Consider a mechanical system with position vector $\underline{\mathbf{x}}(t) \in \mathbb{R}^n$ obeying NEWTON's law

$$C\underline{\ddot{x}} - f(\underline{x}) = \underline{0} \tag{1}$$

where C is a symmetric, positive definite matrix and f is the *impressed force*.

The left side of (1) can no longer be equal to zero in case there are constraint qualifications for the orbit of \underline{x} :

Suppose, e.g., that there are m holonomic-scleronomic constraint conditions

$$g(\underline{x}) = \underline{0} \in \mathbb{R}^m$$
, rank grad $g = m$. (2)

The set $\mathcal{M} = \{\underline{x} \in \mathbb{R}^n, \underline{g}(\underline{x}) = \underline{0}\}$ forms an m-dimensional nonlinear manifold in \mathbb{R}^n . By derivation for the independent variable t we obtain $\operatorname{grad} \underline{g}(\underline{x})\underline{\dot{x}} = 0$ under the assumption that the orbit \underline{x} satisfies the constraints. Therefore the m rows of $\operatorname{grad} \underline{g}$ are (unnormed) normals to \mathcal{M} and span the normal space of \mathcal{M} (written as *column* vectors); they are the *constraint forces* introduced by LAGRANGE. Also n - m linear independent vectors $\delta \underline{x}_i \in \mathbb{R}^n$ (notation historically) satisfying $\operatorname{grad} g(\underline{x})\delta \underline{x}_i = \underline{0}$ are the tangents to the manifold \mathcal{M} and span the tangent space of \mathcal{M} ; they are the *virtual displacements* of D'ALEMBERT. The LAGRANGE multiplier method works with the normals of the manifold \mathcal{M} and D'ALEMBERT's principle works with the tangents to the manifold \mathcal{M} .

By an ingenious idea of LAGRANGE, a linear combination of constraint forces is added to the impressed force in (1). In other words, the zero right side is replaced by $y_1[\operatorname{grad} g_1(\underline{x})]^T + \ldots + y_m[\operatorname{grad} g_m(\underline{x})]^T \equiv [\operatorname{grad} g(\underline{x})]^T y \in \mathbb{R}^n$ such that

$$C\underline{\ddot{x}} - \underline{f}(\underline{x}) = [\operatorname{grad} \underline{g}(\underline{x})]^T \underline{y} \in \mathbb{R}^n, \ \underline{g}(\underline{x}) = \underline{0} \in \mathbb{R}^m.$$
(3)

The components y_i of that linear combination are the LAGRANGE multipliers or *costate variables*. The augmented system (3) is a differential-algebraic system and is solved for \underline{x} and \underline{y} .

Unlike today, solving such systems was not popular in ancient times although $\underline{\ddot{x}}$ appears explicitly in the differential system of (3). To circumvent this problem the (older) D'ALEMBERT has proposed to solve the *n*-dimensional system

$$[C\underline{\ddot{x}} - \underline{f}(\underline{x})]^T \delta \underline{x}_i(\underline{x}) = 0, \ i = 1: n - m, \ \underline{g}(\underline{x}) = \underline{0} \in \mathbb{R}^m$$
(4)

for the *n*-dimensional unknown \underline{x} . This means that the left side of (1) must be perpendicular to the tangent space of \mathcal{M} . In other words, the transposed system (3) is multiplied by the tangents $\delta \underline{x}_i$, i = 1 : n - m such that the constraint forces (and the multipliers y_i) disappear ("constraint forces do not perform real work"). Of course, (4) is also a differential-algebraic system but without additional variables. By a skilful elimination of surplus variables a *pure* differential system can be found in less complicated cases, at least in those cases where \underline{g} is affin linear in \underline{x} .

Both devices, LAGRANGE's multiplier method and D'ALEMBERT's principle are geometrically equivalent by a simple result of Linear Algebra (Range Theorem).

For further details and examples see, e.g.,

E. Gekeler: Mathematical Methods for Mechanics, Springer-Verlag 2008.