On the Newton-Polygon

Lemma 1 Let the notations of section 5.3 hold and let Assumption 5.3 be fulfilled. If f is nonzero, nonlinear in (x, y), and $f(x, 0) \equiv 0$ then there exist rational numbers $r>0, s>$ $0, t>1$ such that the mappings Φ and ψ defined by

$$
\begin{array}{ll}
\Phi(\xi, \zeta, w) & :=\lim _{\varepsilon \rightarrow 0} \Phi(\xi, \zeta, w, \varepsilon), \\
L w+\psi(\xi, \zeta) & :=\lim _{\varepsilon \rightarrow 0} \Psi(\xi, \zeta, w, \varepsilon),
\end{array}
$$

exist and are polynomials in $(\xi, \zeta, w) \in \mathcal{R}^{m \times \nu} \times \mathcal{E}$.
Proof. We follow the idea of the Newton polygon, cf. e.g. [Chow], and consider the Taylor expansions

$$
\begin{array}{ll}
\varepsilon^{r} \Phi(\xi, \zeta, w, \varepsilon) & =\sum_{i=1}^{\varrho} \varepsilon^{a[i]} \varphi^{[i]}(\xi, \zeta, w) \\
\varepsilon^{t} \Psi(\xi, \zeta, w, \varepsilon)-\varepsilon^{t} L w & =\sum_{j=1}^{\sigma} \varepsilon^{b[j]} \psi^{[j]}(\xi, \zeta, w) \tag{1}
\end{array}
$$

for sufficiently small $\varepsilon>0$ and $(\xi, \zeta, w) \in \mathcal{R}^{m \times \nu} \times \mathcal{E}$. For simplicity we suppose that $\varrho, \sigma \in$ $\mathcal{N} \cup\{\infty\}$ and that all multilinear mappings $\varphi^{[i]}, \psi^{[j]}$ do not disappear identically. Then

$$
\begin{array}{ll}
a[i]=a_{i 1} s+a_{i 2}+a_{i 3} t, & a_{i k} \in \mathcal{N}_{0}, \\
b[j]=b_{j 1} s+b_{j 2}+b_{j 3} t, & b_{j k} \in \mathcal{N}_{0},
\end{array}
$$

and we also define the sets of integer tripels

$$
\begin{aligned}
& A:=\left\{a_{i}=\left(a_{i 1}, a_{i 2}, a_{i 3}\right), i=1, \ldots, \varrho\right\} \\
& B:=\left\{b_{j}=\left(b_{j 1}, b_{j 2}, b_{j 3}\right), j=1, \ldots, \sigma\right\},
\end{aligned}
$$

their union $C=A \cup B$, and the hyperplane

$$
H=\left\{x \in \mathcal{R}^{3}, h^{T} x=p\right\}, \quad h=\left(h_{1}, h_{2}, h_{3}\right), \quad 0 \leq p \in \mathcal{R} .
$$

Let H be a support plane to C, i.e.,

$$
\forall c \in C: h^{T} c \geq p, \quad \exists c \in C: h^{T} c=p
$$

Because C is a subset of integers of the closed first octant in \mathcal{R}^{3}, the number p and the components of h are rational numbers and H can always be chosen such that all these elements are nonnegative. Because of the nonlinearity of f the set C does not contain the elements $(1,0,0),(0,1,0),(0,0,1)$ therefore there exists support planes H with positive h and p. We thus have only to show that we may choose $h_{3}>h_{2}$ for such a support plane. Then the associated tripel

$$
(r, s, t)=\left(p / h 2, h_{1} / h_{2}, h_{3} / h_{2}\right)
$$

has all desired properties. $C \cap H$ may consist of three points and more but this is not necessarily the case, in particular if C itself contains less than three points. As the normal vector h of H has positive components, H is moved away from C if any component of h is enlarged. E.g., if h_{1} is enlarged then H is turned about the axis through $\left(0, p / h_{2}, 0\right)$ and $\left(0,0, p / h_{3}\right)$. The contact to C is regained again by a movement in the direction of the normal vector h, i.e., by
an enlargement of the right side p in the implicit representation $h^{T} x=p$ of H. Therefore the property $h_{3}>h_{2}$ can be reached without destroying the support property of H. From this construction it is seen that Φ and ψ must be polynomials because all elements of C being not contained in H disappear in the limit $\varepsilon \rightarrow 0$.
It remains to show that ψ does not depend on w but this follows from the fact that in the case of existence of ψ

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \nabla_{w}\left(\varepsilon^{-t} Q^{\prime} M\left(\varepsilon^{s} \xi, \varepsilon V \zeta+\varepsilon^{t} w\right)\right. \\
& =\nabla_{w}\left[\lim _{\varepsilon \rightarrow 0}\left(\varepsilon^{-t} Q^{\prime} M\left(\varepsilon^{s} \xi, \varepsilon V \zeta+\varepsilon^{t} w\right)\right)\right] \\
& =M_{y}(0,0)=L .
\end{aligned}
$$

The proof shows that the scaled mappings Φ and ψ can be computed by a simple search program if the power series (1) are available. Under the above assumptions Φ and ψ cannot both be identically zero. If the defining support plane H does not contact the set A then $\Phi=0$ and if it does not contact B then $\psi=0$. A somewhat deeper study shows that Φ can only depend on w if the Taylor expansion (1) of $U^{T} f\left(\varepsilon^{s} \xi, \varepsilon V \zeta\right)$ has some gaps in comparison with the Taylor expansion of $f\left(\varepsilon^{s} \xi, \varepsilon y\right)$, i.e., if the powers $a[i]$ of both expansions do not agree.

