Derivation of the Differential Form of the Balance Law of Angular Momentum
Let $x=\left(x^{1}, x^{2}, x^{3}\right)^{T}$, let \underline{t}^{i} be the rows of the stress tensor \underline{t}, and let

$$
\underline{c}=\left[\begin{array}{rrr}
0 & -x^{3} & x^{2} \\
x^{3} & 0 & -x^{1} \\
-x^{2} & x^{1} & 0
\end{array}\right]=\left[\begin{array}{l}
\underline{c}^{1} \\
\underline{c}^{2} \\
\underline{c}^{3}
\end{array}\right] .
$$

Then

$$
x \times \underline{t} \underline{n}=\left[\begin{array}{c}
x^{2} \underline{t}^{3}-x^{3} \underline{t}^{2} \\
x^{3} \underline{t}^{1}-x^{1} \underline{t}^{3} \\
x^{1} \underline{t}^{2}-x^{2} \underline{t}^{1}
\end{array}\right] \underline{n}=\underline{c} \underline{t} \underline{n}
$$

and the product rule

$$
\operatorname{div}(\underline{c} \cdot \underline{t})=\left[\operatorname{grad}\left(\underline{c}^{i}, T\right): \underline{t}\right]_{i=1}^{3}+\underline{c} \operatorname{div} \underline{t}
$$

as well as the formula

$$
\left[\operatorname{grad}\left(\underline{c}^{i, T}\right): \underline{t}\right]_{i=1}^{3}=\left[\begin{array}{c}
t_{32}-t_{23} \\
t_{13}-t_{31} \\
t_{21}-t_{12}
\end{array}\right]=: \underline{t}^{*}
$$

Applying the divergence theorem row by row, yields

$$
\begin{aligned}
& \int_{\partial \Phi(U, t)} x \times \underline{t} \underline{n} d o=\int_{\partial \Phi(U, t)} \underline{c} \underline{\underline{n}} d o \\
& =\int_{\Phi(U, t)} \operatorname{div}(\underline{c} \cdot \underline{t}) d v=\int_{\Phi(U, t)}\left[\underline{t}^{*}+\underline{c} \operatorname{div} \underline{t}\right] d v .
\end{aligned}
$$

Let $\underline{c} \operatorname{div} \underline{t}=x \times \operatorname{div} \underline{t}$ then we obtain for the law of angular momentum

$$
\begin{align*}
& \frac{D}{D t} \int_{\Phi(U, t)} \varrho(x, t)[x \times \underline{v}(x, t)] d v=\int_{\Phi(U, t)} \varrho(x, t) \frac{D}{D t}[x \times \underline{v}(x, t)] d v \\
& =\int_{\Phi(U, t)}[x \times \underline{f}(x, t)] d v+\int_{\partial \Phi(U, t)} x \times \underline{t}(x, t) \underline{n}(x, t) d o \tag{1}\\
& =\int_{\Phi(U, t)}\left[x \times \underline{f}+\underline{t}^{*}+x \times \operatorname{div} \underline{t}\right] d v .
\end{align*}
$$

But, recalling

$$
\frac{D x}{D t} \times \underline{v}=\underline{v} \times \underline{v}=0
$$

and the law of momentum in differential form

$$
\varrho \frac{D \underline{v}}{D t}=\operatorname{div} \underline{t}+\underline{f},
$$

we obtain by (8.13)

$$
\begin{aligned}
& \int_{\Phi(U, t)} \varrho \frac{D}{D t}(x \times \underline{v}) d v=\int_{\Phi(U, t)} \varrho\left[\frac{D x}{D t} \times \underline{v}+x \times \frac{D \underline{v}}{D t}\right] d v \\
& =\int_{\Phi(U, t)} x \times \varrho \frac{D \underline{v}}{D t} d v=\int_{\Phi(U, t)}[x \times(\operatorname{div} \underline{t}+\underline{f})] d v
\end{aligned}
$$

A comparison with (1) ergibt

$$
\int_{\Phi(U, t)} \underline{t}^{*} d v=0 .
$$

This result must be valid for all subvolumes U and thus yields the differential form of the balance law of angular momentum as $\underline{t}^{*}=0$ which is equivalent with $\underline{t}=\underline{t}^{T}$. Accordingly, this balance law is already be given by the symmetry of the stress tensor \underline{t}.

