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To Section 5.3

(a) Recapitulation of Notations: We now consider problems with one or two parameters

only hence

F:G=Rx&3y=(uz)— Fly)=F(p,r) € F
resp.
F:G=R*x&>35y=(pw,z)— Fly) =F(p,w,z) € F

(1)

at a point yo where F'(yo) = 0 and yo = (0, o) resp. Yo = (fi0,wo, To). We substitute a local
solution y(s) with y(0) = yo and derive w.r.t. the path parameter s then, at the point s =0,

FO/(0) + Foa'(0) = 0
Fau"(0) + F2"(0) + Fp ' (0)? + 2F,.1/ (0)2'(0) + Fy, (2'(0),2'(0)) = 0,

resp.

Fu'(0) + FQw'(0) 4+ Fa'(0) = 0
FO(0) + F2%(0) + FOx(0) + FO, 1/ (0)° + F2 0/ (0)? + 2B, (0)a(0)
+2F,,1 (0)w'(0) + 2F7,w'(0)2(0) + F, (' (0), 2/(0)) = 0.

(2)

(3)

For instance, if u € Ker F} then (0,u) € Ker[Fy, F})]. Further elements in Ker F} exist in the
single-parameter case only if F’ ;9 € Range F? . Recall also the notations

Ker F?

Ker[FY], =
Ker F) =
Ker[F)lq =

span{uy, ..., u,},
span{v!, ... v},
span{uy, ..., U},
span{v’, ... 0"},

u = [ub . >UV] ) U [ui]iyzl )

Vi = [, Vo= (o],
ﬁ - [ﬂl, vﬂu] ) ﬁd - [ﬂi]zﬁ‘; )

vt = [l Vo= [, 3

Then by the e.g. for (1,1°)

dimKer F, # dimKer F, <= F) € Range Fy <= VF) =0

dim Ker[F})]; = 1, one or two parameters:

Typ la:
Typ Ib:
Typ Ic:

Typ IIa:
Typ IIb :
Typ Ilc :

dimKer F? =1,
dimKer F? =1,
dim Ker F? = 2,
dim Ker F? = 2,
dim Ker F? = 2,
dim Ker F = 3,

dimKerFZ? =2,
dimKerFS =2,
dimKerFl? =2,
dimKerF;? =3,
dimKeng? =3,
dimKerFéJ =3,

0= F} (€ Range F})
0 # F,) € Range F}
0# F,) ¢ Range F}
VAED £0, VRS = 0
VARD =0, VR £ 0
VARD 20, VAED £ 0




dim Ker[F})]; = 2, one parameter:

Typ Ia: dimKer Fy =2, dimKer F) =3, 0= F} (€ Range F})
Typ IIb: dimKer F? =2, dim Ker Fz? =3, 0# Fg € Range F?
Typ Illc:  dimKer Fy) =3, dimKer F) =3, 0# F) ¢ Range F}

Necessary branching conditions shall now be derived for these types in the same way as in (a).
To this end the subspace Ker F) = span{?',...,0"} resp. the matrix Ve = [o%,...,7"] has
to be found explicitely. The same matrix applies also in the the projector @) = VV4 where
Ker () = Range FyO , being needed in the branching equation .

(b) Computation of Quadratic Forms for Type I
(b1, Type Ia/b) v'F}) =0, hence v'F) = v'[F}), F}] = (0,0) € R x &. Let w be the unique
solution of F) + Fw = 0 where u' w = 0 then

Uy w

17:[0 1}, Td — o = 3, (5)

Every tangent z/(0) in type Ib has the representation z'(0) = au; + fw where 8 = 1/(0).
Insertion of (3,2/(0)) in (2) yields after multiplication by the vector v of (5)

5dFBMﬁQ + 2’17dF8xﬁ(au1 + Bw) + 0 FY (cquy + Bw, auy + fw) = 0.

or a’Qs(ur, w,v")a =0, a’ = [, §] where

DUFD (ug,up) v [ngul + F° (uy, w)]

~d _
Gl 00 = G [Ruy + P,y w)] T[F, + 2F%w + P, w,w)]

This quadratic form has two different real solutions in case

det(Q3(u1, w,v%)) < 0; in type la w = 0.

(b2, Type Ic) VIF) # 0 € R? hence there exists a vector 0 # a € Ry such that a[V/F}] =0,
and then aV?F) = aVI[F), F)] = (0,0) € R x &;; further linearly independent left-vectors v
satisfying vF,) = 0 are not available. By (2),1° now '(0) = 0 after multiplication by %48

1(0) =0, 17:[ 00 ] Vei=av?= 7" (7)

U U2

Every tangent has the representation 2'(0) = awu; + fus. By (2) after multiplication by the
vector 0% = aV? of (7)

VFD (auy + Bus, auy + Bus)
= 040 (uy, up)a? + 204F0 (uy, ug)a3 + 04EL (us, us) 3% = 0

or @TQ4(U17 U2,5d)a =0, a" = [, (], where
Q4(U1, Uz, ;Jd) = [’6ng$ <uia uk)]?,k:l : (8)

Corollary 1 (Necessary Conditions)

(1°) Let (10, 0) be a branching point of type Ia then det(Qs(uy,0,2%)) < 0.
(2°) Let (uo, o) be a branching point of type Ib then

det(Qs(uy,w,v%) < 0.

(3°) Let (10, 0) be a branching point of type Ic then

det(Q4(uy, uz, %)) < 0, and both tangents lie in the hyperplane = pq .



(c) Computation of Quadratic Forms for Type II and Type III

(b4, Type IIa) V¢ = [v', v*], VIE? # 0, V/F) = 0. There exists a vector 0 # a € Ry with
aVIF) =0, then aV?[F), ), Fy] = 0; further linearly independent vectors with this property
do not exist. Let w be the unique solution of FO + Flw = 0 mit U%w = 0, then

N 0 0 0 N
@(0)=0, U=| 0 0 1|, Vi=aVi=172, (9)
Up U W

Every tangent has the unique representation x'(0) = cu; + fus +yw where v = &'(0). Inserting
of (0, 7, 2’(0)) in (3) yields after multiplication by v of (9) the quadratic form

a’ Qs (ur, uz,w,0)a =0, a’ = [o, B8,7],
QS(ulau%w?:&/d) =

5dF£x <U1, U1> 5dF£I<U1, UQ> '17‘1 [FIOI<U1, U)> + FBI’LLJ
’6ng$ <u27 ul) ,27dF$Oz<u2’ u2> ’6d[F£$ <U’27 w> + Fgmuﬂ )

VHESu + Fo(w,w)] 0 [FSus + Fo(w,us)]  0[FD, + FQ (w, w)]

which must describe a cone in R3 .

(b5, Type IIb) V¢ = [v', v?], VIF) = 0, VIF) # 0. Let w be the unique solution of
F) 4+ F)w = 0 with U%w = 0, then

N 0 0 1 N
WO0)=0, U=] 0 0 0|, Vi=aV?i=172. (11)
Uy U w

Accordingly, in the matrix Qs(u, up, v%) the partial derivatives w.r.t. w are to be replaced by
the partial derivatives w.r.t. u.

(b6, Typ IIc) V¢ = [v', v*, v*], VIF) # 0, VYF) # 0. There exists a vector 0 # a € R?
such that aV/F) = 0 and aV?F) = 0, then aV?[F?, ), F}] = 0; further linearly independent
vectors with this property do not exist:

0 0 0
f0)=w(0)=0, U=| 0 0 0 |, Vi=aV?=7" (12)
Uy U U3

Every tangent has again the form 2/(0) = auy + Pus + yuz. Inserting in (3) yields after
multiplication by v¢ of (12) the quadratic form

aTQ6<u17 u2,u3,'17d)a = 07 aT = [Oé, ﬁa 7] ) QG(ulau%uZ}aid) = [?ﬁlFa(c]x(u“ uk>]ik’:1 ) (13>

which must be describe a cone again.

b7, Typ IIla/b) V4FY = 0 with V¢ = [v!, v?]T, hence VIF? = VI[F9 F° = (0,0). Besides
p y pr fa

v' and v* there do not exist further vectors v such that vFy = 0. Let w be the unique solution

of F) + Fw = 0 such that U%w = 0, then

~[001

U =
Uy U W

] L Vi=ve, (14)



For type Typ IIIb every tangent has the form 2/(0) = auy + Bus + yw where v = 1/(0).
Inserting of (v,2'(0)) in (2) yields after multiplication by V¢ of (14) the both quadratic forms

a’Qs(v',w)a=0, a’ =[a,3,7],i=1,2, (15)

which must satisfy the cone condition of (a).

In Type Illa we have w = 0, therefore 2'(0) has the representation 2'(0) = auy + fusy. Inserting
of (7y,2(0)) in (2) yields after multiplication by V¢ = [v!, v?] the both quadratic forms

a’Qs(v',0)a =0, o’ =[a, B,7], i =1,2. (16)

(b8, Type IIlc) VI4F S # 0 where V¢ = [v!, v2 v%]T, therefore there exist exactly two linearly
independent vectors a, b € Rz such that aV?F) = bVIF) = 0:

o= [0 0 0] =~y [avd
o =0, o= 0 0 0] ] (1)

Every tangent has now the representation z'(0) = auy + Pug + yug . Inserting of (0,2/(0)) in
(2) yields after multiplication by V¢ of (17) the both quadratic forms

a"Qs(0)a =0, i=1,2, (18)

cf. (13), which must satisfy the cone condition. The tangents then lie in the hyperplane p = .

(d) Computation of Branching Points of Type I
We prove at first a result for the accompanying system (5.21), namely

Dy (2) := Do, x,v) = | v Fp(u,x)) =0, z=(u,z,v), veFy, (19)

where F? is a FREDHOM operator with index one by exception.

Lemma 1 Let F? € L(E,F) be a FREDHOM operator with index one and

dimKer F? = 2, KerF? = span{uj,us},
dimKer[FY]; = 1, Ker[F?]; = span{v'},

and let ®5(29) = 0 for 29 = (10, 2o, v*). Then grad ®o(z2) has a bounded inverse if and only if

the matrix ) L0 )
Q4(u17 U2,V ) = [U sz<u’l7 uk>]i,k‘=1 (20)

15 reqular.

Note that v*F}} # 0 by the assumption ®(z) = 0.

Proof. The proof is carried out in much the same way as in Lemma 1 of SUPPLEMENT\ chapO5b.

Let again
= (0,21,22) ERXE X Fy,

g = (g1,9%,7) € Range F? x Range[F°]; x R.



Then we have to show that the linear system grad ®,(z°)z = g, 2° = (0, 21, 2?) , has a unique

solution z for every ¢. In detail
grad ®y(2°)z = Flo+ Fzy = ¢
VHELo+ Fl oz +22F) =
Vo + F) 2| + 2°F)

(21)

N
. )

We choose the decomposition

2 = ou+Pus+w, Ulw=0, U =1,
mn = w'+gq, (¢, v1) =0, v'oy =1;

then we have to show that o, a, 3, v, w, ¢ are uniquely determined. Inserting into (21) yields

FSU + F2(auy + Bus + w) = 0
v FRo 4 FY(quy + Buy +w)| + 22 F) = ¢ (22)
o FL o+ F)(auy + Buy +w] + 22F) = 7.

(1°) We have v'F) = 0 and v'F # 0 because F,) ¢ Range F;, and v'g; = 0 because g; €
Range F); therefore the first equation of (22) shows that o = v'g, /v' F}) = 0.

(2°) The component w is therefore the unique solution of
Fw=g, Uw=0.
(3°) Inserting o = 0 and the expression for 2 in (22,2°) yields
(B + @) FY = ¢> —v' FY (auy + Bug + w) =: b € Range[F}], . (23)

By the Range Theorem bu; = bus = 0 and g*u; = g?us = 0 . Application of (23) to u; and usy
yields the system

VD (ug, up)a 4+ 0 FD (ug,ug) 8 = v EL (w,uy)

VD (un, ugha + 0 D (us, ug) B = v (w, ug)
which has a unique solution «, § iff the matrix ()4 is regular.
(4°) Thus 2 is determined uniquely. Because v' F? = 0 then ¢ is the unique solution of (23)
such that (¢,v;) = 0. Finally, ~ is uniquely determined from

(yo! + q)FS =7 vngle .

O

By a proposition of [MooreA], branching points are computed as regular points of an augmented
accompanying system in a similar way as in the computation of turning points. We consider
the perturbated system

(I)3()‘7 (pﬂ ZE)) = (I)Q(H'a 37) + Ar = 07 (24)
where A now plays the role of the former parameter p and (u, ) the role of the former z. We
have supposed in Lemma 1 that v!'F 8 # 0. Now p is replaced by A and

a 0 .0 _
a_/\q)3<07 (:u y )) =T



To apply Lemma 1 to (24) we therefore require that the fixed and specified r is chosen such
that vlr # 0 which is entirely natural for the following system. The accompanying system then
reads with v € Fy:

(1)3(2) = (1)3()‘7 (wa)a U) F( ) \
xT) + AT
F(u,x) 4+ Ar F,u,
i v T T — v I(/JH'T) _ (25)
- ULFﬁ(f’ )7 Fz(luv )] UF,u_(,Ulla J,’) O

Lemma 2 Let (uo, o) be a branching point of type Ia/b and let
20 = (0, o, xo,vt), cf. (5), then ®3(29) = 0. Further, let w denote the unique solution of
FY) 4 FJw = 0 where v' w = 0 then

grad ®3(z) : R? x & x Fy — F x Fy x R?
is reqular if and only if the matriz Qs(uy, w,v') in (6) is regular.
Proof. Let F)) + Fjw = 0 then
Ker([F), F})]) = span{(0, u1), (1, w)} =: span{@y, U} (26)

Then Lemma 1 w.r.t. the augmented system says that the matrix Q4 (U1, Uz, v') in (8) must be
regular. Inserting the values for uy, Uy shows that Qu(uy, U, v') = Q3(u1, w,v') where Q3 is
the matrix in (6)

Lemma 3 Let (p9,x0) be a branching point of type type Ic and let
20 = (0, po, w0, 0%), cf. (7). Then ®3(z) =0 and

grad @3(z0) : R? x & x Fy — F x Fy x R?
is reqular if and only if the matriz Q4(u1, us, 0¢) in (8) is regular.
Hint to the proof. In the present case

Ker([F), F})]) = span{(0, u1), (0,u2)} .

By consequence, the matrix @4 in (8) relative to the augmented system has now the form Q4
of (8) relative to the original system. 0




(d) Computation of Branching Points of Type II
We prove at first an auxiliary result for the system

Dy(2) = Py(p, z,v) :=| v Fp(p,x)) =0, z=(u,z,v), veEFy (27)

where, by exception, F? is a FREDHOM operator with index two:
Lemma 4 Let F? € L(E,F) be a FREDHOM operator with index two and

dimKer F? = 3, KerF? = span{us,us,us}
dimKer[FY]; = 1, Ker[F?; = span{v'}.

and let ®4(2°) =0 for zg = (1o, o, v") . Then grad ®4(z°) has a bounded inverse iff the matriz

(13),

O D (u,un) 0 FD (s ug) v FY (ug, ug)
Q7<u17u2>u37vl) = UIFJ?x(u27u1) UleOz(u27u2) UlFa?x(UQ’ui%) ) (28>
UIFJ(:):E(U?Hul) Ungx(ui;?u?) UlFa(c]cc(u3au3)

15 reqular.

Note that v' F) = 1 by assumption that ®4(z) = 0.
Proof. The proof is carried out essentially in the same way as Lemma 1. Let again

z = (0,21,2%) ERxE x Fy,
g = (g1,9% 1) € Range F? x Range[F?]; x R.

Then we have to show that the linear system System grad ®,4(2%)z = g, 2 = (0, 21,2%), has a
unique solution z for every right side g. In detail

FSU + Fg?zl = 0
VHEL o+ Flz | +22F) = ¢ (29)
vl [FB#O + FBIZJ +2°F) = 7.

We choose the decomposition

21 = Ua+w, Ulw=0, U =1I3, U= [uy,us,us,
Zy = 7U1+q7 <Q7U1>:O7 Ulvlzl;

then it is to show that o, v, a € R? as well as w and ¢ are determined uniquely. Inserting into

29) yields
(29)y Flo+ F)(Ua+w) = q

vl [FQHO' + F? (Ua + w)} +22F) = ¢° (30)
v [Flo+ F)(Ua+w)] +2°F) = 7.
(1°) The first equation supplies o = 0 after multiplication by v! since v! F? = 0 and vlg; = 0.

(2°) Inserting of o = 0 into the first equation yields w with U%w = 0 uniquely because FOU = 0.
(3°) Inserting o = 0 and z; in (30,2°) yields

(o' + Q) F? = ¢* — v' F? (Ua + w) € Range[FY], . (31)



But v'F%2 = 0, Flu; = 0 and by the Range Theorem g?u; = 0 Application of (31) to
w;, 1 =1:3, successively shows that a € R? exists uniquely if the matrix @7 is regular.

(4°) Then ¢ is the unique solution of (31) with (g, v1) =0.

(5°) v is uniquely determined in linear dependence of o by

(yo! + q)Fg =7 — UIFszl .O

Type Ila dim Ker F? = 2, i?ng =0, 29F% =0, cf. (9). We consider the perturbed system

(I)4(Z) = (1)4()\’ (:uawa I),U)
- A
F(p,w,z)+ Ar ](:,u,(w, z) _I; "
v (u,w,x
0[Fu(pw,2), Folpw,2) ! (32)
= = UFW(M,LU,I') = O
UFM(/*L?M7:E)
UFH(,U,(,U,Z')
vr —1
| vr—1 |

where A\ play the role of the parameters p in Lemma 4 and = := (u,w, x) plays the role of the
former element . The vector » must be specified such that 7% # 0.

Lemma 5 Let (ug,wo, o) be a branching point of type Ila and let 29 = (0, uo, wo, T, 0%), cf.
(9), then ®4(z°) = 0. Let moreover w be the unique solution of F° + Flw = 0 with Uw = 0,

then
grad @4(z) 1R x & x Fy — F x Fy x R?

has a bounded inverse iff the matriz Qs(u1,uq, w,v?) in (10) is reqular and if v%r # 0.
Proof. For the mentioned w we have by (9)

F)=[F),F),F)], Ker(F))=span{(0,0,u1),(0,0,us), (0,1, w)} =: span{uy, up, us}  (33)
Let @7(61,%,63,57‘1) be the matrix in (28) with partial derivatives w.r.t. ¥ = (i, w, z) instead

of . Then Lemma 4 w.r.t. the augmented system (32) says that this matrix must be regular.
Inserting the values of (33) we find that

é7(ﬂl,a2ﬁ3>5d) = Q5(U17U2>w>5d)- O
For Type IIb we have to permute p and w and 2¢ is to be chosen as in (11).
Type IIc dimker F) = 3, ?F) = 0, v’F) = 0, cf. (11). We consider again the perturbed

system (32).

Lemma 6 Let (g, wo, o) be a branching point of type Ilc and let zo = (0, po,wo, T, 0%), cf.
(12), then ®4(2°) = 0 and

grad @4(zg) 1R x & x Fy — F x Fy x R?

has a bounded inverse iff the matriz Qe(uy, uz, us, v%) in (13) or (28) is reqular and if vir # 0
and a system-inherent constant is non-zero.



Proof. By (12) we have
Fz,? = [FS, F° FY], Ker(F;) = span{(0,0,u1), (0,0,uz), (0,0, u3)} =: span{uy, us, us} (34)

Lemma 4 w.r.t. the augmented system (32) says again that the matrix @7(171, Uy, Uz, 0) in (28)
must be regular. Inserting the values of (34) we find that

@7(ﬂ1,ﬂ27?73a§d) = Qﬁ(ul,uzyusﬁd)- O



