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The Perturbed Eigenvalue Problem Let E ⊂ F be complex Banach spaces, let 0 ∈ I ⊂ R
be an open interval and L( · ) : I 3 ε 7→ L(ε) ∈ L(E ,F) an operator-valued function; in
particular E = F = Cn may be the complex coordinate space. We consider the mapping

F : I × (C× E) 3 (ε, (λ, x)) → L(ε)x− λ x = 0 ∈ F , (1)

where now (λ, x) plays the role of x and ε the role of µ in § 5.4 (c). Possibly after some
translation, the point ε = 0 is examined for branching. For a general overview on the perturbed
eigenvalue problem it is referred to [Chow], chap. 14, and the references there. Here we suppose
that L(ε) is a non-selfadjoint Fredholm operator with index zero and derive a necessary and
sufficient condition for the smoothness of characteristic pairs emanating from a semi-simple
eigenvalue of L(0). Without restriction, we choose this eigenvalue to be zero and confine
ourselves to the case of a complex Banach space F . Concerning the finite-dimensional case,
some hints to our result are found in [Golub], p. 204, and also in [Wikinson] (1965), chap. II,
§17, 25.

More exactly, we make the following assumption on L:

Assumption 1 (1◦) L := L(0) is a Fredholm operator with index zero.

r = dim Ker(L) = dim Ker(Ld),
Ker(L) = span{u1, . . . , ur} , Ker(Ld) = span{v1, . . . , vr}.

(2◦) E ⊂ F and Ker L ∩ Range L = {0} .
(3◦) L is continuously differentiable in I such that

L(ε) = L + εB + o(|ε|) , |ε| → 0 ,

where B = L0
ε := Lε(0) ∈ L(E ,F) .

We use again the formal matrices U = [u1, . . . , ur], V = [v1, . . . , vr], the formal notation
Uξ =

∑r
i=1 uiξ

i, and write (v, u) := v(u) for u ∈ E and v ∈ Ed. Then we have e.g.

V dBU = [(vi, Buj)]
r
i,j=1.

If Assumption 1 is fulfilled, then V d can be chosen such that the (r,r)-matrix V dU := [(vi, uj)]
r
i,j=1 =

I, i.e., the basis {v1, . . . , vr} of Ker(Ld) can be chosen for dual basis to a basis {u1, . . . , ur} of
Ker(L). If V dU = I then we can still replace U by UC and V d by C−1V d without destroy-
ing this dual pairing. Assumption (2◦) says that no principal vectors w of L exist such that
Lw = ui; cf. Theorem ??, 3◦.

By Assumption 1(i) we have E = Range(L) ⊕ U , where dim U = dim Ker(Ld) = dim Ker(L)
is the dimension of the subspace U . Because of Assumption 1(ii) we thus obtain again

E = Range(L)⊕Ker(L)

as in the previous parts of Chapter 5. This holds also if L : E → F and E ⊆ F . Let Q be again
the projector

Q : E 3 u 7→ U(V du) ∈ Ker(L)

then Range(Q) = Ker(L) and Range(I −Q) = Range(L).
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Lemma 1 (1◦) Adopt Assumption 1 and V dU = I .
(2◦) Let there exist exactly r different branches of characteristic pairs
(λi(ε), ui(ε)) such that (λi(0), ui(0)) = (0, ui) , i = 1 : r which are continuously differentiable
in some neighborhood of ε = 0 . Then

〈vi, Buj〉 = λ′i(0)δi
j , i, j = 1 : r ,

(δi
j Kronecker symbol) hence V dBU is a diagonal matrix.

Proof.. Differentiation of (1) with respect to ε yields at the point ε = 0

Buk(0) + Lu′k(0) = λ′k(0)uk(0) + λk(0)u′k(0) = λ′k(0)uk(0).

Because (vi, uk(0)) = (vi, uk) = δik and (vi, Lz) = (viLd, z) = 0 ∀ z ∈ E , we obtain

(vi, Buk) = λ′k(0)(vi, uk) = λ′k(0)δi
k . ¤

For the converse result, being somewhat more difficult, let s ∈ N arbitrary and let

U(ε) = [u1(ε), . . . , ur(ε)] ∈ Er ,

W (ε) = [w1(ε), . . . , ws(ε)] ∈ Es , V dW (ε) = 0

Ξ(ε) ∈ C r
s ,

be some preliminary unknown functions. Then the characteristic pairs
(λ(ε), U(ε)) ∈ C× Er are decomposed and scaled:

U(ε) = UΞ(ε) + εW (ε) , λ(ε) = εω(ε) , V dW (ε) = 0 ∈ Rr
s ,

such that U(0) = UΞ(0) . We consider the matrix-eigenvalue problem

L(ε)U(ε) = λ(ε)U(ε) (2)

in scaled form

Ψ(ω, Ξ,W, ε) := ε−1[L(ε)U(ε)− λ(ε)U(ε)] ≡ LW + G(Z, ε) = 0
G(Z, ε) = r(ω, Ξ) + r1(Z, ε)
r(ω, Ξ) = [B − ωI]UΞ

where Z = (ω, Ξ,W ) ∈ C× Cr×s×Es and r1(Z, 0) = 0 . Let Q = V V d be the above introduced
projector then the system

LW + (I −Q)G = 0 , V dW = 0

has a unique solution W ∈ [Range L]s for every G ∈ Es. Let L0 denote again the restriction of
the Fredholm operator L to Range L ⊂ E then L0 has a bounded inverse on Range L by the
Inverse Operator Theorem. By using L0 , the system

(I −Q)Ψ(Z, ε) = LW + (I −Q)G(Z, ε) = 0 , V dW = 0

is equivalent to
(I −Q)Ψ0(Z, ε) := L0W + (I −Q)G(Z, ε) = 0 .

A solution of this system is solution of the original system Ψ(Z, ε) = 0 if QG(Z, ε) = 0 , i.e., if
V dG(Z, ε) = 0 . Therefore we consider as in the Ljapunov-Schmidt reduction the system

V dΨ(Z, ε) = 0 , (I −Q)Ψ(Z, ε) = 0 .
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Theorem 1 (1◦) Adopt Assumption 1.
(2◦) Let V dBU ∈ Rr×r be diagonable.
(3◦) Let (ω0, Ξ0) ∈ C× Cr×s be solution of the finite-dimensional matrix-eigenvalue problem

[ωI − V dBU ]Ξ = 0 , ΞHΞ− I = 0 (3)

where s = dim Ker(ω0I − V dBU) .
Then the system

F (Z, µ) :=




V dΨ(Z, ε)

Ξ0
T
Ξ− I

(I −Q)Ψ0(Z, ε)


 = 0

has a unique solution Z(ε) = (ω(ε), Ξ(ε),W (ε)) for sufficiently small |ε| and satisfies the initial
condition (ω(0), Ξ(0)) = (ω0, Ξ0) . The pair

(λ(ε), U(ε)) :=
(
εω(ε), UΞ(ε) + εW (ε)

)

is a nontrivial solution of the matrix-eigenvalue problem (2) such that (λ(0), U(0)) = (0, UΞ0) .

Proof. The mapping

F : C × Cr×s × [Range(L)]s ×R → C × Cr×s × [Range(L)]s

has for ε = 0 the solution Z(0) = (ω0, Ξ0,W 0) where W 0 is the solution of L0W + (I −
Q)r(ω, Ξ) = 0. Because L0 has a bounded inverse on its range, and because (I−Q)rω,Ξ(ω0, Ξ0)
is a finite-dimensional operator, the Frechet derivative

FZ(Z(0), 0) =

[
J(ω0, Ξ0) 0

Q′rω,Ξ(ω0, Ξ0) L0

]

has a bounded inverse on the entire range of F if the Jacobi matrix of the system (3),

J(ω0, Ξ0) =

[
Ξ0 ω0I − V dBU

0 (Ξ0)H

]
, (4)

is regular. Let A = ω0I − V dBU then

Range(A) ∩Ker(A) = Range(A) ∩ Range(Ξ0) = {0}
Ker(A) ∩Ker(A)⊥ = Ker(A) ∩Ker[(Ξ0)H ] = {0} (5)

because A is diagonable. Now, (5) is the assumption of the Bordering Lemma, Theorem 1.19,
and thus an application of this lemma yields the desired regularity result for (4). The assertion
of the theorem then follows by the Implicit Function Theorem and the solution is as smooth as
F . ¤
The above announced smoothness result now follows directly from Theorem 1:

Corollary 1 (i) Let Assumption 1 be fufilled.
(ii) Let the matrix V dBU be diagonable.
Then r branches (λi(x), ui(x)) of the eigenvalue problem (1) with (λi(0), ui(0)) = (0, ui), i = 1 :
r, are continuously differentiable in a neighborhood of ε = 0.
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Corollary 2 (i) Let Assumption 1 be fulfilled.
(ii) Let E be a Hilbert space and let L(ε) be symmetric, L(ε) = Ld(ε) for ε ∈ I.
Then the matrix V dBU is hermitean hence diagonable.

Proof. In this case, B is self-adjoint, too, and V = U hence V dBU is a hermitean matrix. ¤
Let us now turn to the multi-parametric matrix eigenvalue problem

(L +
m∑

j=1

εjBj)U(ε) = λ(ε)U(ε), ε = (ε1, . . . , εm). (6)

If the problem is smooth and if V dU = I then all matrices V dBjU, j = 1 : m must be diagonal.
But, as U and V d with V dU = I can still be replaced with UC and C−1V d with any regular
matrix C we have the following further corollary to Theorem 1:

Corollary 3 Let Assumption 1 be fulfilled. Then r branches of characteristic pairs (λi(ε), ui(ε))
of the eigenvalue problem (6) with (λi(0), ui(0)) = (0, ui), i = 1 : r, exist and are continuously
differentiable in a neighborhood of ε = 0 if and only if the matrices V dBjU, j = 1 : m, in (6)
are commonly diagonable by a regular matrix C.


