To Section 5.3

(a) Recapitulation of Notations: We now consider problems with one or two parameters only hence

$$
\begin{align*}
& F: \mathcal{G}:=\mathbb{R} \times \mathcal{E} \ni y=(\mu, x) \mapsto F(y)=F(\mu, x) \in \mathcal{F} \\
& \text { resp. } \tag{1}\\
& F: \mathcal{G}:=\mathbb{R}^{2} \times \mathcal{E} \ni y=(\mu, \omega, x) \mapsto F(y)=F(\mu, \omega, x) \in \mathcal{F}
\end{align*}
$$

at a point y_{0} where $F\left(y_{0}\right)=0$ and $y_{0}=\left(\mu_{0}, x_{0}\right)$ resp. $y_{0}=\left(\mu_{0}, \omega_{0}, x_{0}\right)$. We substitute a local solution $y(s)$ with $y(0)=y_{0}$ and derive w.r.t. the path parameter s then, at the point $s=0$,

$$
\begin{align*}
& F_{\mu}^{0} \mu^{\prime}(0)+F_{x}^{0} x^{\prime}(0)=0 \tag{2}\\
& F_{\mu}^{0} \mu^{\prime \prime}(0)+F_{x}^{0} x^{\prime \prime}(0)+F_{\mu \mu}^{0} \mu^{\prime}(0)^{2}+2 F_{\mu x} \mu^{\prime}(0) x^{\prime}(0)+F_{x x}^{0}\left\langle x^{\prime}(0), x^{\prime}(0)\right\rangle=0,
\end{align*}
$$

resp.

$$
\begin{align*}
& F_{\mu}^{0} \mu^{\prime}(0)+F_{\omega}^{0} \omega^{\prime}(0)+F_{x}^{0} x^{\prime}(0)=0 \\
& F_{\mu}^{0} \mu^{\prime \prime}(0)+F_{\omega}^{0} \omega^{\prime \prime}(0)+F_{x}^{0} x^{\prime \prime}(0)+F_{\mu \mu}^{0} \mu^{\prime}(0)^{2}+F_{\omega \omega}^{0} \omega^{\prime}(0)^{2}+2 F_{\mu x} \mu^{\prime}(0) x^{\prime}(0) \tag{3}\\
& +2 F_{\mu \omega}^{0} \mu^{\prime}(0) \omega^{\prime}(0)+2 F_{\omega x}^{0} \omega^{\prime}(0) x^{\prime}(0)+F_{x x}^{0}\left\langle x^{\prime}(0), x^{\prime}(0)\right\rangle=0
\end{align*}
$$

For instance, if $u \in \operatorname{Ker} F_{x}^{0}$ then $(0, u) \in \operatorname{Ker}\left[F_{\mu}^{0}, F_{x}^{0}\right]$. Further elements in $\operatorname{Ker} F_{y}^{0}$ exist in the single-parameter case only if $F_{\mu}^{0} \in$ Range F_{x}^{0}. Recall also the notations

$$
\begin{align*}
& \operatorname{Ker} F_{x}^{0}=\operatorname{span}\left\{u_{1}, \ldots, u_{\nu}\right\}, \quad U=\left[u_{1}, \ldots, u_{\nu}\right], U^{d}=\left[u^{i}\right]_{i=1}^{\nu}, \\
& \operatorname{Ker}\left[F_{x}^{0}\right]_{d}=\operatorname{span}\left\{v^{1}, \ldots, v^{\nu}\right\}, \quad V^{d}=\left[v^{i}\right]_{i=1}^{\nu}, \quad V=\left[v_{1}, \ldots, v_{\nu}\right] \text {, } \\
& \operatorname{Ker} F_{y}^{0}=\operatorname{span}\left\{\widetilde{u}_{1}, \ldots, \widetilde{u}_{\mu}\right\}, \quad \widetilde{U}=\left[\widetilde{u}_{1}, \ldots, \widetilde{u}_{\mu}\right], \quad \widetilde{U}^{d}=\left[\widetilde{u}^{i}\right]_{i=1}^{\mu} \text {, } \tag{4}\\
& \operatorname{Ker}\left[F_{y}^{0}\right]_{d}=\operatorname{span}\left\{\widetilde{v}^{1}, \ldots, \widetilde{v}^{\kappa}\right\}, \quad \widetilde{V}^{d}=\left[\widetilde{v}^{i}\right]_{i=1}^{\kappa}, \quad \widetilde{V}=\left[\widetilde{v}_{1}, \ldots, \widetilde{v}_{k}\right]
\end{align*}
$$

Then by the e.g. for $\left(1,1^{\circ}\right)$

$$
\operatorname{dim} \operatorname{Ker} F_{x}^{0} \neq \operatorname{dim} \operatorname{Ker} F_{y}^{0} \Longleftrightarrow F_{\mu}^{0} \in \operatorname{Range} F_{x}^{0} \Longleftrightarrow V^{d} F_{\mu}^{0}=0
$$

$\operatorname{dim} \operatorname{Ker}\left[F_{y}^{0}\right]_{d}=1$, one or two parameters:

Typ Ia: $\quad \operatorname{dim} \operatorname{Ker} F_{x}^{0}=1, \quad \operatorname{dim} \operatorname{Ker} F_{y}^{0}=2, \quad 0=F_{\mu}^{0}\left(\in \operatorname{Range} F_{x}^{0}\right)$
Typ Ib: $\quad \operatorname{dim} \operatorname{Ker} F_{x}^{0}=1, \quad \operatorname{dim} \operatorname{Ker} F_{y}^{0}=2, \quad 0 \neq F_{\mu}^{0} \in$ Range F_{x}^{0}
Typ Ic: $\quad \operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, \quad \operatorname{dim} \operatorname{Ker} F_{y}^{0}=2, \quad 0 \neq F_{\mu}^{0} \notin$ Range F_{x}^{0}
Typ IIa: $\operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, \quad V^{d} F_{\mu}^{0} \neq 0, V^{d} F_{\omega}^{0}=0$
Typ IIb: $\operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, \quad V^{d} F_{\mu}^{0}=0, V^{d} F_{\omega}^{0} \neq 0$
Typ IIc: $\quad \operatorname{dim} \operatorname{Ker} F_{x}^{0}=3, \quad \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, \quad V^{d} F_{\mu}^{0} \neq 0, V^{d} F_{\omega}^{0} \neq 0$
$\operatorname{dim} \operatorname{Ker}\left[F_{y}^{0}\right]_{d}=2$, one parameter:

$$
\begin{array}{llll}
\text { Typ IIIa: } & \operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, & \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, & 0=F_{\mu}^{0}\left(\in \operatorname{Range} F_{x}^{0}\right) \\
\text { Typ IIIb: } & \operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, & \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, & 0 \neq F_{\mu}^{0} \in \operatorname{Range} F_{x}^{0} \\
\text { Typ IIIc: } & \operatorname{dim} \operatorname{Ker} F_{x}^{0}=3, & \operatorname{dim} \operatorname{Ker} F_{y}^{0}=3, & 0 \neq F_{\mu}^{0} \notin \operatorname{Range} F_{x}^{0}
\end{array}
$$

Necessary branching conditions shall now be derived for these types in the same way as in (a). To this end the subspace $\operatorname{Ker} F_{y}^{0}=\operatorname{span}\left\{\widetilde{v}^{1}, \ldots, \widetilde{v}^{\kappa}\right\}$ resp. the matrix $\widetilde{V}^{d}=\left[\widetilde{v}^{1}, \ldots, \widetilde{v}^{\kappa}\right]$ has to be found explicitely. The same matrix applies also in the the projector $Q=\widetilde{V} \widetilde{V}^{d}$ where $\operatorname{Ker} Q=$ Range F_{y}^{0}, being needed in the branching equation .
(b) Computation of Quadratic Forms for Type I
(b1, Type Ia/b) $v^{1} F_{\mu}^{0}=0$, hence $v^{1} F_{y}^{0}=v^{1}\left[F_{\mu}^{0}, F_{x}^{0}\right]=(0,0) \in \mathbb{R} \times \mathcal{E}_{d}$. Let w be the unique solution of $F_{\mu}^{0}+F_{x}^{0} w=0$ where $u^{1} w=0$ then

$$
\widetilde{U}=\left[\begin{array}{cc}
0 & 1 \tag{5}\\
u_{1} & w
\end{array}\right], \quad \widetilde{V}^{d}=v^{1}=: \widetilde{v}^{d}
$$

Every tangent $x^{\prime}(0)$ in type Ib has the representation $x^{\prime}(0)=\alpha u_{1}+\beta w$ where $\beta=\mu^{\prime}(0)$. Insertion of $\left(\beta, x^{\prime}(0)\right)$ in (2) yields after multiplication by the vector \widetilde{v}^{d} of (5)

$$
\widetilde{v}^{d} F_{\mu \mu}^{0} \beta^{2}+2 \widetilde{v}^{d} F_{\mu x}^{0} \beta\left(\alpha u_{1}+\beta w\right)+\widetilde{v}^{d} F_{x x}^{0}\left\langle\alpha u_{1}+\beta w, \alpha u_{1}+\beta w\right\rangle=0 .
$$

or $a^{T} Q_{3}\left(u_{1}, w, \widetilde{v}^{d}\right) a=0, a^{T}=[\alpha, \beta]$ where

$$
Q_{3}\left(u_{1}, w, \widetilde{v}^{d}\right)=\left[\begin{array}{cc}
\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{1}, u_{1}\right\rangle & \widetilde{v}^{d}\left[F_{\mu x}^{0} u_{1}+F_{x x}^{0}\left\langle u_{1}, w\right\rangle\right] \tag{6}\\
\widetilde{v}^{d}\left[F_{\mu x}^{0} u_{1}+F_{x x}^{0}\left\langle u_{1}, w\right\rangle\right] & \widetilde{v}^{d}\left[F_{\mu \mu}^{0}+2 F_{\mu x}^{0} w+F_{x x}^{0}\langle w, w\rangle\right]
\end{array}\right] .
$$

This quadratic form has two different real solutions in case $\operatorname{det}\left(Q_{3}\left(u_{1}, w, \widetilde{v}^{d}\right)\right)<0$; in type Ia $w=0$.
(b2, Type Ic) $V^{d} F_{\mu}^{0} \neq 0 \in \mathbb{R}^{2}$ hence there exists a vector $0 \neq a \in \mathbb{R}_{2}$ such that $a\left[V^{d} F_{\mu}^{0}\right]=0$, and then $a V^{d} F_{y}^{0}=a V^{d}\left[F_{\mu}^{0}, F_{x}^{0}\right]=(0,0) \in \mathbb{R} \times \mathcal{E}_{d}$; further linearly independent left-vectors v satisfying $v F_{y}^{0}=0$ are not available. By $(2), 1^{\circ}$ now $\mu^{\prime}(0)=0$ after multiplication by V^{d} :

$$
\mu^{\prime}(0)=0, \quad \widetilde{U}=\left[\begin{array}{cc}
0 & 0 \tag{7}\\
u_{1} & u_{2}
\end{array}\right], \quad \widetilde{V}^{d}=a V^{d}=: \widetilde{v}^{d}
$$

Every tangent has the representation $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}$. By (2) after multiplication by the vector $\widetilde{v}^{d}=a V^{d}$ of (7)

$$
\begin{aligned}
& \widetilde{v}^{d} F_{x x}^{0}\left\langle\alpha u_{1}+\beta u_{2}, \alpha u_{1}+\beta u_{2}\right\rangle \\
& =\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{1}, u_{1}\right\rangle \alpha^{2}+2 \widetilde{v}^{d} F_{x x}^{0}\left\langle u_{1}, u_{2}\right\rangle \alpha \beta+\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{2}, u_{2}\right\rangle \beta^{2}=0
\end{aligned}
$$

or $a^{T} Q_{4}\left(u_{1}, u_{2}, \widetilde{v}^{d}\right) a=0, a^{T}=[\alpha, \beta]$, where

$$
\begin{equation*}
Q_{4}\left(u_{1}, u_{2}, \widetilde{v}^{d}\right)=\left[\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{i}, u_{k}\right\rangle\right]_{i, k=1}^{2} . \tag{8}
\end{equation*}
$$

Corollary 1 (Necessary Conditions)
$\left(1^{\circ}\right)$ Let $\left(\mu_{0}, x_{0}\right)$ be a branching point of type Ia then $\operatorname{det}\left(Q_{3}\left(u_{1}, 0, \widetilde{v}^{d}\right)\right)<0$.
(2 ${ }^{\circ}$ Let $\left(\mu_{0}, x_{0}\right)$ be a branching point of type Ib then
$\operatorname{det}\left(Q_{3}\left(u_{1}, w, \widetilde{v}^{d}\right)<0\right.$.
(3°) Let $\left(\mu_{0}, x_{0}\right)$ be a branching point of type Ic then
$\operatorname{det}\left(Q_{4}\left(u_{1}, u_{2}, \widetilde{v}^{d}\right)\right)<0$, and both tangents lie in the hyperplane $\mu=\mu_{0}$.
(c) Computation of Quadratic Forms for Type II and Type III
(b4, Type IIa) $V^{d}=\left[v^{1}, v^{2}\right], V^{d} F_{\mu}^{0} \neq 0, V^{d} F_{\omega}^{0}=0$. There exists a vector $0 \neq a \in \mathbb{R}_{2}$ with $a V^{d} F_{\mu}^{0}=0$, then $a V^{d}\left[F_{\mu}^{0}, F_{\omega}^{0}, F_{x}^{0}\right]=0$; further linearly independent vectors with this property do not exist. Let w be the unique solution of $F_{\omega}^{0}+F_{x}^{0} w=0 \mathrm{mit} U^{d} w=0$, then

$$
\mu^{\prime}(0)=0, \quad \widetilde{U}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{9}\\
0 & 0 & 1 \\
u_{1} & u_{2} & w
\end{array}\right], \quad \widetilde{V}^{d}=a V^{d}=: \widetilde{v}^{d}
$$

Every tangent has the unique representation $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}+\gamma w$ where $\gamma=\omega^{\prime}(0)$. Inserting of $\left(0, \gamma, x^{\prime}(0)\right)$ in (3) yields after multiplication by \widetilde{v}^{d} of (9) the quadratic form
$a^{T} Q_{5}\left(u_{1}, u_{2}, w, \widetilde{v}^{d}\right) a=0, a^{T}=[\alpha, \beta, \gamma]$,
$Q_{5}\left(u_{1}, u_{2}, w, \widetilde{v}^{d}\right)=$

$$
\left[\begin{array}{ccc}
\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{1}, u_{1}\right\rangle & \widetilde{v}^{d} F_{x x}^{0}\left\langle u_{1}, u_{2}\right\rangle & \widetilde{v}^{d}\left[F_{x x}^{0}\left\langle u_{1}, w\right\rangle+F_{\omega x}^{0} u_{1}\right] \tag{10}\\
\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{2}, u_{1}\right\rangle & \widetilde{v}^{d} F_{x x}^{0}\left\langle u_{2}, u_{2}\right\rangle & \widetilde{v}^{d}\left[F_{x x}^{0}\left\langle u_{2}, w\right\rangle+F_{\omega x}^{0} u_{2}\right] \\
\widetilde{v}^{d}\left[F_{\omega x}^{0} u_{1}+F_{x x}^{0}\left\langle w, u_{1}\right\rangle\right] & \widetilde{v}^{d}\left[F_{\omega x}^{0} u_{2}+F_{x x}^{0}\left\langle w, u_{2}\right\rangle\right] & \widetilde{v}^{d}\left[F_{\omega \omega}^{0}+F_{x x}^{0}\langle w, w\rangle\right]
\end{array}\right],
$$

which must describe a cone in \mathbb{R}^{3}.
(b5, Type IIb) $V^{d}=\left[v^{1}, v^{2}\right], V^{d} F_{\mu}^{0}=0, V^{d} F_{\omega}^{0} \neq 0$. Let w be the unique solution of $F_{\mu}^{0}+F_{x}^{0} w=0$ with $U^{d} w=0$, then

$$
\omega^{\prime}(0)=0, \quad \widetilde{U}=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{11}\\
0 & 0 & 0 \\
u_{1} & u_{2} & w
\end{array}\right], \quad \widetilde{V}^{d}=a V^{d}=: \widetilde{v}^{d}
$$

Accordingly, in the matrix $Q_{5}\left(u_{1}, u_{2}, \widetilde{v}^{d}\right)$ the partial derivatives w.r.t. ω are to be replaced by the partial derivatives w.r.t. μ.
(b6, Typ IIc) $V^{d}=\left[v^{1}, v^{2}, v^{3}\right], V^{d} F_{\mu}^{0} \neq 0, V^{d} F_{\omega}^{0} \neq 0$. There exists a vector $0 \neq a \in \mathbb{R}^{3}$ such that $a V^{d} F_{\mu}^{0}=0$ and $a V^{d} F_{\omega}^{0}=0$, then $a V^{d}\left[F_{\mu}^{0}, F_{\omega}^{0}, F_{x}^{0}\right]=0$; further linearly independent vectors with this property do not exist:

$$
\mu^{\prime}(0)=\omega^{\prime}(0)=0, \quad \widetilde{U}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{12}\\
0 & 0 & 0 \\
u_{1} & u_{2} & u_{3}
\end{array}\right], \quad \widetilde{V}^{d}=a V^{d}=: \widetilde{v}^{d} .
$$

Every tangent has again the form $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}+\gamma u_{3}$. Inserting in (3) yields after multiplication by \widetilde{v}^{d} of (12) the quadratic form

$$
\begin{equation*}
a^{T} Q_{6}\left(u_{1}, u_{2}, u_{3}, \widetilde{v}^{d}\right) a=0, a^{T}=[\alpha, \beta, \gamma], Q_{6}\left(u_{1}, u_{2}, u_{3}, \widetilde{v}^{d}\right)=\left[\widetilde{v}^{d} F_{x x}^{0}\left\langle u_{i}, u_{k}\right\rangle\right]_{i, k=1}^{3} \tag{13}
\end{equation*}
$$

which must be describe a cone again.
(b7, Typ IIIa/b) $V^{d} F_{\mu}^{0}=0$ with $V^{d}=\left[v^{1}, v^{2}\right]^{T}$, hence $V^{d} F_{y}^{0}=V^{d}\left[F_{\mu}^{0}, F_{x}^{0}\right]=(0,0)$. Besides v^{1} and v^{2} there do not exist further vectors v such that $v F_{y}^{0}=0$. Let w be the unique solution of $F_{\mu}^{0}+F_{x}^{0} w=0$ such that $U^{d} w=0$, then

$$
\widetilde{U}=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{14}\\
u_{1} & u_{2} & w
\end{array}\right], \quad \widetilde{V}^{d}=V^{d} .
$$

For type Typ IIIb every tangent has the form $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}+\gamma w$ where $\gamma=\mu^{\prime}(0)$. Inserting of $\left(\gamma, x^{\prime}(0)\right)$ in (2) yields after multiplication by \widetilde{V}^{d} of (14) the both quadratic forms

$$
\begin{equation*}
a^{T} Q_{5}\left(v^{i}, w\right) a=0, a^{T}=[\alpha, \beta, \gamma], i=1,2 \tag{15}
\end{equation*}
$$

which must satisfy the cone condition of (a).
In Type IIIa we have $w=0$, therefore $x^{\prime}(0)$ has the representation $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}$. Inserting of $\left(\gamma, x^{\prime}(0)\right)$ in (2) yields after multiplication by $V^{d}=\left[v^{1}, v^{2}\right]$ the both quadratic forms

$$
\begin{equation*}
a^{T} Q_{5}\left(v^{i}, 0\right) a=0, a^{T}=[\alpha, \beta, \gamma], i=1,2 \tag{16}
\end{equation*}
$$

(b8, Type IIIc) $V^{d} F_{\mu}^{0} \neq 0$ where $V^{d}=\left[v^{1}, v^{2}, v^{3}\right]^{T}$, therefore there exist exactly two linearly independent vectors $a, b \in \mathbb{R}_{3}$ such that $a V^{d} F_{\mu}^{0}=b V^{d} F_{\mu}^{0}=0$:

$$
\mu^{\prime}(0)=0, \quad \widetilde{U}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{17}\\
u_{1} & u_{2} & u_{3}
\end{array}\right], \quad \tilde{V}^{d}=\left[\begin{array}{l}
a V^{d} \\
b V^{d}
\end{array}\right] .
$$

Every tangent has now the representation $x^{\prime}(0)=\alpha u_{1}+\beta u_{2}+\gamma u_{3}$. Inserting of $\left(0, x^{\prime}(0)\right)$ in (2) yields after multiplication by \widetilde{V}^{d} of (17) the both quadratic forms

$$
\begin{equation*}
a^{T} Q_{6}\left(\widetilde{v}^{i}\right) a=0, i=1,2, \tag{18}
\end{equation*}
$$

cf. (13), which must satisfy the cone condition. The tangents then lie in the hyperplane $\mu=\mu_{0}$.

(d) Computation of Branching Points of Type I

We prove at first a result for the accompanying system (5.21), namely

$$
\Phi_{2}(z):=\Phi_{2}(\mu, x, v):=\left[\begin{array}{l}
F(\mu, x) \tag{19}\\
\left.v F_{x}(\mu, x)\right) \\
\left.v F_{\mu}(\mu, x)\right)-1
\end{array}\right]=0, z=(\mu, x, v), v \in \mathcal{F}_{d}
$$

where F_{x}^{0} is a Fredhom operator with index one by exception.
Lemma 1 Let $F_{x}^{0} \in \mathcal{L}(\mathcal{E}, \mathcal{F})$ be a Fredhom operator with index one and

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ker} F_{x}^{0} & =2, \\
\operatorname{Ker} F_{x}^{0} & =\operatorname{span}\left\{u_{1}, u_{2}\right\}, \\
\operatorname{dim} \operatorname{Ker}\left[F_{x}^{0}\right]_{d} & =1, \\
\operatorname{Ker}\left[F_{x}^{0}\right]_{d} & =\operatorname{span}\left\{v^{1}\right\},
\end{aligned}
$$

and let $\Phi_{2}\left(z_{0}\right)=0$ for $z_{0}=\left(\mu_{0}, x_{0}, v^{1}\right)$. Then $\operatorname{grad} \Phi_{2}\left(z_{0}\right)$ has a bounded inverse if and only if the matrix

$$
\begin{equation*}
Q_{4}\left(u_{1}, u_{2}, v^{1}\right)=\left[v^{1} F_{x x}^{0}\left\langle u_{i}, u_{k}\right\rangle\right]_{i, k=1}^{2} \tag{20}
\end{equation*}
$$

is regular.
Note that $v^{1} F_{\mu}^{0} \neq 0$ by the assumption $\Phi\left(z_{0}\right)=0$.
Proof. The proof is carried out in much the same way as in Lemma 1 of SUPPLEMENT $\backslash c h a p 05 b$ b. Let again

$$
\begin{aligned}
z & =\left(\sigma, z_{1}, z^{2}\right) \in \mathbb{R} \times \mathcal{E} \times \mathcal{F}_{d} \\
g & =\left(g_{1}, g^{2}, \tau\right) \in \operatorname{Range} F_{x}^{0} \times \text { Range }\left[F_{x}^{0}\right]_{d} \times \mathbb{R}
\end{aligned}
$$

Then we have to show that the linear system $\operatorname{grad} \Phi_{2}\left(z^{0}\right) z=g, z^{0}=\left(\sigma, z_{1}, z^{2}\right)$, has a unique solution z for every g. In detail

$$
\begin{align*}
\operatorname{grad} \Phi_{2}\left(z^{0}\right) z=F_{\mu}^{0} \sigma+F_{x}^{0} z_{1} & =g_{1} \\
v^{1}\left[F_{\mu x}^{0} \sigma+F_{x x}^{0} z_{1}\right]+z^{2} F_{x}^{0} & =g^{2} \tag{21}\\
v^{1}\left[F_{\mu \mu}^{0} \sigma+F_{\mu x}^{0} z_{1}\right]+z^{2} F_{\mu}^{0} & =\tau .
\end{align*}
$$

We choose the decomposition

$$
\begin{array}{lll}
z_{1}=\alpha u_{1}+\beta u_{2}+w, & U^{d} w=0, & U^{d} U=I_{2} \\
z_{2}=\gamma v^{1}+q, & \left\langle q, v_{1}\right\rangle=0, & v^{1} v_{1}=1
\end{array}
$$

then we have to show that $\sigma, \alpha, \beta, \gamma, w, q$ are uniquely determined. Inserting into (21) yields

$$
\begin{array}{ll}
F_{\mu}^{0} \sigma+F_{x}^{0}\left(\alpha u_{1}+\beta u_{2}+w\right) & =g_{1} \\
v^{1}\left[F_{\mu x}^{0} \sigma+F_{x x}^{0}\left(\alpha u_{1}+\beta u_{2}+w\right)\right]+z^{2} F_{x}^{0} & =g^{2} \tag{22}\\
v^{1}\left[F_{\mu \mu}^{0} \sigma+F_{\mu x}^{0}\left(\alpha u_{1}+\beta u_{2}+w\right]+z^{2} F_{x}^{0}\right. & =\tau .
\end{array}
$$

(1°) We have $v^{1} F_{x}^{0}=0$ and $v^{1} F_{\mu}^{0} \neq 0$ because $F_{\mu}^{0} \notin$ Range F_{x}^{0}, and $v^{1} g_{1}=0$ because $g_{1} \in$ Range F_{x}^{0}; therefore the first equation of (22) shows that $\sigma=v^{1} g_{1} / v^{1} F_{\mu}^{0}=0$.
$\left(2^{\circ}\right)$ The component w is therefore the unique solution of

$$
F_{x}^{0} w=g_{1}, U^{d} w=0
$$

$\left(3^{\circ}\right)$ Inserting $\sigma=0$ and the expression for z^{2} in $\left(22,2^{\circ}\right)$ yields

$$
\begin{equation*}
\left(\beta v^{1}+q\right) F_{x}^{0}=g^{2}-v^{1} F_{x x}^{0}\left(\alpha u_{1}+\beta u_{2}+w\right)=: b \in \operatorname{Range}\left[F_{x}^{0}\right]_{d} . \tag{23}
\end{equation*}
$$

By the Range Theorem $b u_{1}=b u_{2}=0$ and $g^{2} u_{1}=g^{2} u_{2}=0$. Application of (23) to u_{1} and u_{2} yields the system

$$
\begin{aligned}
v^{1} F_{x x}^{0}\left\langle u_{1}, u_{1}\right\rangle \alpha+v^{1} F_{x x}^{0}\left\langle u_{2}, u_{1}\right\rangle \beta & =v^{1} F_{x x}^{0}\left\langle w, u_{1}\right\rangle \\
v^{1} F_{x x}^{0}\left\langle u_{1}, u_{2}\right\rangle \alpha+v^{1} F_{x x}^{0}\left\langle u_{2}, u_{2}\right\rangle \beta & =v^{1} F_{x x}^{0}\left\langle w, u_{2}\right\rangle
\end{aligned}
$$

which has a unique solution α, β iff the matrix Q_{4} is regular.
(4) Thus z_{1} is determined uniquely. Because $v^{1} F_{x}^{0}=0$ then q is the unique solution of (23) such that $\left\langle q, v_{1}\right\rangle=0$. Finally, γ is uniquely determined from

$$
\left(\gamma v^{1}+q\right) F_{\mu}^{0}=\tau-v^{1} F_{\mu x}^{0} z_{1} .
$$

By a proposition of [MooreA], branching points are computed as regular points of an augmented accompanying system in a similar way as in the computation of turning points. We consider the perturbated system

$$
\begin{equation*}
\Phi_{3}(\lambda,(\mu, x)):=\Phi_{2}(\mu, x)+\lambda r=0, \tag{24}
\end{equation*}
$$

where λ now plays the role of the former parameter μ and (μ, x) the role of the former x. We have supposed in Lemma 1 that $v^{1} F_{\mu}^{0} \neq 0$. Now μ is replaced by λ and

$$
\frac{\partial}{\partial \lambda} \Phi_{3}\left(0,\left(\mu^{0}, x^{0}\right)\right)=r
$$

To apply Lemma 1 to (24) we therefore require that the fixed and specified r is chosen such that $v^{1} r \neq 0$ which is entirely natural for the following system. The accompanying system then reads with $v \in \mathcal{F}_{d}$:

$$
\begin{align*}
& \Phi_{3}(z):=\Phi_{3}(\lambda,(\mu, x), v) \\
& =\left[\begin{array}{l}
F(\mu, x)+\lambda r \\
v\left[F_{\mu}(\mu, x), F_{x}(\mu, x)\right] \\
v r-1
\end{array}\right]=\left[\begin{array}{l}
F(\mu, x)+\lambda r \\
v F_{x}(\mu, x) \\
v F_{\mu}(\mu, x) \\
v r-1
\end{array}\right]=0 \tag{25}
\end{align*}
$$

Lemma 2 Let $\left(\mu_{0}, x_{0}\right)$ be a branching point of type $I a / b$ and let
$z_{0}=\left(0, \mu_{0}, x_{0}, v^{1}\right), c f$. (5), then $\Phi_{3}\left(z_{0}\right)=0$. Further, let w denote the unique solution of $F_{\mu}^{0}+F_{x}^{0} w=0$ where $v^{1} w=0$ then

$$
\operatorname{grad} \Phi_{3}\left(z_{0}\right): \mathbb{R}^{2} \times \mathcal{E} \times \mathcal{F}_{d} \rightarrow \mathcal{F} \times \mathcal{F}_{d} \times \mathbb{R}^{2}
$$

is regular if and only if the matrix $Q_{3}\left(u_{1}, w, v^{1}\right)$ in (6) is regular.
Proof. Let $F_{\mu}^{0}+F_{x}^{0} w=0$ then

$$
\begin{equation*}
\operatorname{Ker}\left(\left[F_{\mu}^{0}, F_{x}^{0}\right]\right)=\operatorname{span}\left\{\left(0, u_{1}\right),(1, w)\right\}=: \operatorname{span}\left\{\widetilde{u}_{1}, \widetilde{u}_{2}\right\} . \tag{26}
\end{equation*}
$$

Then Lemma 1 w.r.t. the augmented system says that the matrix $Q_{4}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, v^{1}\right)$ in (8) must be regular. Inserting the values for $\widetilde{u}_{1}, \widetilde{u}_{2}$ shows that $Q_{4}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, v^{1}\right)=Q_{3}\left(u_{1}, w, v^{1}\right)$ where Q_{3} is the matrix in (6)

Lemma 3 Let $\left(\mu_{0}, x_{0}\right)$ be a branching point of type type Ic and let $z_{0}=\left(0, \mu_{0}, x_{0}, \widetilde{v}^{d}\right), c f .(7)$. Then $\Phi_{3}\left(z_{0}\right)=0$ and

$$
\operatorname{grad} \Phi_{3}\left(z_{0}\right): \mathbb{R}^{2} \times \mathcal{E} \times \mathcal{F}_{d} \rightarrow \mathcal{F} \times \mathcal{F}_{d} \times \mathbb{R}^{2}
$$

is regular if and only if the matrix $Q_{4}\left(u_{1}, u_{2}, \widetilde{v}^{d}\right)$ in (8) is regular.
Hint to the proof. In the present case

$$
\operatorname{Ker}\left(\left[F_{\mu}^{0}, F_{x}^{0}\right]\right)=\operatorname{span}\left\{\left(0, u_{1}\right),\left(0, u_{2}\right)\right\}
$$

By consequence, the matrix Q_{4} in (8) relative to the augmented system has now the form Q_{4} of (8) relative to the original system.

(d) Computation of Branching Points of Type II

We prove at first an auxiliary result for the system

$$
\Phi_{4}(z):=\Phi_{4}(\mu, x, v):=\left[\begin{array}{l}
F(\mu, x) \tag{27}\\
\left.v F_{x}(\mu, x)\right) \\
\left.v F_{\mu}(\mu, x)\right)-1
\end{array}\right]=0, z=(\mu, x, v), v \in \mathcal{F}_{d}
$$

where, by exception, F_{x}^{0} is a Fredhom operator with index two:
Lemma 4 Let $F_{x}^{0} \in \mathcal{L}(\mathcal{E}, \mathcal{F})$ be a Fredhom operator with index two and

$$
\begin{aligned}
\operatorname{dim} \operatorname{Ker} F_{x}^{0} & =3, \operatorname{Ker} F_{x}^{0}=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\} \\
\operatorname{dim} \operatorname{Ker}\left[F_{x}^{0}\right]_{d} & =1, \operatorname{Ker}\left[F_{x}^{0}\right]_{d}=\operatorname{span}\left\{v^{1}\right\}
\end{aligned}
$$

and let $\Phi_{4}\left(z^{0}\right)=0$ for $z_{0}=\left(\mu_{0}, x_{0}, v^{1}\right)$. Then $\operatorname{grad} \Phi_{4}\left(z^{0}\right)$ has a bounded inverse iff the matrix (13),

$$
Q_{7}\left(u_{1}, u_{2}, u_{3}, v^{1}\right)=\left[\begin{array}{ccc}
v^{1} F_{x x}^{0}\left(u_{1}, u_{1}\right) & v^{1} F_{x x}^{0}\left(u_{1}, u_{2}\right) & v^{1} F_{x x}^{0}\left(u_{1}, u_{3}\right) \tag{28}\\
v^{1} F_{x x}^{0}\left(u_{2}, u_{1}\right) & v^{1} F_{x x}^{0}\left(u_{2}, u_{2}\right) & v^{1} F_{x x}^{0}\left(u_{2}, u_{3}\right) \\
v^{1} F_{x x}^{0}\left(u_{3}, u_{1}\right) & v^{1} F_{x x}^{0}\left(u_{3}, u_{2}\right) & v^{1} F_{x x}^{0}\left(u_{3}, u_{3}\right)
\end{array}\right],
$$

is regular.
Note that $v^{1} F_{\mu}^{0}=1$ by assumption that $\Phi_{4}\left(z_{0}\right)=0$.
Proof. The proof is carried out essentially in the same way as Lemma 1. Let again

$$
\begin{aligned}
z & =\left(\sigma, z_{1}, z^{2}\right) \in \mathbb{R} \times \mathcal{E} \times \mathcal{F}_{d}, \\
g & =\left(g_{1}, g^{2}, \tau_{1}\right) \in \operatorname{Range} F_{x}^{0} \times \operatorname{Range}\left[F_{x}^{0}\right]_{d} \times \mathbb{R} .
\end{aligned}
$$

Then we have to show that the linear system System $\operatorname{grad} \Phi_{4}\left(z^{0}\right) z=g, z^{0}=\left(\sigma, z_{1}, z^{2}\right)$, has a unique solution z for every right side g. In detail

$$
\begin{array}{ll}
F_{\mu}^{0} \sigma+F_{x}^{0} z_{1} & =g_{1} \\
v^{1}\left[F_{x \mu}^{0} \sigma+F_{x x}^{0} z_{1}\right]+z^{2} F_{x}^{0} & =g^{2} \tag{29}\\
v^{1}\left[F_{\mu \mu}^{0} \sigma+F_{\mu x}^{0} z_{1}\right]+z^{2} F_{\mu}^{0} & =\tau_{1} .
\end{array}
$$

We choose the decomposition

$$
\begin{aligned}
& z_{1}=U a+w, \quad U^{d} w=0, \quad U^{d} U=I_{3}, U=\left[u_{1}, u_{2}, u_{3}\right], \\
& z_{2}=\gamma v^{1}+q, \quad\left\langle q, v_{1}\right\rangle=0, \quad v^{1} v_{1}=1 ;
\end{aligned}
$$

then it is to show that $\sigma, \gamma, a \in \mathbb{R}^{3}$ as well as w and q are determined uniquely. Inserting into (29) yields

$$
\begin{array}{ll}
F_{\mu}^{0} \sigma+F_{x}^{0}(U a+w) & =g_{1} \\
v^{1}\left[F_{x \mu}^{0} \sigma+F_{x x}^{0}(U a+w)\right]+z^{2} F_{x}^{0} & =g^{2} \tag{30}\\
v^{1}\left[F_{\mu \mu}^{0} \sigma+F_{\mu x}^{0}(U a+w)\right]+z^{2} F_{\mu}^{0} & =\tau_{1} .
\end{array}
$$

$\left(1^{\circ}\right)$ The first equation supplies $\sigma=0$ after multiplication by v^{1} since $v^{1} F_{x}^{0}=0$ and $v^{1} g_{1}=0$.
$\left(2^{\circ}\right)$ Inserting of $\sigma=0$ into the first equation yields w with $U^{d} w=0$ uniquely because $F_{x}^{0} U=0$.
$\left(3^{\circ}\right)$ Inserting $\sigma=0$ and z_{1} in (30, 2°) yields

$$
\begin{equation*}
\left(\gamma v^{1}+q\right) F_{x}^{0}=g^{2}-v^{1} F_{x x}^{0}(U a+w) \in \operatorname{Range}\left[F_{x}^{0}\right]_{d} . \tag{31}
\end{equation*}
$$

But $v^{1} F^{0} x=0, F_{x}^{0} u_{i}=0$ and by the Range Theorem $g^{2} u_{i}=0$ Application of (31) to $u_{i}, i=1: 3$, successively shows that $a \in \mathbb{R}^{3}$ exists uniquely if the matrix Q_{7} is regular.
(4) Then q is the unique solution of (31) with $\left\langle q, v_{1}\right\rangle=0$.
$\left(5^{\circ}\right) \gamma$ is uniquely determined in linear dependence of σ by

$$
\left(\gamma v^{1}+q\right) F_{\mu}^{0}=\tau_{1}-v^{1} F_{\mu x}^{0} z_{1} .
$$

Type IIa $\operatorname{dim} \operatorname{Ker} F_{x}^{0}=2, \widetilde{v}^{d} F_{\mu}^{0}=0, \widetilde{v}^{d} F_{\omega}^{0}=0$, cf. (9). We consider the perturbed system

$$
\begin{align*}
& \Phi_{4}(z):=\Phi_{4}(\lambda,(\mu, \omega, x), v) \\
& =\left[\begin{array}{l}
F(\mu, \omega, x)+\lambda r \\
v\left[F_{\omega}(\mu, \omega, x), F_{x}(\mu, \omega, x)\right] \\
v F_{\mu}(\mu, \omega, x) \\
v r-1
\end{array}\right] \simeq\left[\begin{array}{l}
F(\mu, \omega, x)+\lambda r \\
v F_{x}(\mu, \omega, x) \\
v F_{\omega}(\mu, \omega, x) \\
v F_{\mu}(\mu, \omega, x) \\
v r-1
\end{array}\right]=0 \tag{32}
\end{align*}
$$

where λ play the role of the parameters μ in Lemma 4 and $\widetilde{x}:=(\mu, \omega, x)$ plays the role of the former element x. The vector r must be specified such that $\widetilde{v}^{d} r \neq 0$.

Lemma 5 Let $\left(\mu_{0}, \omega_{0}, x_{0}\right)$ be a branching point of type IIa and let $z_{0}=\left(0, \mu_{0}, \omega_{0}, x_{0}, \widetilde{v}^{d}\right)$, cf. (9), then $\Phi_{4}\left(z^{0}\right)=0$. Let moreover w be the unique solution of $F_{\omega}^{0}+F_{x}^{0} w=0$ with $U w=0$, then

$$
\operatorname{grad} \Phi_{4}\left(z_{0}\right): \mathbb{R}^{3} \times \mathcal{E} \times \mathcal{F}_{d} \rightarrow \mathcal{F} \times \mathcal{F}_{d} \times \mathbb{R}^{3}
$$

has a bounded inverse iff the matrix $Q_{5}\left(u_{1}, u_{2}, w, \widetilde{v}^{d}\right)$ in (10) is regular and if $\widetilde{v}^{d} r \neq 0$.
Proof. For the mentioned w we have by (9)

$$
\begin{equation*}
F_{y}^{0}=\left[F_{\mu}^{0}, F_{\omega}^{0}, F_{x}^{0}\right], \operatorname{Ker}\left(F_{y}^{0}\right)=\operatorname{span}\left\{\left(0,0, u_{1}\right),\left(0,0, u_{2}\right),(0,1, w)\right\}=: \operatorname{span}\left\{\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}\right\} \tag{33}
\end{equation*}
$$

Let $\widetilde{Q}_{7}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}, \widetilde{v}^{d}\right)$ be the matrix in (28) with partial derivatives w.r.t. $\widetilde{x}=(\mu, \omega, x)$ instead of x. Then Lemma 4 w.r.t. the augmented system (32) says that this matrix must be regular. Inserting the values of (33) we find that

$$
\widetilde{Q}_{7}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}, \widetilde{v}^{d}\right)=Q_{5}\left(u_{1}, u_{2}, w, \widetilde{v}^{d}\right) .
$$

For Type IIb we have to permute μ and ω and \widetilde{v}^{d} is to be chosen as in (11).
Type IIc $\operatorname{dim} \operatorname{ker} F_{x}^{0}=3, \widetilde{v}^{d} F_{\mu}^{0}=0, \widetilde{v}^{d} F_{\omega}^{0}=0$, cf. (11). We consider again the perturbed system (32).

Lemma 6 Let $\left(\mu_{0}, \omega_{0}, x_{0}\right)$ be a branching point of type IIc and let $z_{0}=\left(0, \mu_{0}, \omega_{0}, x_{0}, \widetilde{v}^{d}\right)$, cf. (12), then $\Phi_{4}\left(z^{0}\right)=0$ and

$$
\operatorname{grad} \Phi_{4}\left(z_{0}\right): \mathbb{R}^{3} \times \mathcal{E} \times \mathcal{F}_{d} \rightarrow \mathcal{F} \times \mathcal{F}_{d} \times \mathbb{R}^{3}
$$

has a bounded inverse iff the matrix $Q_{6}\left(u_{1}, u_{2}, u_{3}, \widetilde{v}^{d}\right)$ in (13) or (28) is regular and if $\widetilde{v}^{d} r \neq 0$ and a system-inherent constant is non-zero.

Proof. By (12) we have

$$
\begin{equation*}
F_{y}^{0}=\left[F_{\mu}^{0}, F_{\omega}^{0}, F_{x}^{0}\right], \operatorname{Ker}\left(F_{y}^{0}\right)=\operatorname{span}\left\{\left(0,0, u_{1}\right),\left(0,0, u_{2}\right),\left(0,0, u_{3}\right)\right\}=: \operatorname{span}\left\{\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}\right\} \tag{34}
\end{equation*}
$$

Lemma 4 w.r.t. the augmented system (32) says again that the matrix $\widetilde{Q}_{7}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}, \widetilde{v}^{d}\right)$ in (28) must be regular. Inserting the values of (34) we find that

$$
\widetilde{Q}_{7}\left(\widetilde{u}_{1}, \widetilde{u}_{2}, \widetilde{u}_{3}, \widetilde{v}^{d}\right)=Q_{6}\left(u_{1}, u_{2}, u_{3}, \widetilde{v}^{d}\right) .
$$

