Supplements to Section 5.8.
(c) Step Length Control Let $m=3,4, \ldots$ be the step number of the continuation method, $\|\circ\|=\|\circ\|_{2}$ and $e_{i} \in \mathbb{R}_{n+1}$ the i-th rowwise unit vector. Further, let

$$
h_{m} \text { step length, } x^{m} \in \mathbb{R} \text { approximation, } t^{m} \in \mathbb{R}^{n+1} \text { numerical tangent. }
$$

For the start of the method pitcon.m we need the values

$$
x^{1}, x^{2}, x^{3} t^{1}, t^{2}
$$

in Matlab-compatible notation. For the computation of a new step length in the predictor step the solution path $x^{*}(\sigma)$ is approximated at the point x^{m} by a vector-valued quadratic polynomial:

$$
\begin{aligned}
q(\sigma) & =x^{m}+\sigma t^{m}+\frac{1}{2} \sigma^{2} w^{m} \\
w^{m} & =\frac{1}{\Delta s_{m}}\left(t^{m}-t^{m-1}\right), \quad \Delta s_{m}=\left\|x^{m}-x^{m-1}\right\|
\end{aligned}
$$

Then

$$
\begin{equation*}
q\left(x^{m}\right)=x^{m}, q^{\prime}(0)=t^{m}, q\left(-\Delta s_{m}\right)=t^{m-1} \tag{1}
\end{equation*}
$$

For the curvature at the point x^{m} we choose the approximation

$$
\kappa_{m}:=\operatorname{Max}\left\{\kappa_{\min },\left\|w^{m}\right\|+\frac{\Delta s_{m}}{\Delta s_{m}+\Delta s_{m-1}}\left(\left\|w^{m}\right\|-\left\|w^{m-1}\right\|\right)\right\}
$$

where $\kappa_{\text {min }}>0$ is a certain threshold value. For the distance between tangent and solution path the estimation

$$
\frac{1}{2} \sigma^{2}\left\|w^{m}\right\|=\left\|q(\sigma)-x^{*}(\sigma)\right\|+\mathcal{O}\left(\operatorname{Max}\left\{|\sigma|, \Delta s_{m}\right\}\right)
$$

is chosen (F sufficiently smooth). The maximum distance shall be smaller than a certain tolerance $\varepsilon>0$ for which by geometrical reasons is chosen

$$
\varepsilon_{m}=\left\{\begin{array}{lll}
\varepsilon_{\min } \Delta s_{m} & \text { for } & \sigma^{*} \leq \varepsilon_{\min } \Delta s_{m} \\
\Delta s_{m} & \text { for } & \sigma^{*} \geq \Delta s_{m} \\
\sigma^{*} & \text { else } &
\end{array}\right.
$$

where $\varepsilon_{\min }>0$, is a suitable threshold value, e.g. $\varepsilon_{\min }=0.01$. The threshold value σ^{*} can be calculated by the start values or can be specified in advance. Now we choose a first estimation for the new step length

$$
\widetilde{h}_{m}=\left(\frac{2 \varepsilon_{m}}{\kappa_{m}}\right)^{1 / 2}
$$

and compute the final step length h_{m} by the requirement

$$
e^{i(m)}\left(x^{m}+h_{m} t^{m}\right)=e^{i(m)} q\left(\widetilde{h}_{m}\right)
$$

with the chosen unit vector $e^{i(m)}$. Then

$$
h_{m}=\widetilde{h}_{m}\left[1+\frac{\widetilde{h}_{m}}{2 \Delta s_{m}}\left(1-\frac{e^{i(m)} t\left(x^{m-1}\right)}{e^{i(m)} t\left(x^{m}\right)}\right)\right] .
$$

Some savety bounds must also be applied:

$$
\frac{1}{\chi} \Delta s_{m} \leq h_{m} \leq \chi \Delta s_{m}, \quad h_{\min } \leq h_{m} \leq h_{\max }
$$

with a factor χ, e.g. $\chi=3$, and bounds $h_{\min }, h_{\max }$ which depend on the one side of the machine exactness and one the other side of the basic problem.
(d) PITCON Computation of index $i(m)$ for correcture, m step number:

$$
j=\operatorname{Max}_{i}\left\{\left|e^{i} t^{m}\right|\right\}, \quad k=\operatorname{Max}_{i \neq j}\left\{\left|e^{i} t^{m}\right|\right\}
$$

Then $\left[t^{m}\right]_{j}$ is the maximum absolute value and $\left[t^{m}\right]_{k}$ the second-largest value of t^{m}. Preventer for limit points:

$$
\begin{equation*}
\left|e^{j} t^{m}\right|<\left|e^{j} t^{m-1}\right|,\left|e^{k} t^{m}\right|>\left|e^{k} t^{m-1}\right|,\left|e^{k} t^{m}\right| \geq \mu\left|e^{j} t^{m}\right| \tag{2}
\end{equation*}
$$

Set $i(m)=j$, but if (2) is fulfilled with a certain $\mu>0$ then set $i(m)=k$.
Newton method: New predictor point:

$$
v^{m}=x^{m}+h_{m} t^{m}
$$

Solve

$$
\widetilde{F}(x)=\left[\begin{array}{l}
F(x) \tag{3}\\
e^{i(m)}\left(x-v^{m}\right)
\end{array}\right]=0
$$

iteratively with one of the following both iterations for $j=1,2, \ldots j_{\max }$

$$
\begin{array}{lll}
y^{[j+1]}=y^{[j]}-\left[\nabla \widetilde{F}\left(y^{[j]}\right)\right]^{-1} \widetilde{F}\left(y^{[j]}\right), & y^{[0]}=v^{m}, & j_{\max }=10 ; \\
y^{[j+1]}=y^{[j]}-\left[\nabla \widetilde{F}\left(v^{m}\right)\right]^{-1} \widetilde{F}\left(y^{[j]}\right), & y^{[0]}=v^{m}, & j_{\max }=20 .
\end{array}
$$

Stopping criterium for Newton's method: Let $\vartheta=2$ for $j=1$ and $\vartheta=1.05$ for $j \geq 2$. Stopping if one of the following three conditions is fulfilled:

$$
\begin{array}{rlr}
\left\|\widetilde{F}\left(y^{[j]}\right)\right\|_{\infty} & \geq \vartheta\left\|\widetilde{F}\left(y^{[j-1]}\right)\right\|_{\infty} & \text { f'ur ein } j \geq 1 \\
\left\|y^{[j]}-y^{[j-1]}\right\|_{\infty} & \geq \vartheta\left\|y^{[j-1]}-y^{[j-2]}\right\|_{\infty} & \text { f'ur ein } j \geq 2 \\
j & \geq j_{\max } . &
\end{array}
$$

If Newton's method fails to converge, set $h_{m}:=h_{/} 2$ until convergence happens or $h_{m}<h_{\min }$. In the latter case the entire methods fails.
The correcture in this method runs by (3) not perpendicular to the tangent but perpendicular to the unit vector $e^{i(m)}$, which can be used advantageously in solving the linear system of equation in the Newton step: One may solve at first $\nabla F(x) d y=-F(x)$ for $[d y]^{i(m)}=0$ - a system with n unknowns and n equations - and can ensuing set $[d y]^{i(m)}=\left[v^{m}\right]^{i(m)}$. Nevertheless the tangent must be computed but here without QR-decomposition. To this end one chooses a vector $0 \neq d^{m} \in \mathbb{R}_{n+1}$ with $d^{m} t^{m}>0$ where t^{m} is the tangent still being unknown. Then on computes

$$
\left[\begin{array}{c}
\nabla F\left(x^{m}\right) \\
d^{m}
\end{array}\right] u=e_{n+1}, \quad t^{m}=u /\|u\|_{2}
$$

This choice of d^{m} for unknown t^{m} is only a small, optical drawback which does not play a role numerically. In starting the method, d^{1} is chosen arbitrarily and possibly adapted, during the iteration $d^{m}=e^{i(m-1)}$ or $d^{m}=t^{m-1}$ is chosen in the hope that no trouble arises.
(e) Nonlinear Method of Conjugate Gradients [Allgower90].

START: Choose tolerance tol, step length h and step number $N \in \mathbb{N}$.
$\left(1^{\circ}\right)$ Find starting value x such that $F(x) \simeq 0$.
$\left(2^{\circ}\right)$ Find tangent t with $|t|=1$ and $\nabla F(x) t \simeq 0$.
$n=0$
WHILE NOT $n \geq N$
$u:=x+h t \quad$ predictor step
Compute lower triangular matrix L such that

$$
L L^{T} \simeq \nabla F(u) \nabla F(u)^{T} \quad \text { preconditioner }
$$

$$
g_{u}:=\nabla F(u)\left(L L^{T}\right)^{-1} F(u) ; d:=g_{u} \quad \text { gradient }
$$

$$
\text { done }=0
$$

WHILE NOT done corrector loop
$\varrho^{*} \simeq \operatorname{Arg} \operatorname{Min}_{\varrho \geq 0} \frac{1}{2}\left\|L^{-1} F(u-\varrho d)\right\|^{2} \quad$ Linesearch
$v:=u-\varrho^{*} d \quad$ corrector step
$g_{v}:=[\nabla F(v)]^{T}\left(L L^{T}\right)^{-1} F(v) \quad$ new gradient
$\gamma \quad:=\left(g_{v}-g_{u}\right)^{T} g_{u} /\left\|g_{u}\right\|^{2}$
$d:=g_{v}+\gamma d \quad$ new conjugate gradient
$u \quad:=v ; g_{u}:=g_{v}$
done $=\|F(v)\|<$ tol
END
Adapt step length h
$t:=(v-x) /\|v-x\| \quad$ approximation of $t(\nabla F(v))$
$x:=v \quad$ new value for $F(x)=0$

END

