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Abstract odern simulation scenarios require real-time or many query responses from a simulation
model. This is the driving force for increased efforts in model order reduction for high dimensional
dynamical systems or partial differential equations. This demand for fast simulation models is even
more critical for parametrized problems. There exist several snapshot-based methods for model order
reduction of parametrized problems, e.g. proper orthogonal decomposition (POD) or reduced basis
(RB) methods. An often faced problem is that the produced reduced models for a given accuracy
tolerance are still of too high dimension. This is especially the case for evolution problems where the
model shows high variability during time evolution. We will present an approach to gain control over
the online complexity of a reduced model by an adaptive time domain partitioning. Thereby we can
prescribe simultaneously a desired error tolerance and a limiting size of the dimension of the reduced
model. This leads to fast and accurate reduced models. The method will be applied to an advection
problem.
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1 INTRODUCTION

Simulations of complex parametrized evolution problems often require high dimensional discrete models
due to the need of a high space resolution of the discretization. As a consequence these models are
not suited for multi-query tasks like parameter optimization, statistical analysis or inverse problems
because the calculation of solutions for many different parameters can take an excessive amount of
time. This is the motivation for the application and the development of model reduction techniques
for parametrized models.

Projection based model reduction techniques are widely used, such as proper orthogonal decompo-
sition [11], Krylov-subspace [1] or reduced basis methods [9]. In these methods the discrete operators
are projected onto a reduced space so that the problem can be solved rapidly in this lower dimensional
space.

However, if the problem depends on many parameters or if the solution shows a high variability with
the parameters, a relatively high dimensional reduced space is needed in order to be able to represent
all possible solution variations well, which leads to long online simulation times. This effect is even
considerably increased when treating evolution problems with significant solution variations in time.
These difficulties play a role particularly in case of real time applications, where full control over the
online simulation time is required. Another aspect is the fact that projection based model reduction
techniques generate small but full matrices while common discretization techniques (as FEM) lead to
large but sparse matrices. It is even possible that calculating a solution with the reduced model is more
time consuming than the simulation of the original model.

Consequently, the goal is to provide methods for generating reduced models being simultaneously
accurate (concerning the approximation error) and performant (concerning the online simulation time)
independent of the complexity in parameters and the complexity in the time evolution of the original
problem. There exist approaches to control the online complexity of reduced models in parameter
space in [3] and [5]. However, the same approximation space is used here over the whole time domain.
We propose to generate a segmentation of the time interval into several smaller intervals and to
construct a reduced approximation space on each of the time intervals. By an adaptive partitioning
of the time domain we can even guarantee the accuracy of the reduced model with respect to a fixed
error tolerance while limiting simultaneously the dimension of the approximation space per interval.
Although the method can be applied to various projection based reduction techniques, we will put
the focus here on the reduced basis (RB) method. An introduction to the RB method applied to time
dependent problems can be found in [4],[9] and [6]. In literature we did not find similar approaches for
a partitioning of the time domain in model reduction. Yet, in [2] an adaptive approach of generating
collateral reduced bases on different time domains for the use in empirical interpolation of nonlinear
operators was applied. An adaptive choice of the size of the reduced space at every time step during
online simulation was realized in [7]. This approach optimizes the number of basis vectors used for the
approximation of the solution but it does not give full control over the online complexity by strictly
limiting the size of the reduced basis.

The current presentation is structured as follows. In Section 2 we introduce the general evolution
equation and some notations. In Section 3 we give a brief introduction to the reduced basis method as
model reduction technique of choice. In Section 4 the time domain partitioning approach is presented
and a possible algorithm for adaptively partitioning the time domain is developed. The application of
the method to an advection problem can be found in Section 5 followed by conclusions and an outlook
in Section 6.

2 PROBLEM SETTING

We consider the general linear parameter dependent evolution equation

∂tu(·, t;µ) = L(t;µ)u(·, t;µ) + b(·, t;µ) in Ω (1)

u(·, 0;µ) = u0(·;µ) in Ω (2)

with solutions u(·, t) from a Hilbert space X for all t ∈ [θ, T ] and suitable boundary conditions. The
parameter vector µ stems from a possible set of parameters P ⊆ R

p. After discretization in space (by
finite element or finite volume techniques, for example) and a discretization of the time interval [θ, T ]
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by K + 1 equidistant time instants tk := k∆t + θ and a first order time integration we obtain the
discrete evolution scheme

(

Id−∆tLh,Im(t
k;µ)

)

uk+1
h (µ) =

(

Id+∆tLh,Ex(t
k;µ)

)

uk
h(µ) +∆tbh(t

k;µ), (3)

u0
h(µ) = P

(

u0(x;µ)
)

, (4)

producing spatial solutions uk
h(µ) = uh(t

k;µ) in a discrete function space Xh ⊂ X with dim(Xh) = H
at time step k = 0, . . . ,K, where P : X → Xh denotes the L2 orthogonal projection operator. In order
to obtain a very general formulation for the discrete evolution scheme, we included operator splitting
of the operator L into an implicit part Lh,Im and an explicit part Lh,Ex. For details we refer to [6].
For the separation of the procedure into a preparing offline phase and a rapid online simulation phase
we need the operators Lh,Im and Lh,Ex as well as the right hand side b and the initial conditions to be
parameter separable:

Lh,Im(t
k,µ) =

QLIm
∑

q=1

Θq
LIm

(tk;µ)Lq
h,Im bh(t

k;µ) =

Qb
∑

q=1

Θq
b (t

k;µ)bq (5)

Lh,Ex(t
k,µ) =

QLEx
∑

q=1

Θq
LEx

(tk;µ)Lq
h,Ex u0(µ) =

Qu0
∑

q=1

Θq
u0
(µ)uq

0. (6)

The coefficients Θq

[·](t
k; ·) : P → R can be evaluated rapidly in the online phase.

3 REDUCED BASIS METHOD

Although the technique of time domain partitioning in the generation of reduced parametrized models
presented here can also be applied to other model reduction methods, we will focus here on the
application of the reduced basis method to illustrate and explain the procedures.

3.1 REDUCED EVOLUTION SCHEME

In RB methods the reduced basis ΦN consisting of basis vectors ϕn is constructed by solution snap-
shots corresponding to several parameters. The basis vectors ϕn, n = 1, . . . , N span the space XN =
span(ΦN ) = span{ϕ1, ..., ϕN} ⊆ Xh with the inner product inherited from X . We assume that the
basis vectors ϕn are orthonormal 〈ϕn, ϕm〉 = δnm for n,m = 1, ..., N . For the solution in the reduced
space we start with the ansatz

uk
N (µ) =

N
∑

n=1

akn(µ)ϕn(x). (7)

By a Galerkin projection of (3) onto XN using (7) we obtain the reduced evolution scheme

(

Id−∆tLIm(t
k+1;µ)

)

ak+1 =
(

Id+∆tLEx(t
k;µ)

)

ak +∆tb(tk;µ) (8)

a0n =
〈

u0
h(µ), ϕn

〉

∀n = 1, ..., N (9)

with ak = (ak1 , ..., a
k
N )T . The reduced operators LEx(t

k;µ),LIm(t
k;µ) in equation (8) are Gramian-like

matrices with entries (LEx)n,m (tk;µ) =
〈

Lh,Ex(t
k;µ)ϕm, ϕn

〉

and

(LIm)n,m (tk;µ) =
〈

Lh,Im(t
k;µ)ϕm, ϕn

〉

respectively for n,m = 1, ..., N . The projected right hand

side vector b(tk;µ) has components (b)m (tk;µ) =
〈

b(tk;µ), ϕm

〉

for m = 1, ..., N . All quantities and
operators in the reduced evolution scheme (8) are of low dimension N and are independent of the
original discrete space dimension H.
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In order to circumvent conducting a Galerkin projection for every new parameter we use the
property of parameter separability of the operators. Thereby, we can calculate in an offline phase the
operator components projection

(Lq
Ex)n,m =

〈

Lq
h,Exϕm, ϕn

〉

(bq)m = 〈bq, ϕm〉 (10)

(Lq
Im)n,m =

〈

Lq
h,Imϕm, ϕn

〉

(

a0,q
)

m
=

〈

uq
0,h, ϕm

〉

(11)

where Lq
Ex,L

q
Im ∈ R

N×N and bq ∈ R
N . In order to assemble assemble reduced operators of a numerical

scheme for an arbitrary parameter µ ∈ P, we only need to compute linear combinations of these small
components with coefficients Θq

[·]:

LEx(t
k,µ) =

QLEx
∑

q=1

Θq
LEx

(tk,µ)Lq
Ex b(tk,µ) =

Qb
∑

q=1

Θq
b (t

k,µ)bq (12)

LIm(t
k,µ) =

QLIm
∑

q=1

Θq
LIm

(tk,µ)Lq
Im a0(µ) =

Qu0
∑

q=1

Θq
u0(µ)a

0,q (13)

3.2 A-POSTERIORI ERROR ESTIMATION

Reduced basis methods provide a-posteriori error estimators
∥

∥uk
h(µ)− uk

N (µ)
∥

∥ ≤ ∆k(µ) bounding the
approximation error between the reduced solution and the high-dimensional discrete solution for all
k = 0, . . . ,K. During the online simulation such an upper bound for the approximation error can
rapidly be calculated [4, 6, 10].

3.3 REDUCED BASIS GENERATION BY POD-GREEDY ALGORITHM

In reduced basis methods a common approach to build up a reduced basis space is the use of the
POD-Greedy algorithm in time dependent cases [3, 6, 8]. In every loop of the POD-Greedy algorithm,
we search on a training set Mtrain of parameters the one parameter for which the reduced solution
produces the highest estimated error. Next, a high dimensional detailed solution is calculated for this
parameter. A POD over the time sequence of projection errors is performed and the first mode (or
another fixed number of k modes) is added as a new basis vector to the existing reduced basis. This
procedure is repeated until the maximum error estimator falls beneath a given tolerance.

4 TIME DOMAIN PARTITIONING

The basic idea is to construct a segmentation of the time domain into several intervals τi and to create
reduced bases for each of these time intervals. In analogy to the parameter domain partitioning [3, 5]
these specialized reduced bases on the time intervals require less basis vectors to approximate the
solutions with a given error tolerance. An adaptive partitioning of the time domain allows to fix the
maximum number of basis vectors per time interval Nmax while keeping the overall approximation
error below the tolerance εtol.

We assume that the whole time domain [θ, T ] is subdivided into Υ time intervals τ1, ..., τΥ with

τ1 := [θ, tκ(1)], τ2 := [tκ(1), tκ(2)], ... τΥ := [tκ(Υ−1), T ] so that [θ, T ] =
Υ
⋃

i=1

τi. We define that κ(i) is the

index of the time step at the joint border between interval i and i+ 1 so that τi ∩ τi+1 = tκ(i). tκ(0) is
defined to be θ.
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For every time domain interval τi, i = 1, ..., Υ we assume to have a reduced basis Φi = {ϕi,1, . . . , ϕi,Ni
}

of size Ni which spans the reduced solution space XNi
= span(Φi) for this time interval. We approxi-

mate the solution in this time interval τi using the appropriate reduced basis Φi of the segment in the
ansatz

uk
Ni
(µ) =

Ni
∑

n=1

akn,i(µ)ϕn,i ∈ XNi
. (14)

In an offline phase the reduced bases for every time interval are generated by starting the POD-Greedy
early stopping algorithm (see Algorithm 1) on every part of the time interval. As we want to generate
a basis representing well the solution variability on their time interval, we only consider the error
produced on the actual domain for the algorithm. The reduced operator components are calculated
according to (11) for every interval. In the online simulation phase the reduced evolution scheme (8) is

conducted on every time interval. In order to obtain the “initial coefficients” a
κ(i−1)
i at the first time

step of a new time interval we perform an orthogonal projection of the solution at the last time step

of the previous interval u
κ(i)
Ni−1

onto the reduced space XNi
of the current interval:

〈

u
κ(i)
Ni−1

(µ)− u
κ(i)
Ni

(µ), ϕm,i

〉

= 0 (15)

for all m = 1, . . . , Ni. With the ansatz (14) in (15) and assuming orthonormal bases we obtain

a
κ(i)
i (µ) = T (i−1,i)a

κ(i)
i−1 (µ) with (T (i−1,i))m,n = 〈ϕm,i, ϕn,i−1〉 for n = 1, . . . , Ni−1 and m = 1, . . . , Ni

and ak
i =

(

ak1,i, . . . , a
k
Ni,i

)T
. The projection error ∆pi−1,i can be calculated rapidly online by

∆pi,i+1(µ) =
∥

∥

∥
u
κ(i)
Ni

(µ)− u
κ(i)
Ni+1

(µ)
∥

∥

∥

2
=

√

(

a
κ(i)
i (µ)

)T

a
κ(i)
i (µ)−

(

a
κ(i)
i+1 (µ)

)T

a
κ(i)
i+1 (µ).

(16)

This can be used to derive a-posteriori error estimators for our enhanced scheme.

Proposition 1 Let be rki (µ) = uk
h(µ)−uk

Ni
(µ) the approximation error in the time interval τi at time

step k with κ(i− 1) < k ≤ κ(i). If assuming that ||r01(µ)|| = 0 and that the implicit operator Lh,Im is
negative definite, then the error can be bounded by ||rki (µ)|| ≤ ∆k(µ) with

∆k(µ) =

k
∑

j=1

Ck−j(||Resji (µ)||+ ||Res
(j−1)
proj (µ)||). (17)

C > 0 is a constant depending on the explicit operator Lh,Ex. The residual is defined as

Resk+1
i (µ) =

(

Id−∆tLh,Im(tk+1;µ)
)

uk+1
Ni

(µ)

−
(

Id+∆tLh,Ex(t
k;µ)

)

uk
Ni
(µ)−∆tbkh(µ)

(18)

and i is chosen appropriately to the according time step κ(i − 1) < k ≤ κ(i). The projection residual

Resjproj is defined as Reskproj(µ) =
Υ−1
∑

i=1

δκ(i)k∆pi,i+1(µ) where δκ(i)k is supposed to be the Kronecker

delta.

Proof In general we can estimate the norm ||rki (µ)|| of the approximation error by putting the definition
of the approximation error rk(µ)i = uk

h(µ) − uk
Ni
(µ) in (3), rearranging the terms and assuming

||Id −∆tLh,Im(t
k+1;µ)||−1 ≤ 1 due to the negative definiteness and 0 < ||Id +∆tLh,Ex(t

k;µ)|| ≤ C
to obtain

||rk+1
i (µ)|| ≤ C||rki ||+ ||Resk+1

i (µ)||. (19)

For details of this deduction we refer to [6]. If k is the first time step of an interval (k = κ(i) for any
i = 1, ..., Υ − 1) we do not know the value for the “initial error” ||rki ||, but we can estimate its value by

||rki (µ)|| = ||uk
h(µ)− uk

Ni
(µ)|| = ||uk

h(µ)− uk
Ni−1

(µ) + uk
Ni−1

(µ)− uk
Ni
(µ)||

≤ ||uk
h(µ)− uk

Ni−1
(µ)||+ ||uk

Ni−1
(µ)− uk

Ni
(µ)|| ≤ ||rki−1(µ)||+∆pi,i+1(µ).

(20)

Calculating ||rki (µ)|| recursively with (19) and (20) leads to (17).
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4.1 ADAPTIVE TIME DOMAIN PARTITIONING

When using a fixed partitioning of the time domain we obtain a more accurate and faster model.
We will now present an adaptive way for a partitioning of the time domain guaranteeing an overall
approximation error lower than εtol while limiting simultaneously the basis size to Nmax. The algorithm
to this adaptive approach is described in Algorithm 2. The overall goal of this algorithm is to generate
a reduced model with the following properties:

– It produces a uniform error growth over the whole time during online simulations.
– It has limited online complexity. (The basis size on each interval is limited a priori.)
– The maximum approximation error stays below a given error tolerance.

To estimate the approximation error we use the error estimator for general evolution equations from
Proposition 1. As it grows monotonically, the maximum error estimator value is found at the last time
step and this value ∆K(µ) should be kept below a given global error tolerance εtol,global. In order
to have an approximately uniform growth of the error on the whole time domain, we fix the error
tolerance for an interval τi to εtol,i = εtol,global(t

κ(i) − tκ(i−1))/T . We start the basis generation using
the POD-Greedy algorithm on an interval. As soon as the maximum size Nmax of the reduced basis
is reached, the POD-Greedy algorithm is stopped and a refinement of the time domain is triggered.
In the present work, each interval marked for refinement is divided into two intervals of equal size.
After a segmentation of the time interval we restart the POD-Greedy algorithm on every interval while
fixing the error tolerance on the new time intervals to εtol,i, fixing the maximum basis size to Nmax

and adapting the indices of the bases and intervals. This procedure is conducted until a segmentation
of the time domain is obtained such that on every interval the reduced basis has less then Nmax basis
vectors and a training error lower than εtol,i.

EarlyStoppingGreedy(Φ0,Mtrain, εtol,Mval, ρtol, Nmax)
1 Φ := Φ0

2 repeat

3 µ∗ := argmaxµ∈Mtrain
∆(µ, Φ)

4 if ∆(µ∗) > εtol
5 then

6 ϕ := ONBasisExt(u(µ∗), Φ)
7 Φ := Φ ∪ {ϕ}
8 ε := maxµ∈Mtrain

∆(µ, Φ)
9 ρ := maxµ∈Mval

∆(µ, Φ)/ε
10 until ε ≤ εtol or ρ ≥ ρtol or |Φ| ≥ Nmax

11 return Φ, ε
Algorithm 1: The early-stopping (POD-)greedy search algorithm, for ρtol = ∞, Nmax = ∞ recovering the

standard (POD-)greedy procedure.
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AdaptiveTimePartition(T0, εtol,global, Nmax)
1 T := T0, Φi := ∅ for τi ∈ T
2 repeat

3 Υ = card(T )
4 for i = 1, ...Υ with Φi = ∅
5 do Φi := InitBasis(i)
6 Mtrain,i := Mtrain(i)
7 ηi := 0
8 εtol,i := εtol,global · (t

κ(i+1) − tκ(i))/(T − θ)
9 [Φi, εi] := EarlyStoppingGreedy(Φi,Mtrain,i, εtol,i, ∅,∞, Nmax)
10 if εi > εtol,i
11 then ηi := 1
12 ηmax := maxi=1,...,Υ ηi
13 if ηmax > 0
14 then [T ,Φ] := RefineTPart(T ,Φ,η,Mval)
15 until ηmax = 0
16 return T , {Φi, εi}

Υ
i=1

Algorithm 2: The adaptive time partition algorithm generates automatically a partitioning of the time

domain and generates a reduced basis on each domain having less thanNmax basis vectors and an approximation

error on the training set Mtrain,i lower than εtol,i. T = {τi}
Υ
i=1 is the set of all time intervals with the initial

set T0 and ηi marks the intervals which have to be refined by a refinement algorithm.

5 EXPERIMENTS

5.1 THE ADVECTION MODEL

In the experiments we consider the advection problem

∂tu(µ) = −∇ · (v(µ)u(µ)) in Ω × [0, T ] (21)

with Ω := [0, 2] × [0, 1], θ = 0 and T = 1. We assume suitable initial conditions u(µ) = u0(µ) for
t = 0. Furthermore, Dirichlet boundary conditions u(µ) = udir on Γdir× [0, T ] and Neumann boundary
conditions∇u(µ)·n = uneu on Γneu×[0, T ] are prescribed. The velocity v is supposed to be a divergence
free parameter and time dependent velocity field of the form

v(x, t;µ) =

(

µ(1− t) · 5(1− x2
2)

−0.5(1− t)(4− x2
1)

)

with x = (x1, x2)
T ∈ Ω. This can be discretized with cell-wise constant functions and a Finite Volume

scheme using an Engquist–Osher flux, which results in a corresponding discretization space Xh and
discretization operators Lh,Im and Lh,Ex as well as in a discrete right hand side bh for including the
boundary conditions. We chose a space discretization into 64 × 32 intervals and a triangular grid
leading to 4096 degrees of freedom. For satisfying the CFL conditions we discretized time into 512
time steps. Here, we chose a pure explicit discretization scheme with LIm = 0. Solutions are illustrated
in Figure 1. As the control of the parameter complexity is not the issue here we restrained our model
to be dependent of only one parameter. (This parameter controls the strength of the velocity field in
x-direction.) In case of models depending on many parameters and in case of high solution variability
with the parameter changes, the adaptive methods from [5] can be applied.

5.2 RB MODEL REDUCTION WITH TIME DOMAIN PARTITIONING

We generated reduced basis spaces using a POD-Greedy algorithm in three different ways: without
T-partitioning, on predefined equally sized subdivisions into 7, 64 and 128 intervals of the time domain
and with the adaptive approach from Section 4.1 limiting the maximum number of reduced basis
functions by Nmax = 45. The desired error tolerance was set to εtol,global = 10−2. Online simulations
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a)

b)

Fig. 1 Solutions to the advection problems with a) µ = 0 and b) µ = 1 at time instants t = 0, t = 0.3 and
t = 1. Obviously, the solutions varies considerably with time.

adaptation Υ ø-dim(RB) ø-online time[s] max. error offline time[h]

- 1 84.00 0.7 9.87 · 10−3 0.84
yes 7 33.63 0.61 7.85 · 10−3 2.10
no 7 34.31 0.61 9.32 · 10−3 0.70
no 64 24.61 0.61 6.28 · 10−3 5.08
no 128 23.43 0.64 7.36 · 10−3 12.13

Table 1 Comparison of average reduced basis sizes, offline time, average run-times and maximum error
estimates for non-adaptive and adaptive runs with different fineness of the time interval partition. The average
online run-times and maximum errors are obtained from 20 simulations with randomly selected parameters µ.

were performed for a set of 20 randomly chosen parameters using all previously generated models.
Table 1 compares the reduced basis sizes averaged over the sub-intervals, the average online simulation
time, the maximum estimated error during online simulations and the offline time consumed for the
basis generation. We observe that a predefined subdivision into seven sub-intervals already leads to a
significant reduction of the reduced basis sizes by a factor of 2.5. It is noteworthy, that even the offline
time is slightly reduced in this case due to the polynomial complexity of the basis generation w.r.t. the
number of basis functions.

The bases on the very fine divisions into 64 and 128 intervals (meaning respectively 8 and 4 time-
steps per interval) are practically of the same average size. Consequently, these can be considered as
bases of minimal possible basis size per interval representing the limit of what we are able to reach
when using the T-partition approach alone. We need this minimal basis size per interval to cover the
parameter variability of the solution. Table 1 also shows, that the adaptive basis generation approach
produces only slightly larger reduced bases (ø dim(RB) = 33.63) than the “minimal possible bases”
(ø dim(RB) ∼ 25). The same fact is also illustrated in Figure 2b where the reduced bases dimensions
on the sub-intervals are shown. The adaptively generated basis envelops closely the minimal possible
basis sizes. Both models produce the largest reduced spaces near the point of highest solution variation
around t = 0.5. The fact that the adaptively generated subdivision of the time domain is very close
to the optimum is also confirmed by Figure 2a, which shows the estimated error evolution over time
for different reduced models. First, we see that the error grows almost uniformly over the whole time
domain as desired. The error evolution of the adaptively generated T-partition model is close to the
maximal feasible error evolution by a very small refinement into 128 partitions. Furthermore, we observe
that the projection error between the intervals is non-negligible but diminishes for smaller intervals.

We stated that it was possible to generate fast and accurate reduced models using the T-partition
approach, meaning that the approximation error as well as the reduced basis dimension are simultane-
ously controllable. In order to show this we generated several reduced models with different demands
on the error tolerance εtol,global at a predefined basis size constraint Nmax = 40 using the adaptive
T-partition approach. For comparison we created reduced models without T-partitioning. We calcu-
lated for a validation set of 25 randomly chosen parameters the average simulation time as well as
the maximum estimated approximation error. The results are illustrated in Figure 3. We observe the
average simulation time rises for the model without adaptive T-partitioning. This is due to the fact
that we need higher dimensional reduced models to meet the accuracy requirements. Yet, when using
the adaptive T-partition approach we can limit the maximum number of basis vectors per interval
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Fig. 2 Comparison of models with non-adaptively and adaptively generated T-partition bases and different
fineness of the partitions: a) Illustration of the time-evolution of the maximum error estimator over a set of 20
randomly chosen parameters. b) Illustration of reduced basis sizes on time intervals.

(almost) independently of the error tolerance. Consequently, when the demand to the error tolerance
is augmented the average simulation time can be kept almost constant and we obtain fast and accurate
models.
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Fig. 3 The average simulation time plotted over the maximal error estimator over a randomly chosen test set
of 25 parameters using reduced models with and without T-partitioning.

6 CONCLUSION AND OUTLOOK

With the time domain partitioning approach we presented a generic method for treating model reduc-
tion of evolution problems and guaranteeing simultaneously online time efficiency and accuracy. This is
realized by an adaptive partitioning of the time domain into several intervals and creating specialised
reduced bases with limited size on each of the intervals. We showed in experiments with an advection
problem dependent on one parameter, that applying the method leads to a considerable improvement
of the approximation error while the online simulation time is kept on a low level.

As this method produces a non-negligible projection error between the intervals we see room for
improvement. In case of problems with complex parameter dependency, it is probable that the T-
partition approach does not have enough effect for a considerable improvement of the approximation
error. However, this problem should be solved by combining the T-partition approach with the P-
partition approach from [5].
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