## Extract from Hartl et al.

(a) Statement of the Problem and Notation Let $\mathcal{X}, \mathcal{U}$ be function spaces over the interval $[0, T] \subset \mathbb{R}$. The control problem (CP) considered by [Hartl] reads:

$$
\begin{align*}
J(x, u, T) & =S(t, x(T))+\int_{0}^{T} F(t, x(t), u(t), t) d t=\max ! \\
\dot{x}(t) & =f(t, x(t), u(t)) d s, t \in[0, T], x(0)=x_{0} \\
0 & \leq g(t, x(t), u(t)) \in \mathbb{R}^{|g|}  \tag{1}\\
0 & \leq h(t, x(t)) \in \mathbb{R}^{|h|} \\
0 & \leq a(T, x(T)) \in \mathbb{R}^{|a|} \\
0 & =b(T, x(T)) \in \mathbb{R}^{|b|}
\end{align*}
$$

Every component of $g$ shall depend explicitely on $u$. For a function $f:\left(x_{1}, x_{2}, x_{3}\right) \mapsto f\left(x_{1}, x_{2}, x_{3}\right)$ we also write $\nabla_{i} f\left(x_{1}, x_{2}, x_{3}\right)=\nabla_{x_{i}} f\left(x_{1}, x_{2}, x_{3}\right)$, and we write sometimes $f^{*}[t]=f\left(t, x^{*}(t), u^{*}(t)\right)$ etc.. Constraint qualification 1:

$$
\operatorname{rank}\left[\begin{array}{ll}
\nabla_{x} a & \operatorname{diag}(a) \\
\nabla_{x} b & 0
\end{array}\right]=|a|+|b| .
$$

Constraint qualification 2:

$$
\forall t: \operatorname{rank}\left[\nabla_{u} g, \operatorname{diag}(g)\right]=|g| .
$$

This conditions says that $\nabla_{u} g$ has maximum rank $|g|$.
Definition 1 Let $h$ be a scalar function,

$$
\begin{aligned}
& h^{0}(x, t)=\quad h=h(x, t), \\
& h^{1}(x, t)=\dot{h}=\nabla_{x} h(x, t) f(x, u, t)+h_{t}(x, t), \\
& h^{2}(x, t)=\dot{h}^{1}=\nabla_{x} h^{1}(x, t) f(x, u, t)+h_{t}^{1}(x, t), \\
& h^{p}(x, t)=\dot{h^{p-1}}=\nabla_{x} h^{p-1}(x, t) f(x, u, t)+h_{t}^{p-1}(x, t),
\end{aligned}
$$

The $h$ has the order $p$ if

$$
\nabla_{u} h^{i}(x, u, t)=0, i=0, \ldots, p-1, \nabla_{u} h^{p}(x, u, t) \neq 0
$$

If $h$ is a vector-valued function then the order of $h$ must be defined elementwise.
Zitat of Hartl et al.:
With respect to the ith constraint $h_{i} \leq 0$ a subinterval $\left(\tau_{1}, \tau_{2}\right) \subset[0, T]$ with $\tau_{1}<\tau_{2}$ is called an interior interval of a trajectory $x(\cdot)$ if $h_{i}(x(t), t)<0$ for all $t \in\left(\tau_{1}, \tau_{2}\right)$. An interval $\left[\tau_{1}, \tau_{2}\right]$ with $\tau_{1}<\tau_{2}$ is called a boundary interval if $h_{i}(x(t), t)=0$ for $t \in\left[\tau_{1}, \tau_{2}\right]$. An instant $\tau_{1}$ is called an entry time if there is an interior interval ending at $t=\tau_{1}$ and a boundary interval starting at $\tau_{1}$. Correspondingly, $\tau_{2}$ is called an exit time if a boundary interval ends and an interior interval starts at $\tau_{2}$. If the trajectory just touches the boundary at time $\tau$, i.e. $h_{i}(x(\tau), \tau)=0$ and if the trajectory is in the interior just before and just after $\tau$, then $\tau$ is called a contact time. Taken together, entry, exit, and contact times are called junction times.

Assumption 1 (i) Let $X=C_{p c, n}^{1}[0, T], U=C_{p c, m}[0, T]$.
(ii) Let $\left(x^{*}, u^{*}\right) \in X \times U$ be a solution with finitely many junction times.
(iii) Let $l$, $f$ be continuously F-differentiable in a neighborhood of the set $\left\{\left(x^{*}(t), u^{*}(t), t\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times(0, T)\right\}$.
(iv) Let $a, b$ be continuously F-differentiable in a neighborhood of $\left(x^{*}(T), T\right)$.
(v) $\Xi(t)=\left\{x(t) \in \mathbb{R}^{n}, h(x(t), t) \geq 0 \in \mathbb{R}^{q}\right\}$, $h$ sufficiently smooth, see below.
(vi) $\Omega(t)=\left\{u(t) \in \mathbb{R}^{n}, g(u(t), t) \geq 0 \in \mathbb{R}^{r}\right\}$, $g$ continuously $F$-differentiable.
(vii) $\operatorname{rank}\left[\nabla_{u} g^{*}[t], \operatorname{diag} g^{*}[t]\right]=r, t \in[0, T]$.
(viii) $\operatorname{rank}\left[\nabla_{x} b^{*}[T]\right]=p$,
(ix) For every boundary interval $\left[\tau_{1}, \tau_{2}\right]$ let

$$
\operatorname{rank}\left[\begin{array}{l}
\nabla_{u} h_{1}^{q_{1}} \\
\vdots \\
\nabla_{u} h_{s}^{q_{s}}
\end{array}\right]^{*}[t]=s, t \in\left[\tau_{1}, \tau_{2}\right]
$$

where $h_{i}^{*}[t]=0, i=1, \ldots, s \leq q, h_{i}^{*}[t]>0, i=s+1, \ldots q, t \in\left[\tau_{1}, \tau_{2}\right]$, and $q_{i}$ is the order of $h_{i}$.
(x) The linearized differential equation

$$
\dot{x}=\nabla_{x} f\left(x^{*}(t), u^{*}(t), t\right) x+\nabla_{u} f\left(x^{*}(t), u^{*}(t), t\right) u
$$

is completely controllable.
(xi) The linearized problem satisfies the SLATER-condition.

Notations:

$$
\begin{aligned}
H(x, u, y, t) & =l(x, u, t)+y^{T} f(x, u, t) \\
L(x, u, y, v, w, t) & =H(x, u, y, t)+v^{T} g(x, u, t)+w^{T} h(x, t)
\end{aligned}
$$

Theorem 1 Let assumption 1 be fulfilled. Then there exist
$y^{*}$ piecewise absolutely continuous,
$v^{*} \in C_{p c, r}[0, T]$,
$w^{*} \in C_{p c, n}[0, T]$,
a vector $c\left(\tau_{i}\right) \in \mathbb{R}^{q}$ for each point $\tau_{i}$ of discontinuity of $y^{*}$,
$z^{*} \in \mathbb{R}^{p}$,
such that
(i)

$$
\left(y^{*}(t), v^{*}(t), w^{*}(t), z^{*}, c\left(\tau_{1}\right), c\left(\tau_{2}\right), \ldots\right) \neq(0,0,0,0, \ldots 0)
$$

for every $t \in[0, T]$.
The following conditions holds a.e. in $[0, T]$ :

$$
u^{*}(t)=\arg \max _{u \in \Omega(t)} H\left(x^{*}(t), u, y^{*}(t), t\right)
$$

(iii)

$$
\nabla_{u} L^{*}[t]=\nabla_{u} H^{*}[t]+v^{*}(t)^{T} \nabla_{u} g^{*}[t]=0
$$

(iv)

$$
v^{*}(t) \geq 0, v^{*}(t)^{T} g^{*}[t]=0
$$

(v)

$$
w^{*}(t) \geq 0, w^{*}(t)^{T} h^{*}[t]=0
$$

(vi)

$$
\dot{y}^{*}=-\left[\nabla_{x} L^{*}[t]\right]^{T} .
$$

(vii) At terminal time $T$ the following transversality condition holds:

$$
\begin{aligned}
& y^{*}(T-)=\left[\nabla_{x} a^{*}[T]+z_{1}^{* T} \nabla_{x} b^{*}[T]+z_{2}^{* T} \nabla_{x} h^{*}[T]\right]^{T} \\
& z_{2}^{*} \geq 0, z_{2}^{* T} h^{*}[T]=0
\end{aligned}
$$

(viii) For any time $\tau$ in a boundary interval and for any contact time $\tau$, the costate vector $y^{*}$ may have a discontinuity given by the following jump conditions:

$$
\begin{aligned}
y^{*}(\tau-) & =y^{*}(\tau+)+c(\tau) h_{x}^{*}[\tau] \\
H^{*}[\tau-] & =H^{*}[\tau+]-c(\tau) h_{t}^{*}[\tau] \\
c(\tau) & \geq 0, c(\tau) h^{*}[\tau]=0
\end{aligned}
$$

Assumption 2 (i) Let $X=W_{n}^{1, \infty}[0, T], U=L_{n}^{\infty}[0, T]$.
(ii) Let $\left(x^{*}, u^{*}\right) \in X \times U$ be a solution.
(iii) Let $l$, $f$ be continuously $F$-differentiable in a neighborhood of the set
$\left\{\left(x^{*}(t), u^{*}(t), t\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times(0, T)\right\}$.
(iv) Let $a, b$ be continuously $F$-differentiable in a neighborhood of $\left(x^{*}(T), T\right)$.
(v) $\Xi(t)=\left\{x(t) \in \mathbb{R}^{n}, h(x(t), t) \geq 0 \in \mathbb{R}^{q}\right\}$, $h$ sufficiently smooth, see below.
(vi) $\Omega_{x}(t)=\left\{u(t) \in \mathbb{R}^{n}, g(x(t), u(t), t) \geq 0 \in \mathbb{R}^{r}\right\}, g$ continuously $F$-differentiable.
(vii) $\operatorname{rank}\left[\nabla_{u} g^{*}[t], \operatorname{diag} g^{*}[t]\right]=r, t \in[0, T]$,
(viii) $\operatorname{rank}\left[\nabla_{x} b^{*}[T]\right]=p$,
(ix) For every boundary interval $\left[\tau_{1}, \tau_{2}\right]$ let

$$
\operatorname{rank}\left[\begin{array}{l}
\nabla_{u} h_{1}^{q_{1}} \\
\vdots \\
\nabla_{u} h_{s}^{q_{s}}
\end{array}\right]^{*}[t]=s, t \in\left[\tau_{1}, \tau_{2}\right]
$$

where $h_{i}^{*}[t]=0, i=1, \ldots, s \leq q, h_{i}^{*}[t]>0, i=s+1, \ldots q, t \in\left[\tau_{1}, \tau_{2}\right]$, and $q_{i}$ is the order of $h_{i}$.
(x) Let the linearized differential equation

$$
\dot{x}=\nabla_{x} f\left(x^{*}(t), u^{*}(t), t\right) x+\nabla_{u} f\left(x^{*}(t), u^{*}(t), t\right) u
$$

be completely controllable.
(xi) Let the linearized problem satisfy the SLATER condition.

Theorem 2 Let assumption 2 be fulfilled. Then there exist $y^{*} \in B V_{n}[0, T]$,
$v^{*} \in B V_{r}[0, T]$,
$w^{*} \in B V_{q}[0, T]$, components $w_{i}$ nonincreasing, constant on intervals with $h_{i}^{*}[t]<0$,
$z^{*} \in \mathbb{R}^{p}$,
such that
(i)

$$
\left(y^{*}(t), v^{*}(t), w^{*}(T)-w^{*}(0), z^{*}\right) \neq(0,0,0,0), t \in[0, T]
$$

(ii)

$$
u^{*}(t)=\arg \max _{u \in \Omega(t)} H\left(x^{*}(t), u, y^{*}(t), t\right), \text { a.e. in }[0, T],
$$

(iii)

$$
\nabla_{u} L^{*}[t]=\nabla_{u} H^{*}[t]+v^{*}(t)^{T} \nabla_{u} g^{*}[t]=0 \text {, a.e. in }[0, T]
$$

(iv)

$$
v^{*}(t) \geq 0, v^{*}(t)^{T} g^{*}[t]=0, \text { a.e. in }[0, T]
$$

$$
\begin{equation*}
w^{*}(t) \geq 0, w^{*}(t)^{T} h^{*}[t]=0, \text { a.e. in } \in[0, T] \tag{v}
\end{equation*}
$$

(vi) For all $t_{0}, t_{1} \in[0, T], t_{0}<t_{1}$

$$
\begin{aligned}
y^{*}\left(t_{1}^{+}\right)-y^{*}\left(t_{0}^{+}\right) & =-\left[\int_{t_{0}}^{t_{1}}\left[\nabla_{x} H^{*}[t] d t+v^{*}(t)^{T} \nabla_{x} g^{*}[t]\right] d t+\int_{\left(t_{0}, t_{1}\right]} d w^{*}(t)^{T} \nabla_{x} h^{*}[t]\right]^{T}, \\
H^{*}\left[t_{1}^{+}\right]-H^{*}\left[t_{0}^{+}\right] & =+\int_{t_{0}}^{t_{1}}\left[H_{t}^{*}[t]+v^{*}(t)^{T} g_{t}^{*}[t]\right] d t-\int_{\left(t_{0}, t_{1}\right]} d w^{*}(t)^{T} h_{t}^{*}[t],
\end{aligned}
$$

$$
\begin{align*}
& y^{*}(T-)=\left[\nabla_{x} a^{*}[T]+z_{1}^{* T} \nabla_{x} b^{*}[T]+z_{2}^{* T} \nabla_{x} h^{*}[T]\right]^{T},  \tag{vii}\\
& z_{2}^{*} \geq 0, z_{2}^{* T} h^{*}[T]=0 .
\end{align*}
$$

We may choose $w^{*}(T)=0$.
The Lagrange function has now the form

$$
\begin{aligned}
& l((x, u), y, z, v, w) \\
& =\left[a+z^{T} b\right](x(T)) \\
& +\int_{0}^{T} l(x, u) d t+\int_{0}^{T}\left[x(t)-x(0)-\int_{0}^{t} f(x, u) d s\right]^{T} d y(t) \\
& +\int_{0}^{T} g(x, u)^{T} d v(t)+\int_{0}^{T} h(x)^{T} d w(t)
\end{aligned}
$$

The necessary condition follows from Theorem ?? in the optimum:

$$
\begin{aligned}
& \nabla_{(x, u)} l((x, u), y, z, v, w)(\delta x, \delta u)=0 \\
& \int_{0}^{T} g(x, u)^{T} d v(t)=0, \int_{0}^{T} h(x)^{T} d w(t)=0
\end{aligned}
$$

We obtain the two systems of equations

$$
\begin{aligned}
0= & {\left[\nabla\left[a+z^{T} b\right](x(T))-y^{T}(T)\right] \delta x(T) } \\
& +\int_{0}^{T} \nabla_{x} l \delta x d t+\int_{0}^{T}\left[\delta x(t)-x(0)-\int_{0}^{t} \nabla_{x} f \delta x d s\right]^{T} d y(t) \\
& +\int_{0}^{T}\left[\nabla_{x} g \delta x\right]^{T} d v(t)+\int_{0}^{T}\left[\nabla_{x} h \delta x\right]^{T} d w(t) \\
& 0=\int_{0}^{T} \nabla_{u} H \delta u d t+\int_{0}^{T}\left[\nabla_{u} g \delta u\right]^{T} d v(t)
\end{aligned}
$$

Thus we obtain the following two systems (todo)

$$
\begin{aligned}
0 & =\nabla\left[a+z^{T} b\right](x(T))-y^{T}(T), \\
0 & =\nabla_{x} H+\dot{y}^{T}+\int_{0}^{T} \nabla h_{x}^{T} d w(t), \\
0 & =\nabla_{u} H+\int_{0}^{T} \nabla_{u} g^{T} d v(t), \\
0 & =\int_{0}^{T} g(x, u)^{T} d v(t), \\
0 & =\int_{0}^{T} h(x)^{T} d w(t) .
\end{aligned}
$$

Theorem 3 (i) Let assumption 2 be fulfilled.
(ii) Let the problem 1 be autonomous with possible exception of the mapping $g$.
(iii) Let $\left(x^{*}, u^{*}\right)$ be a solution with finitely many junction times.
(iv) Let $\left[\tau_{1}, \tau_{2}\right]$ be a boundary interval such that $u^{*}(t)$ is in the interior of $\Omega(t)$ for $t \in\left(\tau_{1}, \tau_{2}\right)$.
(v) Let assumption 2(i) be fulfilled for $t \in\left[\tau_{1}, \tau_{2}\right]$.
(vi) Let $f$ and $h$ be $\max \left\{p_{i}, 1 \leq i \leq s\right\}+k$-times continuously differentiable with $k>0$.

Then
$y^{*}$ and $w^{*}$ are $k+1$-times continuously differentiable in $\left[\tau_{1}, \tau_{2}\right]$.
Lemma $1 y^{*}$ is continuous at a junction time $\tau$ if either (a) or (b) below holds:
(a) $u^{*}$ ist continuous in $\tau$ and

$$
\operatorname{rank}\left[\begin{array}{ccc}
\partial g^{*}[\tau] / \partial u & \operatorname{diag}\left(g^{*}[\tau]\right) & 0 \\
\partial h^{1 *}[\tau] / \partial u & 0 & \operatorname{diag}\left(h^{*}[\tau]\right)
\end{array}\right]=q+r .
$$

(b) The entry or exit are nontangential, i.e, $h^{1 *}[\tau-]<0$ or $h^{1 *}[\tau+]>0$.

