Chapter II/SECTION 1/2/3	
bld020101.m In	Interpolation of $1 /(1+\mathrm{x} * \mathrm{x})$
bld020102.m L	Lagrange polynomials for $\mathrm{n}=3$
bld020103.m Ex	Example for Bezier polynomial of degree $\mathrm{n}=3$
bld020104.m He	Hermite polynomials for $\mathrm{n}=3$, H_Oi
bld020105.m Her	Hermite polynomials for $\mathrm{n}=3, \mathrm{H}_{-1 i}$
bld020106.m B	Bezier curve for Bezier polynomials of degree $\mathrm{n}=3$
bld020107.m Spl	Spline curve
bld020201.m L	Legendre polynomials
bld020202.m	Chebyshev polynomials for $\mathrm{n}=3$
demo1.m	Test of integration rules for a triangle
Chapter II/SECTION 4: Initial Value Problems	
bld020401.m	Exact solution of DGL
bld020402.m	Differential equation, Euler explizit
bld020403.m	Differential equatin, trapezoidal rule
bld020405.m	Program for plots of the stability regions of one-step methods
bld020406.m	Stability region of Rosenbrock's method
bld020407a.m	Stability region of explicit Adams' methods
bld020407b.m	Stability regions of implicit Adams' methods
bld020408.m	Stability regions of multistep methods
demo1.m	Arenstorf orbits by using dopri.m,
dopri.m	MATLAB version of FORTRAN version of HAIRER I
Chapter II/SECTION 5: Boundary Value Problems	
adapt01.m	Adaption of shooting points
box.m B	Box scheme for Newton's method
bsp01.m	Example of Stoer-Bulirsch, Par. 7.3, Bsp. 01
demo1.m M	Masterfile for multiple shooting methods
mehrziel.m M	Multiple shooting scheme for Newton's method
newton.m Qua	Quasi-global Newton's method
Chapter II/SECTION 6: Periodic Problems	
bsp01.m N	Nerve membran model
bsp02.m Hea	Heat flow problem
bsp03.m A	Arenstorf orbit I
bsp03.tex	Calculations to BSP03.M
demo1.m M	Masterfile for multiple shooting method
mehrziel_p.m M	Multiple shooting scheme for Newton's method and problems with unknown period
newton_p.m Qua	Quasi-global Newton's method for periodic problems

Chapter III/SECTION 1/2/3/4, Linear-Quadratic Programming
bfgs.m BFGS method
demo1.m Example, bfgs.m and desc.m
demo2.m Test of dlqp.m
demo3.m Test of dlqp.m with random variables
desc.m Steepest descend
dlqp.m Linear-quadratic Programming after Goldfarb-Idnani
dlqp_g.m as dlqp.m, bur only inequalities
ga_test.m Goldstein-Armijo descend test
Chapter III/SECTION 5, Nonlinear Programming
bsp01.m--bsp16.m Examples
demo1.m Masterfile for gradient projection
demo2.m Masterfile for sequential quadratic programming
gp.m Gradient projection method general
gp_g.m Gradient projection method, only inequalities
restor.m Restoration in gp.m
sigini.m Start vector for step length sigma in gp.m
sqp.m Sequential quadratic programming general
sqp_g.m Sequential quadratic programming, only inequalities
Chapter III/FEXIPLEX, Method of Nelder-Mead
demo1.m Minimization of a function (3 Ex.)
demo2.m Minimization with constraints (4 Ex.)
simplex.m Minimization after Nelder and Mead

Chapter IV/CONTROLO1, Control Problems
Solution by the method sqp.m of Chapter/SECTION_5
demo1.m Masterfile with sqp.m, examples 1--9
demo3.m Reentry problem, Stoer, p. 491, US units, SI units
demo4.m Space craft X-38 without constraints
demo5.m Space craft $X-38$ with constraints of sign of attacking angle GAMMA

Chapter IV/CONTROLO2, Control Problem transformed into Boundary value problem
box.m Box scheme for NEWTON's method
bsp01.m Thrust problem, control eliminated
bsp02.m Orbit problem, control eliminated
bsp03.m Zermelo's problem, costate eliminated
demo.m Masterfile for NEWTON's method
newton.m Globalised NEWTON's method
Chapter IV/CONTROL03, Control Problem and Gradient Method
demo1.m Simple example after Dyer-McReynolds, p. 127
demo2.m Brachistochrone, Dyer-McReynolds, p. 128
demo3.m Orbit problem, Bryson-Ho, p.66, Dyer-McReynolds, p. 73
demo4a.m Thrust problem Bryson-Ho, par. 2.4, Start trajectory
demo4b.m Thrust problem Bryson-Ho, par. 2.4, solution
grad01.m -- grad04.m Gradient method

Chapter V/SECTION 6, HOPF Bifurcation
conjgrad.m Method of conjugate gradients after Stoer
cg_lq.m Method of conjugate gradients after Allgower/Georg

Chapter VI/SECTION_2_3_4, Central Fields
demo1.m Graphics for Kepler's second law
demo2.m Motion in central field, different potentials
demo3.m Arbitrary conic sections under different initial positions and velocities
kepler.m Computes conic section by intial data
ellipse.m Draws ellipse with data
parabel.m Draws parabola with data
hyperbel.m Draws hyperbola with data
Chapter VI/SECTION_5, Three-Body Problem
arenstorf.m Different Arenstorf orbits
demo1.m Two-body problem, trajectories by differential system demo2.m Three-body problem, trajectories by differential system
Kapitel VI/SECTION_6_7, Top
demo1.m Computes EULER angles for top and trajectory of top's axis directly by EULER-LAGRANGE equations
demo2.m Top demo, the 7 examples
demo3.m Computes EULER angles phi and theta by initial data of DEMO2.M with differential system and trajectory of top's axis
demo4.m Draws curve of Euler angle theta and curve of derivation of phi
demo5.m Movie for top

Chapter VII/SECTION 3 beam in special position
demo4.m Masterfile, bending beam
balkelement1.m Beam element
balken1.m Beam in special position
balken2.m Beam in general plane position
Chapter VII/SECTION 4, Frameworks of rods
demo1.m Masterfile, forces in plane framework
demo2.m Masterfile, displacements in plane framework with image sequence
demo3.m Masterfile, displacements in spatial framework
stabelement1.m Tension rod in plane position
stabelement2.m Tension rod in spatial position
stabwerk1.m Forces in plane framework
stabwerk2.m Displacements in plane framework
stabwerk3.m Displacements in spatial framework
Chapter VII/SECTION 5, spatial frameworks
demo1.m Masterfile for spatial frameworks balken2.m Beam element, nearly general position rahmen2.m Displacements in spatial frameworks

Chapter IX/FEM_1, Elliptic boundary value problems
demo1.m Example, linear triangular elements
demo2.m Example, lineare parallelogram elements
demo3.m Example, quadratic triangular elements
demo4.m Example, quadratic triangular and parallelogram
elements
demo5.m Example, cubic triangular and parallelogram elements
demo6.m Example, isopar. quadratic triangular and quadrilateral elements
ellipt1.m Linear triangular element
ellipt2a.m Linear parallelogram element
ellipt2b.m Isopar. quadrilateral element
ellipt3.m Quadratic triangular and parallelogram element
ellipt4.m Cubic triangular and parallelogram element
ellipt5.m Isopar. triangular and quadrilateral element
fem_bilin.m Bilinear parallelogram element
fem_drlell.m Linear triangular element
fem_drkell.m Cubic triangular element after Zienkiewicz
fem_drqell.m Quadratic triangular element
fem_isobil.m Isopar. bilinear quadrilateral element
fem_isodrq.m Isopar. quadratic triangular element
fem_isopaq.m Isopar. quadratic quadrilateral element,
Serendipity class
fem_isoraq.m Isopar. quadratic boundary element
fem_pakell.m Cubic parallogram element, Serendipity class

```
fem_rakell.m Cubic hermitean Boundary element
fem_raqell.m Quadratic boundary element
fem_ralell.m Linear boundary element
fem_ffqdre.m Shape functions for FEM_ISODRQ.M
fem_ffqbil.m Shape functions for FEM_ISOBIL.M
fem_ffqpas.m Shape functions for FEM_ISOPAQ.M
fem_ffquad.m Shape functions for FEM_ISORAQ.M
myadapt.m Simple adaptive mesh refinement
Chapter IX/FEM_2, Discs and plates
bsp021g.m Spanner, geometry data
bsp021h.m Spanner, boundary data, loads
bsp022.m Nine examples for plates
fem_batoz.m Non-conforming quadratic triangular element
fem_batoz1.m Auxiliary file for FEM_BATOZ.M
```

\(\left.$$
\begin{array}{ll}\text { fem_drkpla.m } & \begin{array}{l}\text { Non-conforming cubic triangular element } \\
\text { after ZIENKIEWICZ }\end{array}
$$ \\
fem_drksch.m \& Cubic disc element with condensation \\

\& in triangle\end{array}\right]\)| fem_elstif.m | Non-conforming quadratic triangular element, |
| :--- | :--- |
| other version | |

Chapter IX/FEM_4, Convection
Stream-function vorticity form
Time-dependent form after H.Ninomiya/K.Onishi; artificial boundary conditions for vorticity automatically generated .
Time-independent form as elliptic system after W.N. Stevens
demo1.m Thermal flow in a cup, time-dependent
demo2.m Convection in a closed compartment, time-dependent
demo3.m Convection in a square box, time-dependent
demo4.m Thermal flow in a cup, time-independent
demo5.m Convection in a unit square, time-independent
demo6.m Example with exact solution, time-independent
convection.m Computes temperature
vorticity_k.m Computes vorticity for convection
lanscape.m Neumann's boundary condition
matrizen.m Matrices for coupled system
rightsides.m Right sides for coupled system
Chapter XI/STOKES, Navier-Stokes problems in (u_1,u_2,p)-form Fix one value of pressure p!
demo1.m: lid driven cavity with Taylor-Hood elements linear: without convection term
demo2.m: lid driven cavity with Mini elements linear: without convection term
demo3.m: lid driven cavity with Taylor-Hood elements nonlinear: with convection term, simple iteration
demo4.m: unit square with Taylor-Hood elements, example with exact solution, linear: without convection term
demo5.m: lid driven cavity with Taylor-Hood elements nonlinear: with convection term, NEWTON iteration simple continuation possible until NU = 0.002106 Sequel for NU: [0.1,0.05,...,0.01,0.009,...0.003, $0.0029, \ldots 0.0022,0.00219, \ldots 0.002106]$
demo6.m.M: Letters F E M with Taylor-Hood elements
linear: without convection term
Chapter IX/TIDAL, Shallow Water Equations
This directory contains MATLAB versions of BASIC programs of H.Ninomiya/K.Onishi and further applications
demo1a.m Island in a bay
demo1b.m Island in a bay, different boundary computation
demo2.m Finite channel with ode23.m
demo3.m Long channel
demo4.m Long wave on beach
flow_1.m Velocity and water depth with lumped mass matrix
flow_2.m As flow_1.m but with selective lumping
flow_3.m As flow_1.m but with full mass matrix
lanscape.m Island in a bay (geometry data, coast)
rside1.m Right side of differential system
vnomal.m Velocity at boundary (coast)
vnomal_n.m Velocity at boundary (coast) (different way)
AAMESH: Domain Decomposition etc.
Make MATLAB-Path to AAMESH perpetual!!!

mesh01.m \quad| Uniform mesh refinement, triangles, parallelograms, |
| :--- |
| quadrilaterals |

mesh01_t_q | Uniform mesh refinement simultaneous for triangles |
| :--- |
| and parallelograms |

mesh02.m \quad| Moves node manually for triangles and quadrilaterals |
| :--- |
| finish by pointing on the frame! |

mesh03.m \quad| Mesh smoothing for triangular decompositions of |
| :--- |
| domains with a single boundary; long edges are |

mesh04.m \quad| replaced by short edges |
| :--- |

Eliminates double nodes in node matrix p and the
field of node numbers FIELD;

mesh40.m	Computes neighboring nodes and adjacent triangle for boundary nodes
mesh43.m	Computes normal vector and neighboring nodes for boundary bodes
demo1.m	Demo for mesh01.m, mesh10.m, mesh11.m demo2.m demo3.m Demo for mesh12.m
demo for mesh13.m	
demo5.m	Demo for mesh17.m
demo6.m	Demo for mesh14.m and mesh15.m
demo7.m for mesh02.m, mesh03.m, mesh10.m, mesh27.m	
demo8.m	Demo for mesh40.m and mesh43.m
Demo for mesh23.m, mesh24.m	

Chapter XI/SECTION 4, Dancing Discs
At first both discs are to be constructed by SCHEIBEO1.M -- SCHEIBE24.M.
Both discs must touch each other at beginning.
demo1.m Draws disc by manual input
demo2.m Rolling of disc A onto or in disc B with DISC_ROTATE.M
demo3.m Rolling of disc A onto or in disc B with BISECTION.M
demo4.m Movie for discs
bisection.m Method of bisection for computation of rotational angle
disc_aendern.m Geometry for DEMO1.M
disc-rotate.m Geometry for DEMO2.M

