To Section 5.1 Let $w(\mu, u) \in \operatorname{Ker} P$ be the unique solution by Theorem 5.4 of

$$
\begin{equation*}
H(\mu, u):=(I-Q) F(\mu, u+w(\mu, u))=0 \tag{1}
\end{equation*}
$$

then derivating w.r.t $\mu \in \mathbb{R}$ yields

$$
\begin{equation*}
H_{\mu}^{0}=(I-Q)\left(F_{\mu}^{0}+F_{x}^{0} w_{\mu}^{0}\right)=(I-Q) F_{\mu}^{0}+F_{x}^{0} w_{\mu}^{0}=0 \tag{2}
\end{equation*}
$$

with the unique solution $w_{\mu}^{0} \in \operatorname{Ker} P$ by Theorem 5.2. For the F-derivative w.r.t. u with increment $h \in \operatorname{Ker} F_{x}^{0}$, we obtain

$$
\partial H\left(\left(\mu_{0}, u_{0}\right) ;(0, h)\right)=(I-Q) F_{x}^{0}\left(h+w_{u}^{0} h\right)=0, w_{u}^{0} h \in \operatorname{Ker} P, h \text { free } .
$$

Since $F_{x}^{0} h=0$ and $(I-Q) F_{x}^{0}$ on $\operatorname{Ker}(P)$ bijective then $w_{u}^{0}=0$.
Inserting now $u=U \zeta$ with $\zeta \in \mathbb{R}^{\nu}$, the bifurcation equatoin is reduced to a mapping G : $\mathbb{R}^{k+\nu} \ni(\mu, \zeta) \mapsto G(\mu, \zeta) \in \mathbb{R}^{\kappa}$,

$$
\begin{equation*}
G(\mu, \zeta):=\widetilde{V}^{d} F(\mu, U \zeta+w(\mu, U \zeta))=0, \quad G\left(\mu_{0}, \zeta_{0}\right)=0 \tag{3}
\end{equation*}
$$

hence to one or two equation according to whether the problem contains one ore two parameter. In the following formulas, angle brackets denote linear and multilinear applications; for a simple matrix-vector multiplication then $A\langle x\rangle$ instead $A x$ and e.g.

$$
\begin{aligned}
& F_{x x}^{0}\left\langle v_{1}, v_{2}\right\rangle=\left.\left.\frac{\partial}{\partial \sigma} \frac{\partial}{\partial \tau} F\left(\mu, x+\sigma v_{1}+\tau v_{2}\right)\right|_{\sigma=\tau=0}\right|_{\mu=\mu_{0}, x=x_{0}} \\
& F_{\zeta \zeta}^{0}\langle U, U\rangle \quad: \quad(\widetilde{\zeta}, \widehat{\zeta}) \mapsto F_{x x}^{0}\langle U \widetilde{\zeta}, U \widehat{\zeta}\rangle .
\end{aligned}
$$

Derivation of G w.r.t. (μ, ζ) yields, by $w_{u}^{0}=0$ and $\widetilde{V}^{d} F_{x}^{0}=0$,

$$
\begin{aligned}
\nabla_{(\mu, \zeta)} G^{0} & =\left[\widetilde{V}^{d}\left(F_{\mu}^{0}+F_{x}^{0}\left\langle w_{\mu}^{0}\right\rangle\right), \widetilde{V}^{d} F_{x}^{0}\left\langle U+w_{u}^{0}\langle U\rangle\right\rangle\right] \\
& =\left[\widetilde{V}^{d} F_{\mu}^{0}, \widetilde{V}^{d} F_{x}^{0}\langle U\rangle\right]=0 \in \mathbb{R}_{k+\nu}^{\kappa}
\end{aligned}
$$

Once more derivating yields for the i-th equatin in (3), $i=1: \kappa$,

$$
\begin{aligned}
{\left[G_{\zeta \zeta}^{0}\right]^{i} } & =\widetilde{v}^{i} F_{x x}^{0}\left\langle U+w_{u}^{0}\langle U\rangle, U+w_{u}^{0}\langle U\rangle\right\rangle+\widetilde{v}^{i} F_{x}^{0}\left\langle w_{u u}^{0}\langle U, U\rangle\right\rangle \\
& =\widetilde{v}^{i} F_{x x}^{0}\langle U, U\rangle+\widetilde{v}^{i} F_{x}^{0}\left\langle w_{u u}^{0}\langle U, U\rangle\right\rangle=\widetilde{v}^{i} F_{x x}\langle U, U\rangle \in \mathbb{R}^{\nu}{ }_{\nu} \\
{\left[G_{\mu \mu}^{0}\right]^{i} } & =\widetilde{v}^{i}\left[F_{\mu \mu}^{0}+2 F_{x \mu}^{0} w_{\mu}^{0}+F_{x x}^{0} w_{\mu}^{0} w_{\mu}^{0}+F_{x}^{0} w_{\mu \mu}^{0}\right] \\
& =\widetilde{v}^{i}\left[F_{\mu \mu}^{0}+2 F_{x \mu}^{0} w_{\mu}^{0}+F_{x x}^{0} w_{\mu}^{0} w_{\mu}^{0}\right] \in \mathbb{R}^{k}{ }_{k} \\
{\left[G_{\mu \zeta}^{0}\right]^{i} } & =\widetilde{v}^{i}\left[F_{\mu x}^{0}\langle U\rangle+F_{\mu x}^{0}\left\langle w_{u}^{0}\langle U\rangle\right\rangle\right] \\
& \left.+\widetilde{v}^{i}\left[F_{x x}\left\langle U, w_{\mu}^{0}\right\rangle+F_{x x}\left\langle w_{u}^{0}\langle U\rangle, w_{\mu}^{0}\right\rangle+F_{x}^{0}\left\langle\langle U\rangle, w_{\mu}^{0}\right\rangle\right]\right] \\
& =\widetilde{v}^{i} F_{x \mu}^{0}\langle U\rangle \in \mathbb{R}_{\nu},
\end{aligned}
$$

therefore

$$
\left[\nabla_{(\mu, \zeta)}^{2} G^{0}\right]^{i}=\left[\begin{array}{ll}
{\left[G_{\mu \mu}^{0}\right]^{i}} & {\left[G_{\mu \zeta}^{0}\right]^{i}} \\
{\left[G_{\zeta \mu}^{0}\right]^{i, T}} & {\left[G_{\zeta \zeta}^{0}\right]^{i}}
\end{array}\right] \in \mathbb{R}^{k+\nu}{ }_{k+\nu}, \quad i=1: \kappa .
$$

Inserting the solution w_{μ}^{0} of (2) one obtains an explizit representation of the symmetric Hesse matrix $\left[\nabla_{\mu, \zeta}^{2} G^{0}\right]^{i}$, and, for sufficiently smooth G we have the local representation

$$
[G(\mu, \zeta)]^{i}=\left[G^{0}\right]^{i}+\left[\nabla_{(\mu, \zeta)} G^{0}\right]^{i}\left[\begin{array}{c}
\mu \\
\zeta
\end{array}\right]+\frac{1}{2}[\mu, \zeta]\left[\nabla_{(\mu, \zeta)}^{2} G^{0}\right]^{i}\left[\begin{array}{c}
\mu \\
\zeta
\end{array}\right]+\mathcal{O}\left(\|(\mu, \zeta)\|^{3}\right)
$$

hence

$$
[G(\mu, \zeta)]^{i}=\frac{1}{2}[\mu, \zeta]\left[\nabla_{\mu \zeta}^{2} G^{0}\right]^{i}\left[\begin{array}{c}
\mu \tag{4}\\
\zeta
\end{array}\right]+\mathcal{O}\left(\|(\mu, \zeta)\|^{3}\right), i=1: \kappa
$$

By a well-known result of Morse - cf. [M.Hirsch] - terms of higher order can be neglected in this system for qualitative invetigation under the following three conditions:
$\left(1^{\circ}\right)$ The space \mathcal{E} and \mathcal{F} are finite-dimensional,,
$\left(2^{\circ}\right) \kappa=1$ i.e. one one scalar parameter μ is given,
(3°) the matrix $\nabla_{\mu \zeta}^{2} G^{0}$ is regular.
If finally the quadratic form (4) describes a cone, the existence of branching solutions is guaranteed.

Addenda and Supplements

$\left(1^{\circ}\right)$ Suppose that the dual pairing is defined by a scalar product then

$$
v F_{x x}^{0}(U \zeta, U \zeta)=\zeta^{T} U^{T}\left(v F^{0}\right)_{x x} U \zeta .
$$

$\left(2^{\circ}\right)$ Suppose $x_{0}=0$ and $F(\mu, 0)=0$ for all $\mu \in \mathbb{R}^{k}$, then $F_{\mu}^{0}=0, F_{\mu \mu}^{0}=0, F_{\mu x}^{0}=0$, hence also $w_{\mu}^{0}=0$ and thus

$$
\left[\nabla_{\mu \zeta}^{2} G^{0}\right]^{i}=\left[\begin{array}{cc}
0 & 0 \\
0 & {\left[G_{\zeta \zeta}^{0}\right]^{i}}
\end{array}\right] \in \mathbb{R}_{k+\nu}^{k+\nu}, \quad i=1: \kappa
$$

(3) It is shown in (f) that the bifurcation equation G is odd, $-G(\mu, u)=G(\mu,-u)$, if the mapping F is odd, $-F(\mu, x)=F(\mu,-x)$. Assume that $\left(\mu_{0}, x_{0}\right)=(0,0)$ is the considered branching point then $G_{\zeta}^{0 i}=0, G_{\zeta \zeta}^{0}{ }^{i}=0$ and $G_{\mu}^{0 i}=0$ hence also $w_{\mu}^{0}=0$. By this way

$$
\left[\nabla_{\mu \zeta}^{2} G^{0}\right]^{i}=\left[\begin{array}{ll}
{\left[G_{\mu \mu}^{0}\right]^{i}} & {\left[G_{\mu \zeta}^{0}\right]^{i}} \\
{\left[G_{\zeta \mu}^{0}\right]^{i, T}} & 0
\end{array}\right], i=1: \kappa .
$$

In this case one needs the the third derivatives

$$
\begin{aligned}
& G_{\zeta \zeta \zeta^{i}}^{i} \\
& =\widetilde{v}^{i}\left[F_{x x x}^{0}\left\langle U+w_{u}^{0}\langle U\rangle\right\rangle^{3}+3 F_{x x}^{0}\left\langle w_{u u}^{0}\langle U, U\rangle, U+w_{u}^{0}\langle U\rangle\right\rangle+F_{x}^{0}\left\langle w_{u u u}^{0}\langle U\rangle^{3}\right\rangle\right. \\
& =\widetilde{v}^{i}\left[F_{x x x}^{0}\langle U, U, U\rangle++3 F_{x x}^{0}\left\langle w_{u u}^{0}\langle U, U\rangle, U\right\rangle\right] .
\end{aligned}
$$

for investigation of existence and stability. If $F_{x x}^{0}$ does not vanish, we have to find $w_{u u}^{0}$.
$\left(4^{\circ}\right)$ If $\left(2^{\circ}\right)$ and $\left(3^{\circ}\right)$ are both fulfilled then

$$
\left[\nabla_{\mu \zeta}^{2} G^{0}\right]^{i}=0, i=1: \kappa
$$

Lemma 1 (Morse-Lemma; [M.Hirsch]) Let $F \in C^{r}\left(\mathbb{R}^{n} ; \mathbb{R}\right), r \geq 3, F\left(x^{0}\right)=0$, $\nabla F\left(x^{0}\right)=0 \in \mathbb{R}_{n}$, and let the Hessian $\nabla^{2} F\left(x_{0}\right)$ be regular with $0 \leq k \leq n$ negative eigenvalues. Then there exists an open neighborhood $0 \in U \subset \mathbb{R}^{n}$ and $x^{0} \in V \subset \mathbb{R}^{n}$ as well as a diffeomorphism $\Phi: u \in U \rightarrow V$ with $\Phi(0)=x^{0}$ such that

$$
F(\Phi(u))=-\sum_{i=1}^{k} u_{i}^{2}+\sum_{i=k+1}^{n} u_{i}^{2} .
$$

