolExplicitDiscretization implement-
ing the numerical scheme (1a)-(1b) in this case, and

• the declaration for the spatial operators L I
h (µ) and L E

h (µ) provided by the
model class ConvDiffModel.

As described in Remark 1, the concept of inheriting the decomposed structure of
discrete operators from data functions is also implemented in DUNE-RB, which
further simplifies the definition of the aforementioned model class.

4.3 Results

In Figure 2 we demonstrate the behaviour of the error estimator during the construc-
tion of the reduced basis via the “POD–Greedy” algorithm. Plotting the error bound
in logarithmic scale against the size of the reduced basis, varying from one to 30, we
are able to see an approximately exponential decay of the error, as expected from
the theory.

A Software Framework for Reduced Basis Methods using DUNE-RB and RBMATLAB 11

Fig. 2 Maximum of error
bound over a set of 216 pa-
rameters for different reduced
basis sizes in logarithmic
scale.

0 5 10 15 20 25 30
10−5

10−4

10−3

10−2

Basis Size

m
ax

 e
rr

or

High-dim.
Solution (s)

RB Generation
(s)

Gen. of Online
Matrices (s)

Reduced
Sim. (s)

Recon-
struction

(s)
Grid Cells L∞ −L2-Error

2D Transport
(25 Base
Functions)

11 71 6.69 0.11 0.33 1,024 1.42 ·10−3

2D Transport
(50 Base
Functions)

11 2,250 21 0.15 0.42 1,024 4.64 ·10−4

3D Transport
(50 Base
Functions)

944 1.57 ·105 4,659 0.15 26 32,768 9.11 ·10−4

Table 1 Numerical results for a transport problem in 2D and 3D with non–divergence–free ve-
locity. The given error is the mean error between full and reduced simulation, tested with 250
randomized parameter values

In Table 1 we present runtimes for the model problem described in Section 4 in
two and three space dimensions as generated by our implementation. Column one
gives the time for the computation of one trajectory using a YaspGrid as a grid
manager with the numbers of cells as indicated in column six. Columns two and
three give the important numbers for the offline part of the reduced basis algorithm:
The time for the “POD–Greedy” algorithm and the Galerkin projection step, that
is, the computation of the low–dimensional matrices. In columns four and five we
see the runtimes for the online part of the RB method: the solution of the reduced
system and the reconstruction of a high–dimensional function from a reduced one,
respectively.

With increasing size of the reduced basis from row one to two, and as well, with
growing world dimensions, one can observe a significant growth in the runtime for
the offline algorithm. Still, the rather time consuming offline phase, with a total
runtime of about 45 hours in the 3D case, pays off with a speedup–factor of about
25 and 20 in the 2D cases and even 36 for the 3D case (online phase of the RB
method compared to one high–dimensional solution). All these factors consider the
reconstruction step to be part of the online phase, which is not the case if one is
only interested in the value of an output functional, for example. Considering only
the run–times for one high– and ones low–dimensional solution, the speedup–factor
grows to 6293 in the 3D case. In all these cases we deal with a relative error of 10−3

to 10−4, which is quite acceptable.

12 M. Drohmann, B. Haasdonk, S. Kaulmann, and M. Ohlberger

5 Conclusion and Outlook

We developed a software framework for the reduced basis methods simplifying both
the development of new reduced basis algorithms and the implementation of new
model problems and numerical schemes. An example for a finite–volume discretiza-
tion of a linear evolution equation has been implemented in our software module
DUNE-RB demonstrating the flexibility of DUNE by using the same model descrip-
tion on domains with different dimensions.

Future work will deal with the implementation of a library of more complex test
cases and the extension of the software framework to non–linear problems and to
systems of parametrized partial differential equations. Furthermore, new ideas for
the generation of reduced basis spaces will be implemented in RBMATLAB and
evaluated with the aforementioned test cases. Theoretically, most of the algorithms
implemented in DUNE-RB can be run in parallel because of the parallel capabilities
of DUNE, but practical tests of this functionality are still outstanding.

Finally, we plan to publish both software packages with installation instructions
and documentation on our project homepage http://morepas.org

References

1. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ’empirical interpolation’ method: appli-
cation to efficient reduced-basis discretization of partial differential equations. C. R. Math.
Acad. Sci. Paris Series I 339, 667–672 (2004)

2. Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adap-
tive discretization schemes: abstraction principles and the DUNE-FEM module. Computing
90, 165–196 (2010)

3. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced Basis Approximation for Nonlin-
ear Parametrized Evolution Equations based on Empirical Operator Interpolation. Tech. rep.,
FB10, University of Münster (2010)

4. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation
approach for parametrized model reduction based on adaptive grids in parameter space. Tech.
rep., University of Stuttgart (submitted) (2010)

5. Haasdonk, B., Ohlberger, M.: Adaptive basis enrichment for the reduced basis method ap-
plied to finite volume schemes. In: Proc. 5th International Symposium on Finite Volumes for
Complex Applications, pp. 471–478 (2008)

6. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of
parametrized linear evolution equations. M2AN, Math. Model. Numer. Anal. 42(2), 277–302
(2008)

7. Knezevic, D., Petterson, J.: A high-performance parallel implementation of the certified re-
duced basis method. Submitted to CMAME. (2010)

8. Kröner, D: Numerical Schemes for Conservation Laws. John Wiley & Sons and Teubner
(1997)

9. Patera, A., Rozza, G.: Reduced Basis Approximation and a Posteriori Er-
ror Estimation for Parametrized Partial Differential Equations. MIT (2007).
http://augustine.mit.edu/methodology/methodology bookPartI.htm. Version 1.0, Copy-
right MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs
in Mechanical Engineering

