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Abstract

In this contribution we describe a novel classification
approach for on-line handwriting recognition. The tech-
nique combines dynamic time warping (DTW) and sup-
port vector machines (SVMs) by establishing a new SVM
kernel. We call this kernel Gaussian DTW (GDTW) ker-
nel. This kernel approach has a main advantage over com-
mon HMM techniques. It does not assume a model for the
generative class conditional densities. Instead, it directly
addresses the problem of discrimination by creating class
boundaries and thus is less sensitive to modeling assump-
tions. By incorporating DTW in the kernel function, gen-
eral classification problems with variable-sized sequential
data can be handled. In this respect the proposed method
can be straightforwardly applied to all classification prob-
lems, where DTW gives a reasonable distance measure,
e.g. speech recognition or genome processing. We show ex-
periments with this kernel approach on the UNIPEN hand-
writing data, achieving results comparable to an HMM-
based technique.

1. Introduction

The utilization of support vector machine (SVM) [2, 4]
classifiers has gained immense popularity in the last years.
SVMs have achieved excellent recognition results in various
pattern recognition applications [4]. Also in off-line optical
character recognition (OCR) they have been shown to be
comparable or even superior to the standard techniques like
Bayesian classifiers or multilayer perceptrons [5]. SVMs
arediscriminative classifiers based on Vapnik’sstructural
risk minimization principle. They can implement flexi-
ble decision boundaries in high dimensional feature spaces.
The implicit regularization of the classifier’s complexity
avoids overfitting and mostly this leads to good generaliza-

tions. Some further properties are commonly seen as rea-
sons for the success of SVMs in real-world problems: the
optimality of the training result is guaranteed, fast training
algorithms exist and little a-priori knowledge is required,
i.e. only a labeled training set.

For the solution of on-line handwriting recognition
(HWR) tasks researchers presently use classification meth-
ods which are based on a Bayesiangenerative approach:
hidden Markov models (HMMs) model a sequence of class
conditional densities based on (and thus restricted to) a cer-
tain function class. A discriminant function is obtained in a
second step using Bayes’ rule. Indeed HMMs have proven
to deal very well with the complex on-line handwriting data
structure. This is usually a variable-sizesequence of fea-
ture vectors that may have been distorted in particular ways,
each vector computed from sampled coordinates of the pen
tip curve.

While the generative approach is indeed optimal if the
underlying models are accurate, it can perform poorly if
this assumption is not fulfilled. In most practical applica-
tions, also in HWR, the latter is often the case. In these
situations discriminative approaches which do not aim to
estimate class conditional densities but directly address the
discrimination by creating class boundaries are a promising
choice. As noted above, SVMs belong to this category of
classifiers.

However, so far no on-line HWR system using SVMs
is known to the authors. In this respect this contribution is
the first one incorporating SVMs into on-line HWR. The
reason why SVMs have not been used in the past can be
seen in the data structure mentioned above: common SVM
techniques were developed for a feature space with a fixed
dimension, whereas the on-line handwriting sequences vary
in length and are temporally distorted. An ad-hoc solution
to overcome this incompatibility—like a linear scaling of
the writing to a fixed number of samples—is not promis-
ing to outperform standard HMM techniques, since it can-
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not deal with the nonlinear, temporal variations in the data.
In our view a successful approach should both embed the
discriminative power of SVMs as well as the flexibility in
coping with temporal distortions.

A starting point for linking SVMs with sequential data
is the so-calledkernel, as will be shown. Some work has
been done in other research areas dealing with kernels for
sequential data. Jaakkola et al. [10] developed an SVM ker-
nel in their application of protein homology detection and
refer to it asFisher kernel. Watkins [19] describes several
explicit kernels for sequential data and shows that thejoint
probability of two sequences according to apair HMM is a
proper SVM kernel under certain conditions.

Since the kernels mentioned above are still based on an
estimation of generative parameters, we propose an alter-
native approach which is less complex and presumes less
model knowledge: theGaussian dynamic time warping ker-
nel (GDTW). We shall start with a short review of dynamic
time warping (DTW) and SVMs in the following section.
Section3 then introduces the GDTW kernel. Experimen-
tal results with this GDTW kernel on the UNIPEN [7] data
and a comparison to UNIPEN results of other recognition
techniques are presented in section4. Section5 provides a
conclusion of this contribution.

2. Background

2.1. Dynamic time warping

In DTW [15] a distanceD (T ,R) from two vector se-
quencesT = (t1, . . . , tNT ) andR = (r1, . . . , rNR) is
determined. In on-line HWR the vectorsti ∈ IRF and
rj ∈ IRF are usually computed from the local neighbor-
hood of thei-th respectivej-th sampled point of the pen tip
curve. See section4.2for the authors’ choice ofti andrj .

Given a so-calledalignment (or warping) path φ =
(φ (1) , . . . , φ (N)) with φ (n) = (φT (n) , φR (n)) ∈

{1, . . . , NT } × {1, . . . , NR}(φ is introduced to align cor-
responding regions in the sequencesT andR; see the text-
book of Rabiner and Juang [15, Chapter4.7] for further
details) and a local distance measured, e.g.d (ti, rj) =
‖ti − rj‖2, we define thealignment distance Dφ as the
mean distance along a particular alignment pathφ

Dφ (T ,R) =
1
N

N∑
n=1

d
(
tφT (n), rφR(n)

)
. (1)

TheDTW distance (or Viterbi distance) D (T ,R) is defined
as the alignment distance (1) along theViterbi path φ∗

D (T ,R) = Dφ∗ (T ,R) = min
φ

{Dφ (T ,R)} . (2)

It is convenient to modelφ as a sequence of local tran-
sitions. We use the ones which are known asSakoe-
Chiba transitions in the literature [15]. These only al-
low forward steps of size 1 inT , R or in both of them,
i.e.φ (n + 1) − φ (n) equals(1, 0), (0, 1) or (1, 1).

Usual dynamic programming and beam search strate-
gies [11] are applied to reduce the computational complex-
ity when minimizing (2).

The DTW technique itself in combination with a mini-
mum distance classifier [17, 18] as well as the incorpora-
tion of statistical knowledge to this concept [1] have been
successfully applied to handwriting recognition.

2.2. Support vector classification

Here, we provide a brief introduction to support vector
classification. For more details and geometrical interpreta-
tions please refer to the standard literature, e.g. by Burges
[2] or Cristianini and Shawe-Taylor [4].

Consider a two-class classification problem and a set of
training vectors{Pi}i=1,...,M with corresponding binary la-
belsSi = 1 for the “positive” andSi = −1 for the “nega-
tive” class. In classification an SVM assigns a labelŜ to a
test vectorT by evaluating

f (T ) =
∑

i

αiSiK (T, Pi) + b and Ŝ = sign (f (T )) .

(3)
The weights αi and thebias b are SVM parameters and
adopted during training by maximizing

LD =
∑

i

αi −
1
2

∑
i,j

αiαjSiSjK (Pi, Pj) (4)

under the constraints

0 ≤ αi ≤ C and
∑

i

αiSi = 0 (5)

with C a positive constant weighting the influence of train-
ing errors. K (·, ·) is the kernel of the SVM. A solution
for the αi implies a value forb. The SVM framework
gives some flexibility in designing an appropriate kernel for
the underlying application. Many implementations of ker-
nels have been proposed so far, one popular example is the
Gaussian kernel

K (Pi, Pj) = exp
(
−γ ‖Pi − Pj‖2

)
. (6)

If K (·, ·) is positive definite, (4)–(5) is a convex quadratic
optimization problem, for which the convergence towards
the global optimum can be guaranteed. However, obtaining
this solution for real-world problems can be quite demand-
ing and requires sophisticated optimization algorithms like
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chunking, decomposition or sequential minimal optimiza-
tion [4].

Usuallyαi = 0 for the majority ofi and thus the summa-
tion in (3) is limited to a subset of thePi, which therefore is
called the set ofsupport vectors.

Extensions of the binary classification to the multi-class
situation are suggested in several approaches [2, 13].

3. Gaussian dynamic time warping kernel

As indicated in the introduction, when dealing with se-
quential on-line handwriting data we cannot simply employ
the basic SVM framework given by (3)–(6). Different fea-
ture vector sequencesPi, Pj andT cannot be embedded in
the same vector space in general, as the necessary dimen-
sions differ.

However, an important property of (3)–(4) is that the
vectorsPi, Pj andT appear only in form of kernel eval-
uations. Thus our objective, when adopting SVMs to se-
quential handwriting data, can be to state a kernel definition
suitable to the particular properties of the sequential data.

An obvious modification of (6) is to replace the squared
Euclidean distance‖Pi − Pj‖2 with the equivalent when
dealing with temporally distorted, sequential signals—the
DTW distanceD (Pi,Pj) described above. For two equally
sized sequences and a linear alignmentφ (n) = (n, n) even
the equationN · D (Pi,Pj) = ‖Pi − Pj‖2 holds.

We therefore apply this modification and define the
Gaussian DTW (GDTW) kernel for sequential data by

K (Pi,Pj) = exp (−γD (Pi,Pj)) . (7)

In the following we will abbreviate an SVM classifier with
a GDTW kernel as SVM-GDTW. Figure1 illustrates the
GDTW kernel with some examples.

A theoretical relevant property of (7) should be men-
tioned: as the DTW distance is not a metric (invalid triangle
inequality in many cases), one could fear that the result-
ing kernel lacks some necessary properties, e.g. the positive
definiteness (pd) noted in section2.2. This would imply
that the solution of the optimization algorithm is not guar-
anteed to be the global optimum. In fact general pd cannot
be proven for (7), as simple counterexamples can be found.
Nevertheless such kernels can produce good results like in
our case and others [5, 8]. Recalling the fact that positive
definite kernels are characterized by the property of gener-
ating kernel matricesKij = K (Pi,Pj) with solely non-
negative eigenvaluesλi, some reasons for the good recog-
nition rates may be the following: Firstly, the SMO algo-
rithm is operating on2×2 kernel matrices and such matrices
provable always have nonnegativeλi. The SMO algorithm
therefore is expected to converge although no optimality can
be guaranteed. Secondly, larger kernel matrices generated
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K (T ,Pj) 1 0.70 0.28 0.17 0.00

Figure 1. The Gaussian dynamic time warping
(GDTW) kernel: Character patterns T (class
“h”) and Pj , j = 1, . . . , 5 (classes “h”, “h”, “k”,
“n”, “m”) are illustrated by the features x̃ and
ỹ (see section 4.2 for the definition). The val-
ues for the DTW distance D and the GDTW
kernel evaluation K for γ = 1.8 are provided
in the third and fourth row, respectively. The
values show the obvious fact that similar pat-
terns give small values for D and large for K.
In the second row the Viterbi path φ∗ is illus-
trated: The sketched line traverses all aligned
point pairs

(
φ∗

T (n) ,φ∗
Pj

(n)
)

, n = 1, . . . , N in
the NT × NPj

matrix.

by randomly chosen charactersPi,Pj from the UNIPEN
database turn out to violate the pd only weakly: For matri-
ces of sizes up to40 × 40 all λi were experimentally mea-
sured to be nonnegative. For larger matrices the sporadic
missing pd was due to only a few negative eigenvalues with
small absolute values compared to the other eigenvalues.

4. Experiments

4.1. Data

The experiments are based on the 1a, 1b and 1c section
(digits, upper and lower case characters, respectively) of the
UNIPEN [7] Train-R01/V07 database. For these sections
the data set size is≈ 16K, 28K and 61K, respectively. Ex-
amples of UNIPEN data were shown in figure1. Training
and test set were taken disjointly. It should be stated that
UNIPEN consists of very difficult data due to the variety of
writers and noisy or mislabeled data. We used the database
without cleaning in order to be as comparable as possible to
other classification reports.

4.2. Feature selection

We model each vectorti of a sequenceT =
(t1, . . . , tNT ) by three local features at thei-th sam-
pled point (xi, yi): ti = (x̃i, ỹi, θi)

T . The quanti-
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ties x̃i = xi−µx

σy
and ỹi = yi−µy

σy
are the pen coordi-

nates normalized by the mean(µx, µy) and y-deviation
σy of all character’s sample points. The featureθi

is the tangent slope angle at pointi, approximated by
θi = ang

(
(xi+1 − xi−1) +

√
−1 · (yi+1 − yi−1)

)
with√

−1 the imaginary unit and “ang” the complex angle func-
tion. Sinceθi is a circular measure, there is some spe-
cial treatment necessary when computing the local distance
d (ti, rj) = ‖ti − rj‖2. Instead of the usual difference
∆θ = (θ1 − θ2) we use the circular difference∆modθ =
(θ1 − θ2) mod 2π with ∆modθ ∈ (−π, π].

No pre-processing, such as re-sampling of the writing or
reference line detection, is applied in this case. Each pattern
is typically represented by about 10–80 sample points.

4.3. Two-class experiments

We have trained the SVM-GDTW with thesequential
minimal optimization (SMO) algorithm [14], using a third
party Matlab SVM toolbox [3]. For the following experi-
ments the SVM and kernel parameters were set toC = 1
andγ = 1.8, respectively.

In the first investigation we were concerned whether
an SVM-GDTW is able to classify clearly separable data.
Hence we applied the SVM-GDTW to character class pairs
which (i) were shown to bedissimilar in respect to a cer-
tain measure [1] and (ii) achieved very low classification
confusions with a traditional HMM based technique, devel-
oped by the authors and called statistical DTW (SDTW) [1].
Table1 summarizes classification error rates and compares
them to the results of SDTW. The table shows the satisfying

Table 1. Two-class experiments on UNIPEN
data: error rate ESVM−GDTW of the SVM Gaus-
sian DTW kernel approach for examples of dis-
similar (a ↔ b, d ↔ m) and similar lower case
character pairs (c ↔ e, u ↔ v, y ↔ g, b ↔
h). The number of training samples ( M ), sup-
port vectors ( MS) and the error rate ESDTW

for the generative, HMM-based approach of
SDTW [1] are listed as well. Training set size
was 66%, test set size 33% of the UNIPEN
Train-R01/V07 database.

Character pairs M MS ESVM−GDTW ESDTW [1]

a↔ b 3540 298 0.5 % 0.8 %

d ↔ m 2595 334 0.1 % 0.4 %

c ↔ e 5088 351 3.7 % 7.2 %

u↔ v 2214 397 9.2 % 6.8 %

y ↔ g 2088 358 11.2 % 7.7 %

b↔ h 2524 275 2.3 % 3.2 %

result, that for the dissimilar character pairs (a↔ b, d↔ m)
classification errors are rare in both classification methods,
actually are due to mislabelings.

In a second category of two-class experiments the dis-
crimination of character class pairs, which were shown to
besimilar and were frequently misclassified by SDTW, was
examined. Table1 illustrates, that for some of the selected
character pairs (c↔ e, b↔ h) SVM-GDTW gives lower er-
ror rates than SDTW, for others (u↔ v, y ↔ g) vice versa.

4.4. Multi-class experiments

For a multi-class experiment wehavechosen the DAG-
SVM approach [13]. DAG-SVM combines a set of two-
class SVMs into a multi-class classifier. For aK-class prob-
lem DAG-SVM containsK · (K − 1) /2 two-class classi-
fiers, one for each class pair. During classificationK − 1
two-class SVM evaluations are combined using a decision
directed acyclic graph (DDAG) topology.

For the multi-class case we used smaller UNIPEN sub-
sets due to efficiency reasons (see section4.5). We made
experiments on two different dataset sizes in order to give
an idea of the recognizer’s dependence on this quantity. Fig-
ure2 gives a graphical illustration of an example classifica-
tion showing a snapshot of our classification GUI.

Table2 summarizes classification error rates of a DAG-
SVM-GDTW classifier for the 1a/b/c UNIPEN sections and
compares this result to other results on UNIPEN data col-
lected from the literature. Though all experiments were
computed on UNIPEN data, various reports used different
character sets. Benchmarks were computed on miscella-
neous versions and sizes of a UNIPEN database or some
authors removed low quality/mislabeled characters, as indi-
cated in the table’s last column. Thus in the following com-
parison we refer only to the experiments on a unique set. In
the table we typed these values boldface. From the values
it can be seen that DAG-GDTW-SVM achieves lower error
rates than SDTW for the relative small training set. For the
larger training sets DAG-GDTW-SVM and SDTW achieve
comparable error rates.

The higher performance of DAG-GDTW-SVM in com-
parison with SDTW on the small training set supports the
statement that the statistical approach SDTW is highly de-
pendent on accurate models, which cannot be satisfactorily
gained from the relative small training set.

4.5. Complexity

A kernel evaluation (7) for a typical character pair
asymptotically takesCTkernel = O(Ñ · F · p) operations
(with Ñ = 45 the average length of the sequences,F = 3
the dimension ofti andp the average number of path hy-
potheses in the beam search). Experimentally we mea-
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Figure 2. A snapshot from our multi-class
DAG-SVM-GDTW classification GUI: it shows
the classification of a test pattern T (of class
“h”; selected in the upper left list). K ·
(K − 1) /2 two-class SVMs were trained with
the DAG-SVM algorithm [ 13]. For illustration
purposes the two-class SVM for the class pair
(h ↔ b) is selected in the upper right list. The
activation f (T ) of this SVM is 1.9, hence T
is correctly classified as the positive class
“h”. In the lower part of the figure the terms
Siαi ∗ K (T ,Pi) for i = 1, . . . , MS are listed on
the left, each of which is the contribution of
a support vector to the classification crite-
rion ( 3). E.g., for the selected support vec-
tor (of class “b”) Si = −1, αi = 1.00 and
K (T ,Pi) = 0.34. To the right a graphical pre-
sentation of the selected support vector Pi

and the test pattern T is illustrated.

Table 2. Multi-class experiments on various
sections of UNIPEN data: error rate E of the
DAG-SVM-GDTW approach and other classi-
fication techniques collected from the litera-
ture. In our experiments E is the mean of
five experiments on different dataset combi-
nations of equal size.

UNIPEN section Approach Error rateE UNIPEN Database Type

1a (digits)

DAG-SVM-GDTW
Train-R01/V07

4.0 % rand. chosen 20 %/20 % Train/Test
3.8 % rand. chosen 40 %/40 % Train/Test

SDTW [1]

Train-R01/V07
4.5 % rand. chosen 20 %/20 % Train/Test
3.2 % rand. chosen 40 %/40 % Train/Test

MLP [12] 3.0 % DevTest-R02/V02

HMM [ 9] 3.2 %
Train-R01/V06

4 % ”bad characters” removed

1b (upper case)

DAG-SVM-GDTW
Train-R01/V07

7.6 % rand. chosen 20 %/20 % Train/Test
7.6 % rand. chosen 40 %/40 % Train/Test

SDTW [1]
Train-R01/V07

10.0 % rand. chosen 20 %/20 % Train/Test
8.0 % rand. chosen 40 %/40 % Train/Test

HMM [ 9] 6.4 %
Train-R01/V06

4 % ”bad characters” removed

1c (lower case)

DAG-SVM-GDTW
Train-R01/V07

11.7 % rand. chosen 10 %/10 % Train/Test
12.1 % rand. chosen 20 %/20 % Train/Test

SDTW [1]

Train-R01/V07
13.0 % rand. chosen 10 %/10 % Train/Test
11.4 % rand. chosen 20 %/20 % Train/Test
9.7 % rand. chosen 66 %/33 % Train/Test

MLP [12] 14.4 % DevTest-R02/V02

HMM-NN hybrid [6] 13,2 % Train-R01/V07

HMM [ 9] 14,1 %
Train-R01/V06

4 % ”bad characters” removed

suredCTkernel ≈ 0.001 sec in our implementation on an
AMD Athlon 1200MHz.

The asymptotic training time of the two-class SMO and
26-class DAG-SVM training algorithm isCTtrain,2−class =
O (Mγ) andCTtrain,26−class = O

(
2γ−1K2−γMγ

)
, respec-

tively, with γ ≈ 2 and M the total number of training
examples [13]. In the 1c multi-class experiments (train-
ing/test set size 20 % each) the complexities were measured
asCTtrain,2−class ≈ 0.25 h andCTtrain,26−class ≈ 81 h.

The average number of support vectors in the 1c multi-
class experiments wasMS ≈ 100. Classification time for
one two-class SVM isCTtest,2−class ≈ MS · CTkernel =
100 · 0.001 sec = 0.1 sec. Since the DAG-SVM evalu-
atesK − 1 two-class SVMs, a classification of a lower case
character takesCTtest,26−class ≈ (K − 1) · CTtest,2−class =
25 · 0.1 sec = 2.5 sec.

The memory complexityCM mainly consists of the stor-
age of all support vectors, thusCM = K ·(K − 1) /2 ·MS ·
Ñ ·F ·4 byte = 26 ·25/2 ·100 ·45 ·3 ·4 byte ≈ 17.5Mbyte.

Of course both time and memory complexity are im-
mense and not practical for an operation of the DAG-SVM-
GDTW classifier on handheld devices. However, we see
some possibilities for optimization. A subsampling of the
writing scalesCT andCM linearly and—by a factor 3–5—
might degrade recognition accuracy not too much. Addi-
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tionally one can omit or interrupt applicable kernel evalua-
tions by pruning techniques for the DTW. Furthermore tech-
niques exist that decrease the number of support vectorspos-
terior to the SVM training [16]. These techniques produce
SVMs which are up to ten times faster without large losses
in classification accuracy.

5. Conclusion

We have presented a novel approach for the recognition
of on-line handwritten characters. This technique combines
dynamic time warping (DTW) and support vector machines
(SVM) by integrating DTW into a Gaussian SVM kernel.
The benefit of this approach is the absence of restrictive
assumptions about class conditional densities, as made in
conventional HMM based techniques. The only essential
assumption made is the selection of the kernel.

We have applied the proposed classification technique
to characters of the UNIPEN handwriting recognition
database. Experiments have shown superior recognition
rate in comparison to an HMM-based classifier for relative
small training sets and comparable rates for larger training
sets.

A problem of this approach is the complexity. However,
we see possibilities to cope with this issue by several tech-
niques, e.g. by a subsampling and by reducing the number
of kernel evaluations and support vectors.

Further perspective and attractive challenges for future
research are the establishment of a kernel based approach
for word recognition and the analysis of other kernels, e.g.
the Fisher kernel, set-kernels and other distance-based ker-
nels.

It should be stated that the proposed approach can also
be applied in other applications where the data is a variable-
size sequence of feature vectors, like speech recognition and
genome processing.
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