Case Study: Rannacher-Turek element

Non-conform (convex) quadrangle element, the nodes are the mid-points of the edges.

Shape functions in unit square and in the special local coordinate system:

$$
1, \xi, \eta, \xi^{2}-\eta^{2}
$$

By reasons of stability (!), a special local coordinate system is introduce int the quadrangle, s. sketch.
Lineare transformation into global coordinates:

$$
\begin{aligned}
& x=\alpha_{1}+\beta_{1} \xi+\gamma_{1} \eta, y=\alpha_{2}+\beta_{2} \xi+\gamma_{2} \eta . \\
& \alpha_{1}=\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 4, \\
& \beta_{1}=\left(\alpha_{2}=\left(y_{1}+y_{2}+y_{3}+y_{4}\right) / 4\right. \\
& \gamma_{1}=\left(x_{2}+x_{3}-x_{1}-x_{4}\right) / 4, \beta_{2}=\left(y_{2}+y_{3}-y_{1}-y_{4}\right) / 4, \\
& \gamma_{1}=\left(x_{3}+x_{4}-x_{1}-x_{2}\right) / 4, \\
& \gamma_{2}=\left(y_{3}+y_{4}-y_{1}-y_{2}\right) / 4
\end{aligned}
$$

Design matrix

$$
B=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & 2 & 0 & -2 \\
-2 & 0 & 2 & 0 \\
-1 & 1 & -1 & 1
\end{array}\right]
$$

Shape functions in special local coordinate system

$$
\begin{aligned}
& \Psi_{1}(\xi, \eta)=\left[(1-\eta)^{2}-\xi^{2}\right] / 4 \Psi_{2}(\xi, \eta)=\left[(1+\xi)^{2}-\eta^{2}\right] / 4 \\
& \Psi_{3}(\xi, \eta)=\left[(1+\eta)^{2}-\xi^{2}\right] / 4 \Psi_{4}(\xi, \eta)=\left[(1-\xi)^{2}-\eta^{2}\right] / 4
\end{aligned}
$$

Global-local transformation for substitution

$$
\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]=\frac{1}{\beta_{1} \gamma_{2}-\beta_{2} \gamma_{1}}\left[\begin{array}{rr}
\gamma_{2} & -\gamma_{1} \\
-\beta_{2} & \beta_{2}
\end{array}\right]\left[\begin{array}{l}
x-\alpha_{1} \\
y-\alpha_{2}
\end{array}\right]
$$

At first the shape functions must be written in global coordinates and the derivatives w.r.t. x and y are to be calculated. To apply Gauss integration, the quadrangle is divided into two triangles, and then, after a further substitution, GaUSS rules in unit triangle are applied.

