Consider a mechanical system with position vector $\underline{x}(\mathrm{t}) \in \mathbb{R}^{n}$ obeying Newton's law

$$
\begin{equation*}
C \underline{\ddot{x}}-\underline{f}(\underline{x})=\underline{0} \tag{1}
\end{equation*}
$$

where C is a symmetric, positive definite matrix and f is the impressed force.
The left side of (1) can no longer be equal to zero in case there are constraint qualifications for the orbit of \underline{x} :
Suppose, e.g., that there are m holonomic-scleronomic constraint conditions

$$
\begin{equation*}
\underline{g}(\underline{x})=\underline{0} \in \mathbb{R}^{m}, \quad \operatorname{rank} \operatorname{grad} \underline{g}=m . \tag{2}
\end{equation*}
$$

The set $\mathcal{M}=\left\{\underline{x} \in \mathbb{R}^{n}, \underline{g}(\underline{x})=\underline{0}\right\}$ forms an m-dimensional nonlinear manifold in \mathbb{R}^{n}. By derivation for the independent variable t we obtain $\operatorname{grad} \underline{g}(\underline{x}) \underline{\dot{x}}=0$ under the assumption that the orbit \underline{x} satisfies the constraints. Therefore the m rows of $\operatorname{grad} \underline{g}$ are (unnormed) normals to \mathcal{M} and span the normal space of \mathcal{M} (written as column vectors); they are the constraint forces introduced by Lagrange. Also $n-m$ linear independent vectors $\delta \underline{x}_{i} \in \mathbb{R}^{n}$ (notation historically) satisfying $\operatorname{grad} g(\underline{x}) \delta \underline{x}_{i}=\underline{0}$ are the tangents to the manifold \mathcal{M} and span the tangent space of \mathcal{M}; they are the virtual displacements of D'Alembert. The Lagrange multiplier method works with the normals of the manifold \mathcal{M} and D'Alembert's principle works with the tangents to the manifold \mathcal{M}.
By an ingenious idea of Lagrange, a linear combination of constraint forces is added to the impressed force in (1). In other words, the zero right side is replaced by $y_{1}\left[\operatorname{grad} g_{1}(\underline{x})\right]^{T}+\ldots+$ $y_{m}\left[\operatorname{grad} g_{m}(\underline{x})\right]^{T} \equiv[\operatorname{grad} \underline{g}(\underline{x})]^{T} \underline{y} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
C \underline{\ddot{x}}-\underline{f}(\underline{x})=[\operatorname{grad} \underline{g}(\underline{x})]^{T} \underline{y} \in \mathbb{R}^{n}, \underline{g}(\underline{x})=\underline{0} \in \mathbb{R}^{m} . \tag{3}
\end{equation*}
$$

The components y_{i} of that linear combination are the LAGRANGE multipliers or costate variables. The augmented system (3) is a differential-algebraic system and is solved for \underline{x} and \underline{y}.
Unlike today, solving such systems was not popular in ancient times although $\underset{\sim}{\ddot{x}}$ appears explicitly in the differential system of (3). To circumvent this problem the (older) D'Alembert has proposed to solve the n-dimensional system

$$
\begin{equation*}
[C \underline{\ddot{x}}-\underline{f}(\underline{x})]^{T} \delta \underline{x}_{i}(\underline{x})=0, i=1: n-m, \underline{g}(\underline{x})=\underline{0} \in \mathbb{R}^{m} \tag{4}
\end{equation*}
$$

for the n-dimensional unknown \underline{x}. This means that the left side of (1) must be perpendicular to the tangent space of \mathcal{M}. In other words, the transposed system (3) is multiplied by the tangents $\delta \underline{x}_{i}, i=1: n-m$ such that the constraint forces (and the multipliers y_{i}) disappear ("constraint forces do not perform real work"). Of course, (4) is also a differential-algebraic system but without additional variables. By a skilful elimination of surplus variables a pure differential system can be found in less complicated cases, at least in those cases where g is affin linear in \underline{x}.
Both devices, LAGRANGE's multiplier method and D'Alembert's principle are geometrically equivalent by a simple result of Linear Algebra (Range Theorem).
For further details and examples see, e.g.,
E.Gekeler: Mathematical Methods for Mechanics, Springer-Verlag 2008.

