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Abstract

In this contribution we describe a novel classification
approach for on-line handwriting recognition. The tech-
nigue combines dynamic time warping (DTW) and sup-
port vector machines (SYMs) by establishing a new SVM
kernel. We call this kernel Gaussian DTW (GDTW) ker-
nel. This kernel approach has a main advantage over com-
mon HMM techniques. It does not assume a model for the
generative class conditional densities. Instead, it directly
addresses the problem of discrimination by creating class
boundaries and thus is less sensitive to modeling assump-
tions. By incorporating DTW in the kernel function, gen-
eral classification problems with variable-sized sequential
data can be handled. In this respect the proposed method
can be straightforwardly applied to all classification prob-
lems, where DTW gives a reasonable distance measure,
e.g. speech recognition or genome processing. e show ex-
periments with this kernel approach on the UNIPEN hand-
writing data, achieving results comparable to an HMM-
based technique.

1. Introduction

The utilization of support vector machine (SVM), [4]

classifiers has gained immense popularity in the last years.

tions. Some further properties are commonly seen as rea-
sons for the success of SVMs in real-world problems: the
optimality of the training result is guaranteed, fast training
algorithms exist and little a-priori knowledge is required,
i.e. only a labeled training set.

For the solution of on-line handwriting recognition
(HWR) tasks researchers presently use classification meth-
ods which are based on a Bayesigemerative approach:
hidden Markov models (HMMs) model a sequence of class
conditional densities based on (and thus restricted to) a cer-
tain function class. A discriminant function is obtained in a
second step using Bayes'’ rule. Indeed HMMs have proven
to deal very well with the complex on-line handwriting data
structure. This is usually a variable-sigeguence of fea-
ture vectors that may have been distorted in particular ways,
each vector computed from sampled coordinates of the pen
tip curve.

While the generative approach is indeed optimal if the
underlying models are accurate, it can perform poorly if
this assumption is not fulfilled. In most practical applica-
tions, also in HWR, the latter is often the case. In these
situations discriminative approaches which do not aim to
estimate class conditional densities but directly address the
discrimination by creating class boundaries are a promising
choice. As noted above, SVMs belong to this category of
classifiers.

However, so far no on-line HWR system using SVMs

SVMs have achieved excellent recognition results in variousis known to the authors. In this respect this contribution is

pattern recognition applicationg][ Also in off-line optical

the first one incorporating SVMs into on-line HWR. The

character recognition (OCR) they have been shown to bereason why SVMs have not been used in the past can be
comparable or even superior to the standard techniques likeseen in the data structure mentioned above: common SVM

Bayesian classifiers or multilayer perceptroak [SVMs
are discriminative classifiers based on Vapnik&ructural

risk minimization principle. They can implement flexi-

techniques were developed for a feature space with a fixed
dimension, whereas the on-line handwriting sequences vary
in length and are temporally distorted. An ad-hoc solution

ble decision boundaries in high dimensional feature spacesto overcome this incompatibility—like a linear scaling of
The implicit regularization of the classifier's complexity the writing to a fixed number of samples—is not promis-
avoids overfitting and mostly this leads to good generaliza- ing to outperform standard HMM techniques, since it can-

49


ftp://ftp.informatik.uni-freiburg.de/papers/lmb/ba_ha_bu_iwfhr02.pdf
http://lmb.informatik.uni-freiburg.de/people/bahlmann/
http://lmb.informatik.uni-freiburg.de/people/haasdonk/
http://lmb.informatik.uni-freiburg.de/people/burkhardt/
http://lmb.informatik.uni-freiburg.de/
mailto:bahlmann@informatik.uni-freiburg.de
mailto:haasdonk@informatik.uni-freiburg.de
mailto:burkhardt@informatik.uni-freiburg.de

not deal with the nonlinear, temporal variations in the data.
In our view a successful approach should both embed thesitions.

discriminative power of SVMs as well as the flexibility in
coping with temporal distortions.

A starting point for linking SVMs with sequential data
is the so-callekernel, as will be shown. Some work has

It is convenient to modep as a sequence of local tran-
We use the ones which are known Sakoe-
Chiba transitions in the literature [5. These only al-
low forward steps of size 1 i, R or in both of them,
i.e.¢(n+1)—¢(n)equals(l,0),(0,1)or(1,1).

Usual dynamic programming and beam search strate-

been done in other research areas dealing with kernels fogies [L1] are applied to reduce the computational complex-

sequential data. Jaakkola et dl0] developed an SVM ker-
nel in their application of protein homology detection and
refer to it asFisher kernel. Watkins [L9] describes several
explicit kernels for sequential data and shows thatj divet
probability of two sequences according to gair HMM is a
proper SVM kernel under certain conditions.

ity when minimizing @).

The DTW technique itself in combination with a mini-
mum distance classifieri.f, 18] as well as the incorpora-
tion of statistical knowledge to this concepf have been
successfully applied to handwriting recognition.

Since the kernels mentioned above are still based on ar2.2. Support vector classification
estimation of generative parameters, we propose an alter-

native approach which is less complex and presumes less Here, we provide a brief introduction to support vector

model knowledge: th&aussian dynamic time warping ker-

nel (GDTW). We shall start with a short review of dynamic
time warping (DTW) and SVMs in the following section.
Section3 then introduces the GDTW kernel. Experimen-
tal results with this GDTW kernel on the UNIPEN][data
and a comparison to UNIPEN results of other recognition
techniques are presented in sectiorSection5 provides a
conclusion of this contribution.

2. Background
2.1. Dynamic time warping

In DTW [15] a distanceD (7, R) from two vector se-
quences? = (ti,...,tn,) @ndR = (ry,...,rny) iS
determined. In on-line HWR the vectots € RY and
r; € IR are usually computed from the local neighbor-
hood of thei-th respectivg-th sampled point of the pen tip
curve. See sectiof.2for the authors’ choice of; andr; .

Given a so-calledalignment (or warping) path ¢ =
(¢(1),...,0(N) with ¢ (n) = (pr(n),ér(n) <
{1,...,N7r} x {1,..., Ng }(¢ is introduced to align cor-
responding regions in the sequen@eandR; see the text-
book of Rabiner and Juand4, Chapter4.7] for further
details) and a local distance measdiee.g.d (t;,r;) =
|t; —r;]|*, we define thealignment distance D, as the
mean distance along a particular alignment gath

N
1
Dy (T,R) = 5> d(tor(n) o) (1)
n=1

TheDTW distance (or Miterbi distance) D (7, R) is defined
as the alignment distancg)(along theViterbi path ¢*

D(T.R) = Dy (T.R) =min {Dy (T.R)}.  (2)
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classification. For more details and geometrical interpreta-
tions please refer to the standard literature, e.g. by Burges
[2] or Cristianini and Shawe-Taylo?].

Consider a two-class classification problem and a set of
training vectors{Pi}i:l’A__’M with corresponding binary la-
belsS; = 1 for the “positive” andS; = —1 for the “nega-
tive” class. In classification an SVM assigns a labeb a
test vectofT" by evaluating

F(T) =) aiSiK(T,P,)+b and S =sign(f(T)).
3)

The weights «; and thebias b are SVM parameters and
adopted during training by maximizing

1
LD:Zaz—§ZalajSlSjK(Pz,Pj) (4)
[ 1,]
under the constraints
0<o; <C and ZOZZSZZO (5)

(2

with C' a positive constant weighting the influence of train-
ing errors. K (-,-) is thekernel of the SVM. A solution
for the «; implies a value forb. The SVM framework
gives some flexibility in designing an appropriate kernel for
the underlying application. Many implementations of ker-
nels have been proposed so far, one popular example is the
Gaussian kernel

K (PP =exp (<1 IR =B[*). (6
If K (-,-)is positive definite,4)—(5) is a convex quadratic
optimization problem, for which the convergence towards
the global optimum can be guaranteed. However, obtaining
this solution for real-world problems can be quite demand-
ing and requires sophisticated optimization algorithms like



chunking, decomposition or sequential minimal optimiza- T P1 P Ps Ps

chur i InliiiakaE:

Usuallya; = 0 for the majority ofi and thus the summa-

tion in (3) is limited to a subset of th&;, which therefore is .

called the set o$upport vectors. ¢ - S < .
Extensions of the binary classification to the multi-class [ (T.7,) 0 020 071 0.99 10.04

situation are suggested in several approaches. K (T.P;) 1 0.70 028 017 0.00

3. Gaussian dynamic time warping kernel Figure 1. The Gaussian dynamic time warping

(GDTW) kernel: Character patterns 7 (class

As indicated in the introduction, when dealing with se- “hyand P;, j = 1,...,5 (classes “h”, “h", k"
quential on-line handwriting data we cannot simply employ ~ «» “m”) argillustra{ted ’by the features #and
the basic SVM framework given by)—(6). Different fea- 7 (see section 4.2 for the definition). The val-

ture vector sequencdy, P; and7 cannot be embedded in ues for the DTW distance D and the GDTW
the same vector space in general, as the necessary dimen- arnel evaluation K for ~ = 1.8 are provided

sions differ. _ _ in the third and fourth row, respectively. The
However, an important property oB)-(4) is that the values show the obvious fact that similar pat-
vectorsP;, P; andT appear only in form of kernel eval- terns give small values for D and large for K.

uations. Thus our objective, when adopting SVMs 0 se- | the second row the Viterbi path ¢ is illus-

quential handwriting data, can be to state a kernel definition  rated: The sketched line traverses all aligned

suitable to the particular properties of the sequential data. point pairs (¢* (n), b (n)) n—1 N in
An obvious modification off) is to replace the squared HAAREE ’ T

Euclidean distancé P, — P;||> with the equivalent when the Nz x Np, matrix.

dealing with temporally distorted, sequential signals—the

DTW distanceD (P;, P;) described above. For two equally

sized sequences and a linear alignmefit) = (n,n) even  py randomly chosen charactefs, P; from the UNIPEN

the equationV - D (P;, P;) = |[P; — P;|* holds. database turn out to violate the pd only weakly: For matri-
We therefore apply this modification and define the ces of sizes up td0 x 40 all \; were experimentally mea-
Gaussian DTW (GDTW) kernel for sequential data by sured to be nonnegative. For larger matrices the sporadic
missing pd was due to only a few negative eigenvalues with
K (Pi, P;) = exp (=D (P;, Pj)) - (7)  small absolute values compared to the other eigenvalues.

In the following we will abbreviate an SVM classifier with .
a GDTW kernel as SVM-GDTW. Figuré illustrates the 4 EXperiments
GDTW kernel with some examples.

A theoretical relevant property of7Y should be men- 4.1. Data
tioned: as the DTW distance is not a metric (invalid triangle
inequality in many cases), one could fear that the result- The experiments are based on the 1a, 1b and 1c section
ing kernel lacks some necessary properties, e.g. the positivédigits, upper and lower case characters, respectively) of the
definiteness (pd) noted in secti@?. This would imply UNIPEN [7] Train-R01/V07 database. For these sections
that the solution of the optimization algorithm is not guar- the data set size is 16K, 28K and 61K, respectively. Ex-
anteed to be the global optimum. In fact general pd cannotamples of UNIPEN data were shown in figure Training
be proven for'()' as Simp]e Counterexamp]es can be found. and test set were taken dlS]Olntly It should be stated that
Nevertheless such kernels can produce good results like ifJNIPEN consists of very difficult data due to the variety of
our case and others,[8]. Recalling the fact that positive writers and noisy or mislabeled data. We used the database
definite kernels are characterized by the property of gener-Without cleaning in order to be as comparable as possible to
ating kernel matricess;; = K (P;, P;) with solely non-  other classification reports.
negative eigenvalues;, some reasons for the good recog-
nition rates may be the following: Firstly, the SMO algo- 4.2. Feature selection
rithm is operating 012 x 2 kernel matrices and such matrices
provable always have nonnegative The SMO algorithm We model each vectot; of a sequence7 =
therefore is expected to converge although no optimality can(t1, ..., tx,) by three local features at théth sam-
be guaranteed. Secondly, larger kernel matrices generategled point (z;,v;): t; = (&, 9, 91-)T. The quanti-
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tiesz; = = andy; = y;—“y are the pen coordi- result, that for the dissimilar character pairs€a, d«< m)
nates normaliyzed by the med&m 1,) and y-deviation classification errors are rare in both classification methods,
o, of all characters sample points. The featule  actually are due to mislabelings.

is the tangent slope angle at poifnt approximated by In a second category of two-class experiments the dis-
0; = ang((zit1 —xi—1) + V=1 (yit1 — yi—1)) With crimination of character class pairs, which were shown to

V/—1 the imaginary unit and “ang” the complex angle func- besimilar and were frequently misclassified by SDTW, was

cial treatment necessary when computing the local distancesharacter pairs (e- e, b— h) SVM-GDTW gives lower er-

Af = (0; — 02) we use the circular differencA,,,q60 = _ _
(61 — 02) mod 27 with Ay,0q6 € (—, 7). 4.4. Multi-class experiments

No pre-processing, such as re-sampling of the writing or
reference line detection, is applied in this case. Each pattern For a multi-class experiment wevechosen the DAG-
is typically represented by about 10—80 sample points. SVM approach [3]. DAG-SVM combines a set of two-
class SVMs into a multi-class classifier. FaKaclass prob-

4.3. Two-class experiments lem DAG-SVM containsK - (K — 1) /2 two-class classi-
fiers, one for each class pair. During classification- 1
We have trained the SVM-GDTW with theequential two-class SVM evaluations are combined using a decision
minimal optimization (SMO) algorithm [14], using a third ~ directed acyclic graph (DDAG) topology.
party Matlab SVM toolbox [3]. For the following experi- For the multi-class case we used smaller UNIPEN sub-
ments the SVM and kernel parameters were set te- 1 sets due to efficiency reasons (see seolich We made
andy = 1.8, respectively. experiments on two different dataset sizes in order to give

In the first investigation we were concerned whether @n idea of the recognizer’s dependence on this quantity. Fig-
an SVM-GDTW is able to classify clearly separable data. Ure2 gives a graphical illustration of an example classifica-

Hence we applied the SVM-GDTW to character class pairs 110N showing a snapshot of our classification GUI.
which (i) were shown to beiissimilar in respect to a cer- Table2 summarizes classification error rates of a DAG-

confusions with a traditional HMM based technique, devel- compares this result to other results on UNIPEN data col-
oped by the authors and called statistical DTW (SDTYy) [  lected from the literature. Thoggh all experiments were
Table1 summarizes classification error rates and comparescomputed on UNIPEN data, various reports used different

them to the results of SDTW. The table shows the satisfying character sets. Benchmarks were computed on miscella-
neous versions and sizes of a UNIPEN database or some

authors removed low quality/mislabeled characters, as indi-

Table 1. Two-class experiments on UNIPEN cated in the table’s last column. Thus in the following com-
data: errorrate Esyva_aprw Of the SVM Gaus- parison we refer only to the experiments on a unique set. In
sian DTW kernel approach for examples of ~ dis- the table we typed these values boldface. From the values
similar (a < b, d < m) and similar lower case it can be seen that DAG-GDTW-SVM achieves lower error
character pairs (¢ < e, U < Vv, y < g, b < rates than SDTW for the relative small training set. For the
h). The number of training samples (M), sup- larger training sets DAG-GDTW-SVM and SDTW achieve
port vectors ( Ms) and the error rate  Esprw comparable error rates.

for the generative, HMM-based approach of The hlghel’ performance of DAG-GDTW-SVM in com-
SDTW [1] are listed as well. Training set size parison with SDTW on the small training set supports the
was 66 %, test set size 33% of the UNIPEN statement that the statistical approach SDTW is highly de-
Train-R01/VO7 database. pendent on accurate models, which cannot be satisfactorily

gained from the relative small training set.

| Character pairs” M | Mg | EsvM-_GDTW || Esprw [1] |

a—b 3540 | 298 0.5 % 0.8 % 4.5. Complexity

de—m 2595 | 334 0.1% 0.4 %

c—e 5088 | 351 3.7% 72% A kernel evaluation 7) for a typical character pair
Ue v 2214 | 397 9.2% 6.8 % asymptotically take€'r, .., = O(N - F - p) operations
yeq 2088 | 358 11.2% 7.7% (with N = 45 the average length of the sequencEs= 3
b—h 2524 | 275 2.3% 32% the dimension ot,; andp the average number of path hy-

potheses in the beam search). Experimentally we mea-
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Figure 2. A snapshot from our multi-class
DAG-SVM-GDTW classification GUI: it shows
the classification of a test pattern 7 (of class
“h”; selected in the upper left list). K -
(K —1) /2 two-class SVMs were trained with
the DAG-SVM algorithm [ 13]. For illustration
purposes the two-class SVM for the class pair

(h < b) is selected in the upper right list. The
activation f(7) of this SVM is 1.9, hence T
is correctly classified as the positive class
“h”. In the lower part of the figure the terms
Sia; x K (T,P;) for i =1,..., Mg are listed on
the left, each of which is the contribution of

a support vector to the classification crite-
rion (3). E.g., for the selected support vec-
tor (of class “b”) S; = —1, o; = 1.00 and
K (7,P;) = 0.34. To the right a graphical pre-
sentation of the selected support vector Pi
and the test pattern 7 is illustrated.
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Table 2. Multi-class experiments on various
sections of UNIPEN data: error rate  E of the
DAG-SVM-GDTW approach and other classi-
fication techniques collected from the litera-
ture. In our experiments F is the mean of
five experiments on different dataset combi-
nations of equal size.

‘ UNIPEN section || Approach | Error rate & UNIPEN Database Type

Train-R0O1/V07
rand. chosen 20 %/20 % Train/Tes|
rand. chosen 40 %/40 % Train/Tes|
Train-R0O1/V07
rand. chosen 20 %/20 % Train/Tes

DAG-SVM-GDTW 4.0%

3.8%

1a (digits) 45%

SbTwi] 32% rand. chosen 40 %/40 % Train/Tes|
MLP [17] 3.0% DevTest-R02/V02
HMM [9] 320 Train-R01/V06

4 % "bad characters” removed

Train-R01/V07
rand. chosen 20 %/20 % Train/Tes
rand. chosen 40 %/40 % Train/Tes;

Train-R01/V07
rand. chosen 20 %/20 % Train/Tes
rand. chosen 40 %/40 % Train/Tes
Train-R01/V06
4 % "bad characters” removed

DAG-SVM-GDTW 76%

7.6 %

1b (upper case)
SDTW [1] 10.0 %

8.0%

HMM [9] 6.4%

Train-R01/V07
rand. chosen 10 %/10 % Train/Tes
rand. chosen 20 %/20 % Train/Tes
Train-R01/V07
rand. chosen 10 %/10 % Train/Tes
rand. chosen 20 %/20 % Train/Tes
rand. chosen 66 %/33 % Train/Tes
DevTest-R02/V02
Train-R01/V07

Train-R01/V06
4 % "bad characters” removed

DAG-SVM-GDTW 11.7%

12.1%

13.0%
114%
9.7%

14.4 %
13,2 %

1c (lower case) SDTW [1]

MLP [17]
HMM-NN hybrid [6]

HMM [9] 141%

suredCy, ..., ~ 0.001sec in our implementation on an
AMD Athlon 1200MHz.

The asymptotic training time of the two-class SMO and
26-class DAG-SVM training algorithm i€z, ., 0. =
O (M) andCr,,... 26 e = O (2771 K277M7), respec-
tively, with v ~ 2 and M the total number of training
examples 13]. In the 1c multi-class experiments (train-
ing/test set size 20 % each) the complexities were measured
aSCTtrainQ—class ~0.25h andCTtrain,26—class ~ 8lh.

The average number of support vectors in the 1¢c multi-
class experiments walls ~ 100. Classification time for
one two-class SVM i, »_ e & Ms - O
100 - 0.001sec = 0.1sec. Since the DAG-SVM evalu-
atesK — 1 two-class SVMs, a classification of a lower case
character take§thst,267class ~ (K - 1) : Cthst.chlass =
25 -0.1sec = 2.5sec. '

The memory complexity’'y; mainly consists of the stor-
age of all support vectors, thag, = K- (K — 1) /2- Mg
N-F-4byte = 26-25/2-100-45-3-4 byte ~ 17.5 Mbyte.

Of course both time and memory complexity are im-
mense and not practical for an operation of the DAG-SVM-
GDTW classifier on handheld devices. However, we see
some possibilities for optimization. A subsampling of the
writing scaleC'r andC', linearly and—Dby a factor 3-5—
might degrade recognition accuracy not too much. Addi-
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