To Section 5.1 Let $w(\mu, u) \in \text{Ker } P$ be the unique solution by Theorem 5.4 of

$$H(\mu, u) := (I - Q)F(\mu, u + w(\mu, u)) = 0, \qquad (1)$$

then derivating w.r.t $\mu \in \mathbb{R}$ yields

$$H^{0}_{\mu} = (I - Q)(F^{0}_{\mu} + F^{0}_{x}w^{0}_{\mu}) = (I - Q)F^{0}_{\mu} + F^{0}_{x}w^{0}_{\mu} = 0$$
(2)

with the unique solution $w^0_\mu \in \text{Ker}\,P$ by Theorem 5.2. For the F-derivative w.r.t. u with increment $h \in \text{Ker}\,F^0_x$, we obtain

$$\partial H((\mu_0, u_0); (0, h)) = (I - Q)F_x^0(h + w_u^0 h) = 0, \ w_u^0 h \in \text{Ker } P, \ h \text{ free}.$$

Since $F_x^0 h = 0$ and $(I - Q)F_x^0$ on Ker(P) bijective then $w_u^0 = 0$

Inserting now $u = U\zeta$ with $\zeta \in \mathbb{R}^{\nu}$, the bifurcation equation is reduced to a mapping $G : \mathbb{R}^{k+\nu} \ni (\mu, \zeta) \mapsto G(\mu, \zeta) \in \mathbb{R}^{\kappa}$,

$$G(\mu,\zeta) := \widetilde{V}^d F(\mu, U\zeta + w(\mu, U\zeta)) = 0, \quad G(\mu_0, \zeta_0) = 0 \quad , \tag{3}$$

hence to one or two equation according to whether the problem contains one ore two parameter. In the following formulas, angle brackets denote linear and multilinear applications; for a simple matrix-vector multiplication then $A\langle x \rangle$ instead Ax and e.g.

$$F^{0}_{xx}\langle v_{1}, v_{2} \rangle = \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \tau} F(\mu, x + \sigma v_{1} + \tau v_{2}) \Big|_{\sigma = \tau = 0} \Big|_{\mu = \mu_{0}, x = x_{0}}$$

$$F^{0}_{\zeta\zeta}\langle U, U \rangle : \quad (\widetilde{\zeta}, \widehat{\zeta}) \mapsto F^{0}_{xx} \langle U \widetilde{\zeta}, U \widehat{\zeta} \rangle.$$

Derivation of G w.r.t. (μ, ζ) yields, by $w_u^0 = 0$ and $\widetilde{V}^d F_x^0 = 0$,

$$\begin{split} \nabla_{(\mu,\zeta)} G^0 &= \left[\widetilde{V}^d (F^0_\mu + F^0_x \langle w^0_\mu \rangle) \,, \, \widetilde{V}^d F^0_x \langle U + w^0_u \langle U \rangle \rangle \right] \\ &= \left[\widetilde{V}^d F^0_\mu \,, \, \widetilde{V}^d F^0_x \langle U \rangle \right] = 0 \in \mathbb{R}^{\kappa}{}_{k+\nu} \,. \end{split}$$

Once more derivating yields for the *i*-th equatin in (3), $i = 1 : \kappa$,

$$\begin{split} [G^{0}_{\zeta\zeta}]^{i} &= \widetilde{v}^{i}F^{0}_{xx}\langle U + w^{0}_{u}\langle U \rangle, U + w^{0}_{u}\langle U \rangle \rangle + \widetilde{v}^{i}F^{0}_{x}\langle w^{0}_{uu}\langle U, U \rangle \rangle \\ &= \widetilde{v}^{i}F^{0}_{xx}\langle U, U \rangle + \widetilde{v}^{i}F^{0}_{x}\langle w^{0}_{uu}\langle U, U \rangle \rangle = \widetilde{v}^{i}F_{xx}\langle U, U \rangle \in \mathbb{R}^{\nu}_{\nu} \\ [G^{0}_{\mu\mu}]^{i} &= \widetilde{v}^{i}[F^{0}_{\mu\mu} + 2F^{0}_{x\mu}w^{0}_{\mu} + F^{0}_{xx}w^{0}_{\mu}w^{0}_{\mu} + F^{0}_{x}w^{0}_{\mu\mu}] \\ &= \widetilde{v}^{i}[F^{0}_{\mu\mu} + 2F^{0}_{x\mu}w^{0}_{\mu} + F^{0}_{xx}w^{0}_{\mu}w^{0}_{\mu}] \in \mathbb{R}^{k}_{k} \\ [G^{0}_{\mu\zeta}]^{i} &= \widetilde{v}^{i}\left[F^{0}_{\mux}\langle U \rangle + F^{0}_{\mux}\langle w^{0}_{u}\langle U \rangle \rangle\right] \\ &+ \widetilde{v}^{i}\left[F_{xx}\langle U, w^{0}_{\mu} \rangle + F_{xx}\langle w^{0}_{u}\langle U \rangle, w^{0}_{\mu} \rangle + F^{0}_{x}\langle\langle U \rangle, w^{0}_{\mu} \rangle\right] \\ &= \widetilde{v}^{i}F^{0}_{x\mu}\langle U \rangle \in \mathbb{R}_{\nu} \,, \end{split}$$

2

therefore

$$\nabla^{2}_{(\mu,\zeta)}G^{0}]^{i} = \begin{bmatrix} [G^{0}_{\mu\mu}]^{i} & [G^{0}_{\mu\zeta}]^{i} \\ [G^{0}_{\zeta\mu}]^{i,T} & [G^{0}_{\zeta\zeta}]^{i} \end{bmatrix} \in \mathbb{R}^{k+\nu}{}_{k+\nu}, \quad i = 1:\kappa$$

Inserting the solution w^0_{μ} of (2) one obtains an *explicit representation* of the symmetric HESSE matrix $[\nabla^2_{\mu,\zeta} G^0]^i$, and, for sufficiently smooth G we have the local representation

$$[G(\mu,\zeta)]^{i} = [G^{0}]^{i} + [\nabla_{(\mu,\zeta)}G^{0}]^{i} \begin{bmatrix} \mu \\ \zeta \end{bmatrix} + \frac{1}{2} [\mu, \zeta] \left[\nabla^{2}_{(\mu,\zeta)}G^{0}\right]^{i} \begin{bmatrix} \mu \\ \zeta \end{bmatrix} + \mathcal{O}(\|(\mu,\zeta)\|^{3}),$$

hence

$$[G(\mu,\zeta)]^{i} = \frac{1}{2} [\mu, \zeta] \left[\nabla^{2}_{\mu\zeta} G^{0} \right]^{i} \begin{bmatrix} \mu \\ \zeta \end{bmatrix} + \mathcal{O}(\|(\mu,\zeta)\|^{3}), \ i = 1:\kappa \quad (4)$$

By a well-known result of MORSE - cf. [M.Hirsch] – terms of higher order can be neglected in this system for qualitative invetigation under the following three conditions:

(1°) The space \mathcal{E} and \mathcal{F} are finite-dimensional,,

(2°) $\kappa=1$ i.e. one one scalar parameter μ is given,

(3°) the matrix $\nabla^2_{\mu\zeta} G^0$ is regular.

If finally the quadratic form (4) describes a *cone*, the existence of branching solutions is guaranteed.

Addenda and Supplements

(1°) Suppose that the dual pairing is defined by a scalar product then

$$vF_{xx}^0(U\zeta, U\zeta) = \zeta^T U^T (vF^0)_{xx} U\zeta \,.$$

(2°) Suppose $x_0 = 0$ and $F(\mu, 0) = 0$ for all $\mu \in \mathbb{R}^k$, then $F^0_{\mu} = 0$, $F^0_{\mu\mu} = 0$, $F^0_{\mu\nu} = 0$, hence also $w^0_{\mu} = 0$ and thus

$$[\nabla^2_{\mu\zeta} G^0]^i = \begin{bmatrix} 0 & 0\\ 0 & [G^0_{\zeta\zeta}]^i \end{bmatrix} \in \mathbb{R}^{k+\nu}{}_{k+\nu}, \quad i = 1:\kappa.$$

(3°) It is shown in (f) that the bifurcation equation G is odd, $-G(\mu, u) = G(\mu, -u)$, if the mapping F is odd, $-F(\mu, x) = F(\mu, -x)$. Assume that $(\mu_0, x_0) = (0, 0)$ is the considered branching point then $G_{\zeta}^{0i} = 0$, $G_{\zeta\zeta}^{0i} = 0$ and $G_{\mu}^{0i} = 0$ hence also $w_{\mu}^{0} = 0$. By this way

$$[\nabla^2_{\mu\zeta} G^0]^i = \begin{bmatrix} [G^0_{\mu\mu}]^i & [G^0_{\mu\zeta}]^i \\ [G^0_{\zeta\mu}]^{i,T} & 0 \end{bmatrix}, \ i = 1:\kappa.$$

In this case one needs the the third derivatives

$$\begin{split} & G^{0 \ i}_{\zeta\zeta\zeta} \\ &= \widetilde{v}^{i} [F^{0}_{xxx} \langle U + w^{0}_{u} \langle U \rangle \rangle^{3} + 3F^{0}_{xx} \langle w^{0}_{uu} \langle U, U \rangle, U + w^{0}_{u} \langle U \rangle \rangle + F^{0}_{x} \langle w^{0}_{uuu} \langle U \rangle^{3} \rangle \\ &= \widetilde{v}^{i} [F^{0}_{xxx} \langle U, U, U \rangle + +3F^{0}_{xx} \langle w^{0}_{uu} \langle U, U \rangle, U \rangle] \,. \end{split}$$

for investigation of existence and stability. If F_{xx}^0 does not vanish, we have to find w_{uu}^0 . (4°) If (2°) and (3°) are both fulfilled then

$$[\nabla^2_{\mu\zeta}G^0]^i = 0, \ i = 1:\kappa.$$

Lemma 1 (MORSE-Lemma; [M.Hirsch]) Let $F \in C^r(\mathbb{R}^n; \mathbb{R})$, $r \geq 3$, $F(x^0) = 0$, $\nabla F(x^0) = 0 \in \mathbb{R}_n$, and let the Hessian $\nabla^2 F(x_0)$ be regular with $0 \leq k \leq n$ negative eigenvalues. Then there exists an open neighborhood $0 \in U \subset \mathbb{R}^n$ and $x^0 \in V \subset \mathbb{R}^n$ as well as a diffeomorphism $\Phi : u \in U \to V$ with $\Phi(0) = x^0$ such that

$$F(\Phi(u)) = -\sum_{i=1}^{k} u_i^2 + \sum_{i=k+1}^{n} u_i^2.$$