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1 Introduction

A-posteriori error estimates are important tools in many disciplines of applied math-
ematics. For example, they are required for assessing the quality of numerical ap-
proximations and to guarantee their feasibility in the corresponding scenario. Popu-
lar examples for the application of error bounds are adaptive refinement strategies,
where error estimates are used to judge whether the spatial or temporal discretization
should be refined to improve the quality of the approximation, see for example [1,17,
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9]. Two desirable properties of such bounds are rigorosity, i.e. the error bound should
be a valid upper bound, and effectivity, i.e. the factor of overestimation should be
computable. In the context of the finite element method (FEM) those properties are
also referred to as reliability and efficiency.

An area where error bounds are of utmost importance is reduced order modeling.
Faced with the computational complexity involved with solving high-dimensional
systems of equations arising for example for highly accurate discretizations of par-
tial differential equations (PDEs), several techniques have emerged that try to tackle
this challenge by reducing the dimension of the problem. This is typically done by a
projection of the problem onto a low-dimensional subspace that contains enough in-
formation about the solution to the problem. The projection then yields a problem of
low-dimension which can be solved with low computational complexity and which
yields an approximation to the high-dimensional solution. The important question
that should then be answered is how far the approximation is from the true solution.
To this end one typically employs a-posteriori error estimates which in the ideal case
deliver a rigorous upper bound that does not deviate too much from the true error.
Giving a complete overview over the available methods and corresponding results for
the error estimation is out of scope of this paper. Instead, we refer to [3] and [4] for
recent overviews of model (order) reduction in the parameteric and non-parametric
cases. Based on these techniques, approximate solutions can be calculated cheaply
and in a computationally efficient manner. One framework that is particularly suit-
able for parametric problems is the reduced basis (RB) method. The essential idea of
RB methods is to identify low-dimensional subspaces in the high-dimensional solu-
tion spaces by exploring the parameter domain with so-called greedy algorithms. In
this article we will demonstrate that classical error bounds which are well-established
within RB methods can be significantly improved by introducing an auxiliary RB
problem. By the proposed procedure we are able to reach optimal effectivities of al-
most 1 in many examples. Furthermore, the quality of the error bound can be tuned
according to the application requirements.

In this paper, we improve a residual-based error estimation technique that has
been used frequently during the last decades. We illustrate the essential idea of the
improvement that enables highly accurate error estimates by the following simple ex-
ample: Consider the vector-valued equation Ax = f for A =

(
1 0
10 1

)
and f =

(
0
1

)
. This

equation has the unique solution x∗ =
(

0
1

)
. Assume we have a numerical scheme

that is able to produce the approximate solution x̂ ∈ R2 with say x̂ = 1.01x∗. This
results in a very low error (in the Euclidean norm) of only ‖x̂− x∗‖2 = 0.01. Usu-
ally the true solution x∗ is not available for the evaluation of the error, which is
why we are interested in finding rigorous upper bounds to the norm of the true er-
ror e := x̂− x∗. The straightforward procedure for doing this is to define the residual
r := Ax̂− f and to derive the equation Ae = r for the error e. It then directly follows
‖e‖2 ≤ ‖A−1‖2‖r‖2 ≈ 10.1 ·0.01≈ 0.101, which is an overestimation of factor≈ 10,
which is already quite large in this small example. To obtain more accurate error
bounds in this linear setting, we start again with the equation for the error Ae = r. It
is an interesting observation that by solving this equation exactly, the error can be cal-
culated exactly, i.e. with no overestimation. Unfortunately this is often too expensive
in applications since this essentially adds the complexity of solving the original prob-
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lem again (at least in the linear case). The central idea now is to not solve the error
equation Ae = r exactly but by another computationally efficient method that pro-
duces approximate solutions. If we assume to have a numerical scheme that is able to
calculate an approximate error ê rapidly, we can make use of the triangle inequality
and deduce the upper bound ‖e‖2 ≤ ‖ê‖2 + ‖ê− e‖2. The second term can be esti-
mated similarly to the first error bound by introducing a second residual R := Ae+ r,
from which we then obtain the final bound

‖e‖2 ≤ ‖ê‖2 +‖A−1‖2‖R‖2. (1)

Returning to the toy example and assuming an approximation ê = 1.01e, we can
evaluate equation (1) and obtain ‖ê‖2 = 0.0111, which gives an overestimation factor
of approximately 1.11. Hence, the error estimate is improved by a factor of about 10.

In this paper we show how the idea behind this very simple example can be gen-
eralized to a large class of linear and nonlinear problems, especially in the context
of RB methods. To this end, we introduce a generic nonlinear error estimate in Sec-
tion 2. We discuss the application in the RB context in Section 3 and provide several
numerical examples in Section 4. Finally, we present a conclusion and an outlook in
Section 5.

2 Rigorous and effective error bounds

We first clarify the setting used throughout this article. In what follows, we always
assume X and Y to be Banach spaces with norms ‖·‖X and ‖·‖Y , respectively. The set
of all bounded linear operators from X to Y is denoted as L (X ,Y ). For A ∈L (X ,Y )
we define the operator norm ‖A‖L (X ,Y ) := sup0 6=x∈X

‖Ax‖Y
‖x‖X .

Throughout this article we consider continuously differentiable mappings G ∈
C1(X ,Y ) and are interested in solving the problem

Find x ∈ X such that G(x) = 0. (P)

An element x∗ ∈ X is called (true) solution to the problem (P), if G(x∗) = 0. In the
remainder of this article, we always assume that at least one solution exists. We are
interested in estimating the error e := x̂− x∗ between a true solution and a suitable
approximation x̂ ∈ X by means of reliable a-posteriori error bounds, which can be
represented by functions ∆ : X → R with the property

‖x̂− x∗‖X ≤ ∆(x̂). (2)

A general framework for providing such error estimates can be found in [7]. However,
the results presented in that reference often lead to quite large overestimations of the
true error. The quality of the upper bound ∆ can be quantified in terms of the so-called
effectivity, which is defined as

eff(x̂) :=
∆(x̂)
‖x∗− x̂‖X

. (3)

By its definition it is clear that for reliable (i.e. rigorous) error estimates it always
holds eff(x̂) ≥ 1. Ideally we aim for error bounds that provide effectivities close to
one as we then get almost exact error predictions.
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2.1 Rigorous, effective and computable a-posteriori error estimates with effectivity
bounds

In this section we refine the results derived in [7] and show how significant improve-
ments can be achieved. We want to emphasize that these derivations are independet
of model order reduction but apply to any kind of approximation procedure. To this
end let us assume that the Fréchet-derivative DG|x̂ of G at the approximate solution
x̂ defines an invertible linear operator from X to Y . Based on this derivative, we then
define the following three quantities

ε(x̂) := ‖ DG|−1
x̂ (G(x̂))‖X , (non-split residual)

γ(x̂) := ‖ DG|−1
x̂ ‖L (Y,X), (stability constant)

L(α) := sup
x∈Bα (x̂)

‖ DG|x− DG|x̂ ‖L (X ,Y ), (local nonlinearity indicator).

Based on these quantities, we are able to prove the following fundamental error esti-
mate.

Theorem 1 (Rigorous a-posteriori error estimation) Let x̂ ∈ X be an approximate
solution and assume that DG|x̂ : X → Y is invertible. Let the validity criterion

τ(x̂) := 2γ(x̂)L(2ε(x̂))≤ 1.

hold. Then the problem G(x) = 0 has a unique solution x∗ ∈ X in the closed ball
B2ε(x̂)(x̂) and the following upper bound for the error e = x̂− x∗ ∈ X holds

‖e‖X = ‖x̂− x∗‖X ≤ ∆(x̂) :=
1

1− τ(x̂)/2
ε(x̂)≤ 2ε(x̂). (4)

Proof We present the full proof of the theorem in Appendix A.

Remark 1 Note that similar bounds have been derived by various authors ([20,23,
21]). However, in the bounds in literature known to us, the non-split residual ε(x̂) is
replaced by the upper bound

εsplit(x̂) := γ(x̂)‖G(x̂)‖Y ≥ ‖ DG|−1
x̂ (G(x̂))‖X = ε(x̂), (5)

which we call split residual for obvious reasons. As we have seen in the introduc-
tion and as we will see in the numerical results, this splitting can induce a very large
overestimation. This is not the case when the quantity ε(x̂) or other, more accurate
approximations to it, are used. Hence, the results in this article improve all the afore-
mentioned existing results.

The quantity L(α) can be seen as a measure for the nonlinearity of the problem
in the vicinity of the approximate solution. In particular, for (affine) linear problems
we immediately get L(α) = 0 (and τ(x̂) = 0, i.e. unconditional validity) and hence
even exact error predictions as stated in the following corollary.
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Corollary 1 (Exact error prediction for linear problems) Let G be affine linear in
x. Then it holds

‖e‖X = ‖x̂− x∗‖X = ∆(x̂), and eff(x̂) = 1.

Proof Since G is affine linear in x it can be written as G(x) = Ax + g for some
A ∈ L (X ,Y ) and g ∈ Y . We then obtain G(x̂) = G(x̂)−G(x∗) = A(x̂− x∗) = Ae
or equivalently e = A−1(G(x̂)). We further infer

‖e‖X = ‖A−1(G(x̂))‖X = ‖ DG|−1
x̂ (G(x̂))‖X = ε(x̂) = ∆(x̂),

since DG|x = A for all x ∈ X and τ(x̂) = 0. ut

As it was motivated in the introduction, the key quantity to assess the quality of
the error bound is the effectivity eff(x̂). In order to make quantiative statements of
the effectivity for the error bound in the general nonlinear case, we assume that the
function DG|−1

x̂ G(·) is locally Lipschitz-continuous around x̂. By this we mean that
there exists a constant CG(x̂)≥ 0 such that it holds

‖ DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂))‖X ≤CG(x̂)‖x− x̂‖X , ∀x ∈ B2ε(x̂)(x̂). (6)

Based on this property we are able to prove an estimate for the effectivity for locally
Lipschitz-continuous problems.

Lemma 1 (Effectivity estimate) Let DG|−1
x̂ (G(·)) be locally Lipschitz-continuous

around x̂ with constant CG(x̂) and let the error estimate from Theorem 1 hold true.
Then it holds

eff(x̂)≤ CG(x̂)
1− τ(x̂)/2

.

Proof The proof follows directly from the fact that G(x∗) = 0 and

∆(x̂) =
1

1− τ(x̂)/2
‖ DG|−1

x̂ (G(x̂))‖X

=
1

1− τ(x̂)/2
‖ DG|−1

x̂ (G(x̂)−G(x∗))‖X

≤ CG(x̂)
1− τ(x̂)/2

‖x̂− x∗‖X .

ut

Note that the effectivity estimate agrees with the result stated in Corollary 1. Indeed,
for linear problems we immediately observe τ(x̂) = 0 and CG(x̂) = 1 which results in
eff(x̂) = 1.

It is noteworthy that the local Lipschitz-continuity assumption is satisfied for a
large class of problems. One class that is of particular interest in applications are
quadratic problems such as the Navier-Stokes equation, Burgers equation, the alge-
braic Riccati equation (ARE) or nonlinear reaction-diffusion equations. The follow-
ing proposition provides a bound on CG(x̂) in this case.
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Proposition 1 (Local Lipschitz-continuity for quadratic problems) Let G be qua-
dratic, i.e. there exists a y0 ∈ Y , A ∈ L (X ,Y ) and a continuous bilinear mapping
B : X×X → Y such that

G(x) = y0 +Ax+
1
2

B(x,x).

Then DG|−1
x̂ (G(·)) : B2ε(x̂)(x̂) :→ X is locally Lipschitz-continuous around x̂ with

CG(x̂)≤ 1+ γ(x̂)cBε(x̂),

where cB := sup
x,x′∈X\{0}

‖B(x,x′)‖Y
‖x‖X‖x′‖X is the continuity constant of B.

Proof It holds

DG|x̂ (x) = Ax+
1
2
(B(x, x̂)+B(x̂,x)) and D2G

∣∣
x̂ (x,x

′) =
1
2
(B(x,x′)+B(x′,x)).

By direct computation we get the Taylor-like expansion

G(x) = G(x̂)+ DG|x̂ (x− x̂)+
1
2

D2G
∣∣
x̂ (x− x̂,x− x̂)

and therefore

DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂)) = DG|−1
x̂ (G(x)−G(x̂))

= DG|−1
x̂

(
DG|x̂ (x− x̂)+

1
2

D2G
∣∣
x̂ (x− x̂,x− x̂)

)
= x− x̂+

1
2

DG|−1
x̂ (D2G

∣∣
x̂ (x− x̂,x− x̂))

= x− x̂+
1
2

DG|−1
x̂ (B(x− x̂,x− x̂).

Taking the norm on both sides, applying the definition of the continuity constant cB
and using the triangle inequality we get

‖ DG|−1
x̂ (G(x))− DG|−1

x̂ (G(x̂))‖Y ≤ ‖x− x̂‖X +
1
2

γ(x̂)cB‖x− x̂‖2
X .

Finally, applying the bound given in (4) gives the desired result. ut

In the infinite-dimensional settings, the calculation of the involved quantities is
often not possible while in the finite-dimensional case it can be computationally de-
manding or even infeasible. This is particularly true for very high-dimensional set-
tings arising for example from semi-discretized PDEs. Instead, one often only has
computable upper bounds to the quantities, i.e.

ε(x̂)≤ εub(x̂), γ(x̂)≤ γub(x̂), L(α)≤ Lub(α). (7)

In this case Theorem 1 remains valid with the replaced quantities:
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Theorem 2 (Computable error bound and effectivity estimate) Let x̂ ∈ X be an
approximate solution and assume that DG|x̂ is invertible. Let the validity criterion

τub(x̂) := 2γub(x̂)Lub(2εub(x̂))≤ 1. (8)

hold. Then the problem G(x) = 0 has a unique solution x∗ ∈ X in the ball B2εub(x̂)(x̂)
and the upper bound holds

‖e‖X = ‖x̂− x∗‖X ≤ ∆ub(x̂) :=
1

1− τub(x̂)/2
εub(x̂)≤ 2εub(x̂). (9)

Furthermore, if there exists a constant Cε(x̂) > 0 such that εub(x̂) ≤ Cε(x̂)ε(x̂) and
DG|−1

x̂ (G(·)) is locally Lipschitz-continuous around x̂ with constant CG(x̂), the ef-
fectivity estimate

effub(x̂)≤
Cε(x̂)CG(x̂)
1− τub(x̂)/2

,

where effub(x̂) is the effectivity for the error bound ∆ub(x̂) holds.

Proof The first statement (9) follows identical to Theorem 1. For proving the addi-
tional effectivity estimate, we infer

∆ub(x̂) =
εub(x̂)

1− τub(x̂)/2
≤ Cε(x̂)ε(x̂)

1− τub(x̂)/2
,

from which we can proceed similar to Lemma 1. ut

2.2 Reaching high effectivities through auxiliary problems

In this section, we will see how a very sharp bound for ε(x̂) can be obtained with low
additional computational overhead. As it was motivated in the introduction by a sim-
ple two-dimensional linear problem, the effectivity of the a-posteriori error bound
deteriorates by a large factor if the calculation of ε(x̂) is split according to equa-
tion (5). Thus, the key towards highly effective (i.e. eff(x̂) ≈ 1) error bounds lies in
finding highly effective approximations or bounds to ε(x̂).

We first observe that the value of ε(x̂) can be calculated exactly by solving the
following linear system

DG|x̂ (E(x̂)) = G(x̂) (10)

for E(x̂) ∈ X , which then gives ε(x̂) = ‖E(x̂)‖X by definition. Since, at least in the
linear example, this equation calculates the exact error, we call equation (10) the
error equation for the problem. Although linear problems of the form (10) are often
relatively easy to solve, it can be prohibitive to do so in high-dimensional or multi-
query scenarios. To obtain a computationally efficient scheme, instead of requiring
the true solution E(x̂), we assume to have a suitable method that can be used to
calculate an approximate solution Ê(x̂) ∈ X . The strength of the proposed method
lies in the fact that we can easily derive a rigorous bound for the quantitiy ε(x̂), when
an approximation Ê(x̂) is available:
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Lemma 2 (Upper bound for ε(x̂)) Let Ê(x̂) ∈ X be an approximate solution to the
error equation (10) and define the error residual R(x̂) := DG|x̂ (Ê(x̂))−G(x̂). Then
the upper bound

ε(x̂)≤ εub(x̂) := ‖Ê(x̂)‖X + γub(x̂)‖R(x̂)‖Y . (11)

holds true.

Proof The proof is a straightforward application of the triangle inequality. It holds

ε(x̂) = ‖E(x̂)‖X = ‖E(x̂)+ Ê(x̂)− Ê(x̂)‖X ≤ ‖Ê(x̂)‖X +‖Ê(x̂)−E(x̂)‖X .

For the difference Ê(x̂)−E(x̂), we make use of the linearity of the error equations
and obtain the relation DG|x̂ (Ê(x̂)−E(x̂)) = R(x̂), from which we get

‖Ê(x̂)−E(x̂)‖X = ‖ DG|−1
x̂ (R(x̂))‖X ≤ γ(x̂)‖R(x̂)‖Y ≤ γub(x̂)‖R(x̂)‖Y . (12)

ut

Provided that an efficient scheme for the approximation of E(x̂) exists, the compu-
tational overhead for the calculation of εub is not very large as it only requires the
calculation of ‖Ê(x̂)‖X and ‖R(x̂)‖Y . Many iterative solvers for large-scale linear
systems provide the residual of the equation as an abortion criterion which can be
directly used for the calculation of the residual norm ‖R(x̂)‖Y . Furthermore, no ad-
ditional quantities are required: In particular, γub(x̂) has to be calculated anyway for
the evaluation of the error bound.

At this point we want to emphasize that our numerical examples reveal very ac-
curate error predictions when using ∆ub(x̂) from Theorem 2 with the choice εub(x̂)
according to Lemma 2. One possible explanation for this observation can be deduced
from

‖x̂− x∗‖X ≤ ∆(x̂)≤ 2ε(x̂)≤ 2εub(x̂),

and the fact that εub(x̂) is a very accurate estimate of ε(x̂). In contrast to the original
splitting of ε(x̂) in equation (5), the splitting in (12) does not deteriorate the bound
εub(x̂) significantly since ‖R(x̂)‖Y is often much smaller than ‖Ê(x̂)‖X . To quantify
this observation rigorously, we use the following lemma.

Lemma 3 (Relation of ε(x̂) and εub(x̂)) Assume

2γub(x̂)‖R(x̂)‖Y
‖Ê(x̂)‖X

≤ 1.

Then the following inequality holds true for εub chosen as in (11).

εub(x̂)≤Cε(x̂)ε(x̂), with Cε(x̂) :=
(

1+4
γub(x̂)‖R(x̂)‖X

‖Ê(x̂)‖X

)
≤ 3.
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Proof Note that the following proof is similar to a proof for the effectivity of relative
RB error bounds [18]: The proof follows with E(x̂)= DG|−1

x̂ (G(x̂)) and ‖E(x̂)‖X 6= 0

εub(x̂) = ‖Ê(x̂)‖X + γub(x̂)‖R(x̂)‖Y
≤ ‖E(x̂)‖X +‖Ê(x̂)−E(x̂)‖X + γub(x̂)‖R(x̂)‖Y

≤

(
1+
‖Ê(x̂)−E(x̂)‖X

‖E(x̂)‖X
+

γub(x̂)‖R(x̂)‖Y
‖E(x̂)‖X

)
‖E(x̂)‖X . (13)

From the triangle inequality and (12) we infer∣∣∣∣∣‖E(x̂)‖X −‖Ê(x̂)‖X

‖Ê(x̂)‖X

∣∣∣∣∣≤ ‖Ê(x̂)−E(x̂)‖X

‖Ê(x̂)‖X
≤ γub(x̂)‖R(x̂)‖Y

‖Ê(x̂)‖X
≤ 1

2
.

If ‖Ê(x̂)‖X > ‖E(x̂)‖X , we thus get ‖Ê(x̂)‖X − ‖E(x̂)‖X ≤ 1
2‖Ê(x̂)‖X , and hence

1
2‖Ê(x̂)‖X ≤ ‖E(x̂)‖X . In the other case, i.e. ‖Ê(x̂)‖X ≤ ‖E(x̂)‖X , the inequality
1
2‖Ê(x̂)‖X ≤ ‖E(x̂)‖X follows trivially. Hence, in total we obtain

‖Ê(x̂)−E(x̂)‖X

‖E(x̂)‖X
≤ γub(x̂)‖R(x̂)‖Y

‖E(x̂)‖X
≤ 2

γub(x̂)‖R(x̂)‖Y
‖Ê(x̂)‖X

.

Inserting this twice into (13) yields the final result. ut

3 Highly accurate error bounds in the reduced basis context

In this section we apply the proposed error bound within the RB framework. In partic-
ular, we explain how the a-posteriori error bound derived in Section 2 can be applied
to parametric and nonlinear problems within the RB context.

3.1 Parametric nonlinear problems and the reduced basis method

In the following, we consider parametric problems. To this end let µ ∈P be a para-
meter vector where P ⊂ RP for P ∈ N is a compact set of admissible parameters.
The problems that we are interested in take the form

For µ ∈P find x∗(µ) ∈ X : G(x∗(µ); µ) = 0, (P(µ))

for the parameter-dependent operator G(·; µ) : X → Y . In the following we always
assume that for every parameter µ ∈P at least one solution exists.

The idea behind RB methods is to determine a low-dimensional subspace XN ⊂ X
with N = dim(XN) � dim(X) = d ≤ ∞ and to find approximate solutions in this
subspace by solving an N-dimensional so-called reduced problem. To illustrate the
procedure we equip the approximation space XN with a reduced basis {φ1, . . . ,φN} ⊂
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X , of linearly independent basis elements φi ∈ X . We then define the approximation
x̂(µ) ∈ XN via

x̂(µ) :=
N

∑
i=1

xN,i(µ)φi = ΦxN(µ),

where the coefficient functions xN,i : P→R are called reduced coordinates of the re-
duced coordinate vector xN =(xN,i)

N
i=1 ∈RN and where we introduce Φ :=(φ1, . . . ,φN)

as the row vector of basis functions. By restricting the set of possible solutions of the
problem (P(µ)) to the subspace XN and by projecting the residual G(x̂(µ); µ)) to
another subspace YN , we arrive at the reduced problem:

For µ ∈P find x̂(µ) = ΦxN(µ) ∈ XN : GN(x̂(µ); µ) = 0, (PN(µ))

where the reduced problem is given as

GN(·; µ) : XN → YN , GN(·; µ) := ΠYN

(
G(·; µ)|XN

)
.

Here, ΠYN : Y →YN denotes a projection onto the subspace YN , which we equip with a
basis {ψ1, . . . ,ψN} ⊂ Y . This procedure is commonly referred to as Petrov-Galerkin
projection and it is widely used for projection-based model order reduction (MOR)
methods.

The solvability of (PN(µ)) is typically ensured by a careful construction of the
spaces XN and YN . In the following, we always assume that all problems are solvable,
i.e. in particular we can compute true solutions x∗(µ)∈ X and approximations x̂(µ)∈
XN for any parameter µ ∈P . But as mentioned above, we do not require uniqueness.

3.2 Effective error prediction for the RB method

Given an approximate solution x̂(µ)∈XN to a true solution x∗(µ)∈X , the fundamen-
tal question arises whether the norm of the error e(µ) := x̂(µ)− x∗(µ) can be quan-
tified rigorously and with good effectivity. To give a positive answer to this question,
we apply Theorem 1. In the parametric setting, we are challenged with the require-
ment of calculating the following parameter-dependent quantities efficiently, where
we often omit the explicit dependency on x̂(µ) for the sake of readability:

γ(µ) := ‖ DG(·; µ)|−1
x̂(µ) ‖L (Y,X),

ε(µ) := ‖[DG(·; µ)|−1
x̂(µ)](G(x̂(µ); µ))‖Y ,

L(α; µ) := sup
x∈Bα (x̂(µ))

‖ DG(·; µ)|x̂(µ)− DG(·; µ)|x ‖L (X ,Y ).

Since a direct calculation of these quantities is often too expensive we employ rapidly
computable and (in the ideal case) rigorous upper bounds similar to the nonparametric
case

γ(µ)≤ γub(µ), ε(µ)≤ εub(µ), L(α; µ)≤ Lub(α; µ).
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Although all quantities are important we will primarily focus on the efficient calcu-
lation of εub(µ) and provide comments about the role of the other quantities in the
subsequent section. We recall that ε(µ) can be calculated explicitly by solving the
following parametric linear equation for E(µ) ∈ X

For µ ∈P find E(µ) ∈ X : [DG(·; µ)|x̂(µ)](E(µ)) = G(x̂(µ); µ). (PE(µ))

and by computing ε(µ) = ‖E(µ)‖X . Lemma 2 shows how an upper bound for ε(µ)
can be calculated based on an approximation Ê(µ)∈X of the solution E(µ). The idea
to obtain such approximations in the context of RB methods is to employ another
Petrov-Galerkin projection of the parametric error equation (PE(µ)) for a different
pair of subspaces XE

M ⊂X , Y E
M ⊂Y with dim(XE

M)= dim(Y E
M )=M� d = dim(X). We

equip both subspaces with bases {φ E
1 , . . . ,φ

E
M}⊂ X and {ψE

1 , . . . ,ψ
E
M}⊂Y consisting

of linearly independent basis functions and define the ansatz

Ê(µ) :=
M

∑
i=1

EM,i(µ)φ
E
i ∈ XE

M, with EM(µ) := [EM,1(µ), . . . ,EM,M(µ)]T ∈ RM,

and project the error equation (PE(µ)) analogously to the original problem

ΠY E
M

(
[DG(·; µ)|x̂(µ)](Ê(µ))

)
= ΠY E

M
(G(x̂(µ); µ)) . (PE

M(µ))

Note that this equation is of dimension M and can be solved efficiently, provided M
is sufficiently small. To be able to state a rigorous upper bound εub(µ) for ε(µ) we
define the residual R(µ) ∈ Y of the approximation of the error equation as

R(µ) := [DG(·; µ)|x̂(µ)](Ê(µ))−G(x̂(µ); µ).

We then get from Lemma 2 the upper bound

ε(µ)≤ εub(µ) = ‖Ê(µ)‖X + γub(µ)‖R(µ)‖Y . (14)

Based on this, we denote as ∆ub(µ) the parametric computable error bound stemming
from Theorem 2 equation (9) where we use εub(µ) given by equation (14).

3.3 Improvement of classical RB bounds for linear elliptic problems

The RB method is classically applied in the context of parametric PDEs. In this sec-
tion we recall the basic error estimation results for linear elliptic problems and relate
them to the bound presented in the previous section.

Let X be suitable Hilbert (function) space and consider the following weak for-
mulation of a parameterized PDE:

For µ ∈P find u(µ) ∈ X : a(u(µ),v; µ) = f (v; µ), ∀v ∈ X . (15)
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We assume a(·, ·; µ) : X ×X → R to be a continuous bilinear form and f (·; µ) ∈ X ′,
where X ′ denotes the dual space of X . We further assume the following essential
properties that ensure the well-posedness of (15) for any µ ∈P

sup
u∈X

sup
v∈X

|a(u,v; µ)|
‖u‖X‖v‖Y

=: c(µ)≤ cub(µ)< ∞, (continuity),

inf
u∈X

sup
v∈X

|a(u,v; µ)|
‖u‖X‖v‖Y

=: β (µ)≥ βlb(µ)> 0, (inf-sup stability),

and for each 0 6= v ∈ X there exists a u ∈ X such that a(u,v; µ) 6= 0. Provided these
assumptions hold true, it is a well-known result that there exists a unique solution
u∗(µ) ∈ X to the problem (15) (cf. [6]).

This problem fits in the general framework by setting Y := X ′ and G(·; µ) : X→Y
via

G(u; µ)(v) := a(u,v; µ)− f (v; µ), ∀v ∈ X .

Let us now assume that an RB approximation x̂(µ) ∈ XN for some suitable subspace
XN with N = dim(XN)� d is given. Then, the classical relation between the error
e(µ) := x̂(µ)−x∗(µ)∈ X and the residual of the approximation is established via the
the norm of the residual G(x̂(µ); µ) and reads as follows

‖x̂(µ)− x∗(µ)‖X ≤ ∆RB(µ) :=
‖G(x̂(µ); µ)‖Y ′

β (µ)
≤ ‖G(x̂(µ); µ)‖Y ′

βlb(µ)
.

In this setting, the equation 1
β (µ) = γ(µ) relates the inf-sup constant to the stability

constant in the abstract formulation in this paper. Recall that for linear problems we
have

‖e(µ)‖X = ε(µ)≤ εsplit(µ) = γ(µ)‖G(x̂(µ); µ)‖X ′ = ∆RB(µ).

Hence, by not splitting the calculation of the residual and by directly applying an
approximation scheme to ε(µ) we can expect more accurate error predictions.

To apply the improved error estimation technique we setup the error equation,
whose weak form in the linear case is given via

a(e(µ),v; µ) = a(x̂(µ),v; µ)− f (v; µ), ∀v ∈ X . (16)

Since this equation is as expensive as the original problem, we perform the additional
RB approximation of the error equation according to the framework described in the
previous section. To this end, we assume to have another subspace XE

M ⊂ X with
dim(XE

M) = M� d, which leads to the reduced error equation

a(ê(µ),vM; µ) = a(x̂(µ),vM; µ)− f (vM; µ), ∀vM ∈ XE
M.

Recall that this is an M-dimensional equation that can be solved rapidly, similar to
the RB approximation of the main problem. Based on the approximate solution we
then get according to Lemma 2 the error bound

∆ub(µ) = ‖ê(µ)‖X +
1

β (µ)
‖R(µ)‖Y ≤ ‖ê(µ)‖X +

1
βlb(µ)

‖R(µ)‖Y ,



Rigorous and effective error bounds for nonlinear problems 13

where R(µ) ∈Y is the Riesz-representative of the residual of equation (16), when the
approximation ê(µ) replaces the true error e(µ).

Often, the calculation of the inf-sup constant β (µ) poses many difficulties when
it comes to an efficient implementation. As a remedy one often employs pessimistic
lower bounds βlb(µ) to β (µ) that can be calculated rapidly. Such lower bounds can,
for example, be computed by employing standard estimation techniques in the RB
framework such as the min–θ scheme or the successive constraint method (SCM)
(cf. [12,18]). However, they are often either not applicable, computationally involved
or deliver highly imprecise results that render the classical RB error bounds useless.
The following example demonstrates the influence of β (µ) onto the classical and
improved error bound and shows the benefit of using the results presented in this
article. By using the upper bound ∆ub(µ) with εub(µ) and a lower bound of the inf-
sup constant βlb(µ) := β (µ)

λ
with a parameter λ ≥ 1, we get the following estimates

when using the classical RB bound and the improved version presented in this paper.

∆RB(µ)≤ λ · ‖G(x̂(µ); µ)‖Y
β (µ)

and ∆ub(µ)≤ ‖Ê(µ)‖X +λ · ‖R(µ)‖Y
β (µ)

.

Since we expect that ‖R(µ)‖Y � ‖G(x̂(µ); µ)‖Y , severe underestimations, i.e. as-
suming large λ , of the inf-sup constant have less impact in the non-split bound
∆ub(µ). In particular this property might be useful in cases for which a (probably
pessimistic) lower bound β (µ)≥ β̄ > 0 for all µ ∈P is available, making expensive
estimation techniques for those stability constants superfluous. We demonstrate the
effect of this behaviour in our numerical examples in Section 4.

3.4 Basis generation and offline/online efficient implementation

The essential idea of RB methods is to split the calculation into a potentially ex-
pensive offline phase where precomputations are performed which then allow a rapid
online phase. During the offline step, the first task is to construct the subspaces, which
in our case means finding a suitable basis for XN ,YN . To avoid technical difficulties
and to ease the following, we only construct the ansatz space XN and set YN = (XN)

′.
While there are many ways to determine suitable subspaces (cf. [10]), we focus on

snapshot based techniques. In this case the subspace is contained in the span of sev-
eral true solutions, i.e. XN ⊂ span({x(µ1), . . . ,x(µN)}) for suitable µ1, . . . ,µN ∈P .
Two popular techniques with this respect are the proper orthogonal decomposition
(POD) method [25] and the class of greedy algorithms [24]. The first extracts the rel-
evant information from a given set of solutions based on an eigenvalue decomposition
of the empirical correlation operator of a set of snapshots S := {x(µ1), . . . ,x(µN)} (cf.
[10]). Greedy procedures, on the other hand, determine the parameter whose solution
should be used to enhance the space based on its current approximation quality. In this
section we focus on the latter, however, we also make use of the first in our numerical
section. The general structure of the greedy algorithm is as follows and the pseu-
docode is given in Algorithm 1: Starting from an initial subspace X0 ⊂ X and a finite
training set Ptrain ⊂P the maximum approximation error is sought by evaluating
an error indicator δ (·; µ) : X → R≥0 for all reduced solutions with parameters in the
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training set Ptrain. The subspace is then extended with the element that delivers the
maximum error estimate and the loop continues until a prescribed tolerance is met.
By this we get an iterative scheme where the subspace is extended in each iteration.

Algorithm 1: Pseudocode for greedy algorithm.

Data: Training set Ptrain, greedy tolerance ρ , error estimator δ (·; µ), initial
subspace X0

Result: Subspace XN .
1 while maxµ∈Ptrain δ (x̂(µ); µ)> ρ do
2 Set µ∗ := argmaxµ∈Ptrain

δ (x̂(µ); µ);
3 Solve full problem G(x∗(µ∗); µ∗) = 0 for x∗(µ∗) ∈ X ;
4 Extend subspace XN+1 := XN

⊕
span(x∗(µ∗));

5 Increment N := N +1;
6 end

For the approximation of the error equation we have to identify another pair of
subspaces XE

M and Y E
M . To this end, we proceed in an analogous fashion, i.e. we also

restrict ourself to the case Y E
M = (XE

M)′, however, instead of solving the full problem
(P(µ)) we now solve the error equation (PE(µ)) in each greedy iteration. Additionaly,
the error indicator and tolerance have to be chosen in a sensible manner. In our case,
we use the error indicator δ (Ê(µ)) := ‖R(µ)‖

βlb(µ)
which is a suitable (and even rigorous)

choice.

Remark 2 1. The error space XE
M depends on the choice of the approximation space

XN . This limits the usefulness of our proposed bound as an error indicator for the
greedy algorithm since the space XE

M has to be rebuild in every iteration.
2. In general, the dimension M depends on the chosen tolerance for the greedy al-

gorithm for the error equation. Therefore one can pose additional constraints on
the size of the approximation space for the error equation in order to retain the
computational efficiency.

Finally, we shortly address how an efficient online phase can be achieved: The clas-
sical assumption that is made in this respect is the parameter separability of the prob-
lem. Given the parametric problem G(·; µ) = 0, we assume that it can be decomposed
into an expansion of the form

G(·; µ) =
Q

∑
q=1

Θq(µ)Gq(·),

i.e. it consists of parameter dependent coefficient functions Θq : P → R and param-
eter independent operators Gq : X → Y . In cases where no such decomposition is
present, the (discrete) empirical interpolation method can be employed (cf. [16,8]).
This property carries over to GN as

GN(·; µ) = ΠYN

(
G(·; µ)|XN

)
=

Q

∑
q=1

Θq(µ)ΠYN

(
Gq(·)

∣∣
XN

)
=:

Q

∑
q=1

Θq(µ)GN,q(·).
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Thus one can easily assemble the reduced system by precomputing GN,q during the
offline-phase. In the same way the above property is inherited by DG and thus the
reduced error problem can be handled analogously.

4 Numerical examples

In this section we evaluate the proposed a-posteriori error estimation theory in the
context of the RB method. The first example is a well-known thermal-block test case,
modelling a parametric heat conduction problem on the unit square. Here we will see
that by making use of the proposed method we are able to reach excellent effectivi-
ties in any norm that we consider. The second example shows the application of the
framework to a nonlinear finite-dimension problem that stems from a semidiscretized
parametric PDE with non-variational finite difference (FD) discretization. Finally, in
the last example we consider a parametric ARE, i.e. a parametric nonlinear matrix-
valued equation. All examples are implemented in the toolbox RBmatlab1 and were
run on a machine with an Intel Core i7-6700 CPU with 16GB RAM in MATLAB
2017a.

4.1 Standard linear test case: Thermal block model

The thermal block example is a well-known test example in the RB community (cf.
[18,10]). It consists of a steady linear heat equation on the unit square Ω = (0,1)2,
which is divided into B := B1 ·B2 subblocks, where B1,B2 ∈ N denote the number
of subblocks per dimension. We denote the subblocks by Ωi for i = 1, . . .B, counted
rowwise starting from the left bottom. We prescribe a unit flux into the domain on
the bottom boundary, which is denoted as ΓN,1 with unit outward normal n(ξ ), where
ξ ∈ Ω indicates the spatial variable. The left and right boundary part ΓN,0 is insu-
lated, which is modeled by a zero Neumann boundary condition and the top Dirichlet
boundary ΓD has constant 0 temperature. A schematic drawing of the domain is pro-
vided in Figure 1a. The parametric PDE for the temperature field u(·; µ) : Ω →R for
this example is given as

−∇ · (κ(ξ ; µ)∇u(ξ ; µ)) = 0, ξ ∈Ω ,

u(ξ ; µ) = 0, ξ ∈ ΓD,

(κ(ξ ; µ)∇u(ξ ; µ)) ·n(ξ ) = i, ξ ∈ ΓN,i, i = 0,1,

where we define the heat conductivity function

κ(·; µ) : Ω → 0, κ(ξ ; µ) :=
B

∑
i=1

µiχΩi(ξ ),

using the indicator function χA for sets A ⊂ Ω . The parametric domain for this
problem is given as P := [1/µmax,µmax]

B for some µmax > 1. With the function

1 http://www.morepas.org
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(a) Illustration of the thermal block setting used in the
examples.
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and the greedy for the error equation.

Fig. 1: Test 1: Setting for the thermal block model, decay of error indicator.

space X = H1
D(Ω) := {v ∈ H1(Ω) | v|

ΓD
= 0} and its dual X ′, we define the problem

G(·; µ) : X → X ′ via

G(u; µ)(v) :=
∫

Ω

κ(ξ ; µ)∇u(ξ ) ·∇v(ξ )dξ −
∫

ΓN,1

v(ξ )dξ , ∀v ∈ X .

We equip the space X with the norm ‖x‖X = ‖∇x‖L2(Ω). It is a well-known fact that
for every µ ∈P this problem possesses a unique solution u∗(µ) ∈ X .

For the first tests we pick B1 = B2 = 3, i.e. we have in total 9 parameters and
µmax = 10. For the truth-approximation we apply a finite-element approximation of
the PDE with piecewise linear elements resulting in a d = 3 721 dimensional problem.
The generation of the basis for the subspace XN for the RB-approximation of the
problem is performed with a standard greedy procedure, see also Section 3.4. For
this, we define the residual-based error estimator δ (x̂(µ)) := ‖G(x̂(µ);µ)‖X ′

βlb(µ)
. Since we

take the norms in the space H1
D(Ω), we can define a lower bound to the inf-sup

constant as βlb(µ) := mini=1,...,B µi. The basis is constructed on a finite training set
consisting of |Ptrain| = 1 000 random elements chosen uniformly from P . We fix
the tolerance ρ = 10−3 which yields a basis for the approximation of size N = 62.

For the construction of the approximation space XE
M for the approximation of the

error equation DG|x̂(µ) (E(µ))=G(û(µ); µ), where û(µ)∈XN is the RB-approximation
of the solution, we perform another greedy procedure. In particular, we again reuse
the residual based error estimator and define

δE(µ) :=
‖ DG|û(µ) (Ê(µ))−G(û(µ); µ)‖X ′

βlb(µ)
,

where û(µ) is the RB approximation obtained from the 62-dimensional subspace and
Ê(µ) is the current approximation to the error equation for the parameter µ . We run
the greedy algorithm for the error equation with the very low tolerance ρE = 10−8.
Furthermore, we reuse the same 1 000 parameters that were chosen for the greedy
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procedure for the main problem. The basis construction results in a subspace XE
M

of dimension M = 118. Note that due to linearity of the problem the error equation
corresponds to solving another thermal block problem with a distributed source term
that is given by the residual G(û(µ); µ).

Figure 1b shows the decay of the error indicators for the main problem and the
approximation of the error equation. We infer that the initial error for the error equa-
tion that is measured by the error indicator δE is very low and in the magnitude of the
true error, which is why we had to set the tolerance to ρE = 10−8.

In the following we compare the improved error estimation techniques that are
presented in this paper to the standard error bounds that are very widely used in the
RB context. As a first test we use the L2(Ω)-norm for the evaluation of the error
bound and pick 20 random test parameters for the evaluation. For this test we calcu-
late the exact value of the stability constant γ(µ) by solving a d-dimensional eigen-
value problem. Clearly this is not online efficient but the purpose of the first test is to
solely demonstrate the improved quality of the error estimates. The results are pre-
sented in Figure 2: We show the absolute value of the true error ‖û(µ)−u∗(µ)‖L2(Ω)

as well as the standard RB-error bound ∆RB(µ) = γ(µ)‖G(û(µ); µ)‖L2(Ω). Recall
that the latter choice corresponds to the split bound. The results in Figure 2 show
a very large overestimation of factor ≈ 104 for all test parameters. To demonstrate
the improved error estimation and the arbitrarily high effectivity in the linear case,
the error bound ∆ub(µ) with the improved approximation of ε(µ) is shown in the
same figure. To this end we choose decreasing tolerances ρE and pick the subspace
for Ê(µ) according to these tolerances. The plot clearly shows that an increasing di-
mension M improves the quality of the error estimation. In particular for ρE = 10−8

(M = 118) we get almost exact error prediction.
In Figure 3 we plot the true effectivities eff(µ) along with the effectivity pre-

dictions from Lemma 3. For ρE = 10−7 the bound on the effectivity is applicable
only in three cases whereas for ρE = 10−8 the predicted effectivity is close to the
actual effectivity. Recall that the online complexity for getting these highly-accurate
error estimates consists of solving an M-dimensional linear system and calculating
the norm of the residual. All these tasks can be fully decomposed into an offline and
an online phase, rendering the improved error estimation very cheap.

For the next test we pick a larger test set Ptest ⊂P consisting of 100 randomly
chosen parameters. We compare the error estimation for the H1

D(Ω), L2(Ω) and the
so-called energy norm ‖ · ‖µ̄ , which is defined as ‖u‖µ̄ :=

√
a(u,u; µ̄) for u ∈ X and

a fixed parameter µ̄ ∈P . We pick the parameter µ̄ = (1,2,1,2, . . . ,1)T . It as well-
known fact that the error estimation in the energy norm delivers very accurate results,
which is also visible in Table 1 where the maximum and mean effectivity for all
three norms are provided. The first row corresponds to the standard RB bound. The
column entitled λ shows the factor by which we overestimate γ(µ), i.e. we pick the
upper bound γub(µ) := λγ(µ) for the calculations. In all cases we observe a decay for
decreasing tolerances ρE , i.e. richer subspaces XE

M for the error equation. In particular,
for the largest basis (ηE = 10−8) and for λ = 1 we get exact error prediction over the
whole parameter test set in the H1

D(Ω) and energy norm. As expected, the influence
of large overestimations of γ(µ) has much less impact on the improved norm in all
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Fig. 2: Test 1: Absolute error measured in the L2(Ω)-norm for 20 random test param-
eters.
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Fig. 3: Test 1: Effectivity of the L2(Ω)-norm error bound for 20 random test param-
eters.

three cases. Recall that for the classical RB bound the scaling directly enters in the
bound, i.e. λ = 100 means an additional degradation in the effectivtiy of factor 100
whereas we observe only factor 1.2−60, depending on the chosen norm.

4.2 Nonlinear finite-dimensional parametric problems

The second example stems from the finite-difference discretization of a nonlinear
reaction-diffusion-advection equation. The infinite-dimensional description for this
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Maximum Mean

ρE M λ ‖ · ‖L2(Ω) ‖ · ‖H1
D(Ω) ‖ · ‖µ̄ ‖ · ‖L2(Ω) ‖ · ‖H1

D(Ω) ‖ · ‖µ̄

1 10,018.07 64.27 42.83 3,516.73 9.22 9.24
1 ·10−4 21 1 2,025.01 9.94 7.02 513.37 2.29 2.28
1 ·10−5 45 1 384 2.86 2.25 73.46 1.19 1.18
1 ·10−6 74 1 55.5 1.31 1.21 8.58 1.02 1.02
1 ·10−7 101 1 7.63 1.03 1.02 1.88 1 1
1 ·10−8 118 1 1.58 1 1 1.11 1 1
1 ·10−8 118 10 6.84 1.02 1.01 2.08 1 1
1 ·10−8 118 100 59.36 1.22 1.15 11.79 1.02 1.02

Table 1: Test 1: Maximum and mean effectivity of the error estimate for the thermal
block example in three different norms. The first row shows the results for the stan-
dard RB bound ∆RB, the remaining rows for the proposed improved error estimate.

problem is given by defining for ξ ∈Ω := (0,1) the PDE

−µ1∂ξ ξ u(ξ ; µ)+∂ξ u(ξ ; µ)−µ2u(ξ ; µ)2 = f (ξ ), ξ ∈Ω .

u(0; µ) = u(1; µ) = 0.

The parameter for this example stems from the set µ = (µ1,µ2)
T ∈ [0.1,1]× [1,10],

where µ1 describes the diffusivity of the problem and µ2 changes the influence of the
nonlinearity. The right-hand side function (source term) is given as f (ξ ) := sin(ξ π)2

for ξ ∈ Ω . The PDE is discretized in space with a simple finite-difference scheme
with upwind flux and results in a d = 400 dimensional nonlinear problem of the form
G(x; µ) = 0 with G(x; µ) := A(µ1)x+µ2g(x)− f where A(µ) ∈ Rd×d , g : Rd → Rd

and f ∈ Rd . In this case we pick the finite-dimensional spaces X = Y = Rd and use
the standard Euclidean norm for quantifying the error. We construct a subspace of
dimension N = 6 by calculating snapshots for 100 random parameters chosen uni-
formly from P and by extracting the basis through the POD procedure. Note that
this does not yield very accurate results for the RB-approximation but suffices to
show the benefit of the improved error estimation theory presented in this paper. Fig-
ure 4a shows the solution to the full problem and to the reduced problem for three
different parameters.

For evaluating the error bound we have to calculate DG|x̂(µ), which yields

DG|x̂(µ) (y) = A(µ1)y+2µ2(x̂(µ)◦ y),

where (a ◦ b)i := aibi for a,b ∈ Rd denotes the componentwise product. From the
explicit formula we immediately get L(α; µ)≤ 2µ2α =: Lub(α). In all of the follow-
ing examples the value of γ(µ) = ‖ DG(·; µ)|−1

x̂ ‖ is calculated exactly by solving a
high-dimensional eigenvalue problem.

For the application of the error bound, we have to construct a subspace XE
M . To

this end, we calculate solutions to the high-dimensional error equation for 50 random
parameters from the training set and extract a basis by means of POD. For evaluating
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(a) Test 2: Example solutions for three different pa-
rameters.

M % valid mean
µ∈Ptest

eff(µ) max
µ∈Ptest

eff(µ).

0 57 93.80 143.31
1 57 93.82 143.39
5 58 90.73 142.03

10 64 53.03 78.66
15 78 1.21 2.13
20 78 1.02 1.56
50 78 1.02 1.56

(b) Test 2: Results for increasing basis sizes.

Fig. 4: Example full and RB-simulations (left). Error estimation results (right).

the bound we calculate the error estimates for test parameters Ptest consisting of 200
parameters chosen randomly from the parameter domain. We then vary the size of the
RB space for the approximation of the error equation and evaluate the mean and max-
imum effectivity of the valid error estimations over the whole parameter test set Ptest.
The results are presented in Table 4b. Note that a size of M = 0 corresponds to the
split upper bound and represents the result that is classically used for error estimation
in the RB context. Increasing the size again reveals a very accurate error prediction
uniformly over the parameter space. Recall that in the nonlinear problem the bound
is only applicable if τ(µ) ≤ τub(µ) ≤ 1, where τub(µ) is defined in equation (8). To
show the benefit of using the improved error bound, the column entitled with “%
valid” shows the fraction of valid error predictions. We observe that by increasing
the dimension of XE

M , the fraction increases from 57% to 78%. Note that the validity
criterion is not always satisfied since the RB-approximation is too coarse. Hence we
cannot expect valid error estimations for all parameters unless we build richer sub-
spaces XN . Once again we want to highlight the fact that for the RB-approximation
of the error equation, the solution to an M-dimensional linear problem is required.

4.3 Parametric algebraic Riccati equations

The ARE is a nonlinear matrix-valued equation with many applications in systems
theory such as optimal (feedback) control or optimal state estimation, see [14]. For
X := {A∈Rd×d |A = AT}=: Rd×d

sym and 〈A,B〉X := trace(AT B) we define the mapping
G(·; µ) : X → X via

G(P(µ); µ) := A(µ)T P(µ)+P(µ)A(µ)−P(µ)F(µ)P(µ)+Q(µ), (17)

where A(µ) ∈ Rd×d and F(µ),Q(µ) ∈ Rd×d
sym with F(µ) and Q(µ) being positive-

semidefinite matrices. It is a well-known fact that this equation has a unique (sta-
bilizing) solution P∗(µ) ∈ Rd×d

sym (i.e. the eigenvalues of (A(µ)−F(µ)P(µ)) have
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negative real part and P(µ) is positive-semidefinite) provided the matrix A(µ),F(µ)
and Q(µ) satisfy specific conditions [15]. Often, in high-dimensional applications,
the solution matrices P∗(µ) are of low numerical rank, meaning they can be effi-
ciently approximated by low-rank factorizations of the form P∗(µ) ≈ Z∗(µ)Z∗(µ)T

for Z∗(µ) ∈ Rd×K with K � d (cf. [2]). This special structure is exploited in [20]
in a parametric setting, where the low-rank factor greedy algorithm (LRFG) is intro-
duced to make use of the special structure and to construct a suitable subspace for the
RB-approximation of the ARE. This is done by defining the N-dimensional subspace
XN := {V PNV T |PN ∈RN×N

sym } ⊂ X for a suitable basis matrix V ∈Rd×N which is then
used for the approximation via the Galerkin-projection V T G(V PN(µ)V T ; µ)V = 0.
It can be shown that PN(µ) solves an N-dimensional ARE that can be solved very
efficiently for low N. Based on the low-dimensional matrix PN(µ) we then define the
approximation P̂(µ) :=V PN(µ)V T and the error e(µ) = P̂(µ)−P∗(µ). For measur-
ing the error, we pick the spectral norm in the space X . The application of the error
bound requires the quantities L(α; µ) and ‖DG(·; µ)−1‖L (X ,X) Due to the quadratic
nature of the ARE the derivative is readily calculated as

DG(·; µ)|P̂(µ) (P) = (A(µ)−F(µ)P̂(µ))T P+P(A(µ)−F(µ)P̂(µ))

for some matrix P ∈ Rd×d
sym . Furthermore, an upper bound for L(α; µ) can be derived

L(α; µ)≤ 2‖F(µ)‖X α =: Lub(α).

The linearization DG(·; µ)|P̂(µ) of the ARE results in a Lyapunov operator and the
norm of its inverse is well studied (cf. [22]). For the following calculations we use the
exact value for γ(µ), which can be obtained by solving a high-dimensional Lyapunov
equation and by taking the norm of the solution (cf. [13]).

We test the error estimation procedure by applying the RB-ARE method to a
mathematical model of an optimal cooling process for steel profiles arising in rolling
mills. The original model is a nonlinear heat equation for the temperature distribu-
tion of the cross section of the steel profile with boundary control. In the technical
application, the natural cooling process is supported by spraying cooling fluids onto
the surface. The control objective is to optimally balance between a fast cooling pro-
cess and an even temperature distribution. This is necessary to avoid deformations,
brittleness and other undesirable effects. A detailed explanation of the model and
corresponding optimal control problem can be found in [5]. The resulting optimal
control problem takes the form

min
u∈L2(0,∞;R7)

∫
∞

0
(y(t; µ)T Q(µ)y(t; µ)+u(t)T R(µ)u(t))dt.

subject to Mż(t) = Nz(t)+Hu(t), y(t; µ) =Cz(t), t ≥ 0,

where we introduce parameter dependent weights for the cost functional by setting
Q(µ) = I6µQ and R(µ) = I7µR with µQ ∈ [10−4,0.1] and µR ∈ [10−4,1] and In de-
noting the n-dimensional identity matrix. The unusual overbars are used to prevent
notational conflicts. The system matrices are given as M,N ∈ Rd×d , H ∈ Rd×7 and
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C∈R6×d with d = 20 209. It is a well-known fact that the solution to this optimal con-
trol problem is given by finding the stabilizing solution P∗(µ) to the ARE (17) with
A(µ) := M−1N, B(µ) := M−1H, F(µ) := B(µ)R(µ)−1B(µ) and Q(µ) :=CT Q(µ)C
and by defining u(t) = −R(µ)−1B(µ)P∗(µ)z(t). The matrices can be downloaded
from the MORWiki2.

The high dimension of the parametric ARE raises the need for efficient techniques
for its solution. Hence, we apply the RB technique to the ARE. For testing the error
bound we construct an N = 137 dimensional subspace XN ⊂ Rd×d

sym by running the
LRFG algorithm on a test set consisting of 900 training parameters that were chosen
from a grid consisting of 30×30 logarithmically distributed points in the parameter
domain. Recall that the equation under consideration is matrix-valued. Hence, the re-
duction from d to N provides a huge computational benefit and speed-up. The basis
generation for the error equation is performed by calculating the solutions E(µ) to
the error equation DG(·; µ)|P̂(µ) (E(µ)) = G(P̂(µ); µ) for a prescribed set of 50 pa-
rameters chosen randomly from the parameter domain. The basis is then extracted via
a POD of the columns of the matrix S := [E(µ1), . . . ,E(µ50)] with a prescribed toler-
ance ρE for the “energy” that is contained in the singular values σk, i.e. we extract l
basis elements with

l := argmin
j∈{0,...,d}

∑
j
k=1 σ2

k

∑
d
k=1 σ2

k

≥ 1−ρE .

We pick ρE = 10−3, which results in an M = 189 dimensional subspace for the error
equation. For details about the basis generation we refer to [19].

For testing the error bound we pick a test set Ptest ⊂P consisting of 100 param-
eters chosen randomly from the parameter domain. Table 5a shows the evaluation of
the maximum effectivity for the full error bound ∆(µ), the upper bound ∆ub(µ) with
using εub(µ) and the split bound ∆split(µ). First of all we observe a very good agree-
ment of the true error and the full error bound, where no additional upper bounds for
the quantities are employed. The mean overestimation of the non-split upper bound
is relatively low which indicates good error prediction. However, when going from
the non-split bound to the split bound, we see a large gap between the results. These
results show that the improved error estimation presented in this paper is vital to get
accurate predictions of the true error. As a last test we explore the influence of the
dimension of the subspace onto the quality of the error estimate. To this end we vary
the tolerance ρE for the construction of XE

M , determine the corresponding subspaces,
calculate the error bound for those subspaces and plot the worst-case (maximum)
effectivity along with the dimension M in Figure 5b. Of course, the dimension of
the subspace grows with the extraction of more information up to M = 254. On the
other hand, the maximum effectivity decreases to an almost perfect error prediction
for ρE = 10−6 with a maximum effectivity of only 2.6.

2 http://modelreduction.org
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mean max

∆ 1.001 ·100 1.030 ·100

∆ub 9.363 ·101 1.182 ·102

∆split 3.502 ·105 8.059 ·105

(a) Mean and maximum effectivty for
error bounds for the ARE.
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Fig. 5: Test 3: Error estimation results for the ARE.

5 Conclusion and outlook

In this article we presented a novel improvement of error bounding techniques for
problems which can be described as a zero value problem for differentiable operators
over two Banach spaces. This was achieved by introducing and solving an auxiliary
problem which counteracts the often severe overestimation that occurs when apply-
ing standard error bounding techniques. The resulting a-posteriori error bound shows
significant improvement in its effectivity. Furthermore, the quality of the error pre-
diction can be tuned by choosing richer subspaces for the approximation of Ê. The
technique was then applied in the context of RB methods, where comparisons to stan-
dard error estimates were studied. Numerical examples for both, linear and nonlinear
problems, highlight the benefits of the presented technique and show that we can
reach effectivities that are very close to one in all examples.

Future work will study the application of the here presented method to time
dependent-problems both continuos and discrete in time, as well as the applicabil-
ity as an effective estimator for adaptive approximation schemes. A comparison of
the proposed method to [11], especially in the case of linear problems, might be in-
sightful.
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A Proof of Theorem 1

In the following we make frequent use of the identity

G(x)−G(x′) =
∫ 1

0
DG|x′+t(x−x′) (x− x′)dt, x,x′ ∈ X (18)

which is a direct application of the fundamental theorem of calculus.
Let H : X→X be defined via H(x) := x− DG|−1

x̂ (G(x)). The proof works by showing the existence of
a fixed point x∗ ∈X of the mapping H in the vicinity of the approximate solution x̂. It is an easy observation
that G(x) = 0⇔ H(x) = x, which motivates the application of Banach’s fixed-point theorem. To this end
we define the set M = B2ε (x̂) := {x ∈ X |‖x− x̂‖X ≤ 2ε}, i.e. the closed ball around the approximate
solution x̂ with radius 2ε . In order to be able to apply Banach’s fixed-point theorem to H in M, we have to
prove that H is a self-mapping and a contraction in M.

Let x ∈M. Consider

‖H(x)− x̂‖X = ‖x− DG|−1
x̂ (G(x))− x̂‖X

= ‖ DG|−1
x̂ [DG|x̂ (x− x̂)− (G(x)−G(x̂))]− DG|−1

x̂ (G(x̂))‖X

= ‖ DG|−1
x̂

[∫ 1

0
(DG|x̂− DG|x̂+t(x−x̂))(x− x̂)dt

]
− DG|−1

x̂ (G(x̂))‖X .

Since x̂+ t(x− x̂) ∈M for t ∈ [0,1] we get the estimate

‖H(x)− x̂‖X ≤ γ sup
z∈M
‖ DG|x̂− DG|z ‖L (X ,Y )‖z− x̂‖X + ε

≤ 2γL(2ε)ε + ε ≤ 2ε,

which shows that H(x) ∈M for x ∈M. Thus H is a self-mapping in M.
For proving that the H is a contraction in M we calculate for x1,x2 ∈M

‖H(x1)−H(x2)‖X = ‖ DG|−1
x̂ (DG|x̂ (x1− x2)− (G(x1)−G(x2)))‖X

≤ γL(2ε)‖x1− x2‖X ≤
1
2
‖x1− x2‖X .

By making use of (18) we obtain the bound

‖H(x1)−H(x2)‖X = ‖ DG|−1
x̂

[∫ 1

0
(DG|x1

− DG|x1+t(x2−x1)
)(x1− x2)‖X dt

]
≤ γL(ε)ε‖x1− x2‖ ≤

1
2
‖x1− x2‖,

which proves the contraction proprety.
Hence we can apply Banach’s fixed-point theorem and prove the existence of x∗ ∈M with G(x∗) = 0.

We furthermore directly get the bound ‖x∗ − x̂‖X ≤ 2ε . However, the bound can be slightly refined by
considering for x ∈M

‖x∗− x‖X = ‖H(x)− x̂‖X

= ‖ DG|−1
x̂

[
−G(x)+

∫ 1

0
(DG|x̂− DG|x∗+t(x−x∗))(x− x∗)

]
(x∗− x)dt‖X .

≤ ε + γL(2ε)‖x∗− x‖X ,

from which we get for x = x̂ ∈M the final estimate

‖x∗− x̂‖X ≤
ε

1− γL(2ε)
≤ 2ε.
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