Gradienten Method of Control Theory Cf. [Dyer-McReynolds], Chapter V.
(a) Fixed time interval, no additional constraints

$$
\begin{align*}
J(x, u) & =p(x(T), T)+\int_{0}^{T} L(x, u, t) d t=\text { Min!, } \\
\dot{x} & =f(x, u, t), \quad x(0)=a, \tag{1}\\
\dot{y} & =-H_{x}(x, u, t)^{T}, \quad y(T)=p_{x}(x(T), T), \\
H(x, y, u, t) & =L(x, u, t)+y^{T} f(x, u, t) .
\end{align*}
$$

Let (x, y) be a feasible pair, i.e. let (1)(b),(c) be fulfilled, then

$$
\partial J(x, u)=\int_{0}^{T} \frac{\partial H}{\partial u} \delta u d t .
$$

Let $\operatorname{sgn} x=\left[\operatorname{sgn} x_{1}, \ldots, \operatorname{sgn} x_{n}\right]$ for $x \in \mathbb{R}^{n}$. Choose

$$
\delta u=\varepsilon H_{u} \text { oder } \delta u=\varepsilon \operatorname{sgn} H_{u}
$$

where $\varepsilon>0$ sufficiently small. Let

$$
J^{j}=p\left(x^{j}(T), T\right)+\int_{0}^{T} L\left(x^{j}, u^{j}, t\right) d t
$$

Algorithm (a) Gradient Method:
Choose arbitrary nominal control $u^{0}: t \mapsto u^{0}(t)$.
FOR $\mathrm{j}=0,1, \ldots$
(1.) Calculate J^{j}, x^{j} by solving $\dot{x}=f(x, u), x(0)=a, u=u^{0}$.
(2.) Calculate y^{j+1} by solving $\dot{y}=-H_{x}\left(x^{j}, u^{j}, y\right), y(T)=p_{x}\left(x^{j}(T), T\right)$.
(3.) Calculate u^{j+1} by

$$
u^{j+1}=u^{j}-\varepsilon H_{u}\left(x^{j}, u^{j}, y^{j+1}\right), \varepsilon \text { sufficiently small. }
$$

(4.) Calculate x^{j+1} by solving $\dot{x}=f\left(x, u^{j+1}, t\right), x(0)=a$.
(5.) Calculate J^{j+1}.
(6.) If $J^{j+1}<J^{j}$, goto (2.) where $j:=j+1$.

If $J^{j+1}>J^{j}$, then reduce ε and got to (3.).
If $J^{j+1} \sim J^{j}$, then STOP.
(b) Problem (1) with additional constraints
[Teo91] proposes to replace equality and inequality constraints by integral equations in the following way:

$$
\begin{aligned}
& h(x, u)=0 \Longleftrightarrow \int_{0}^{T}[h(x, u)]^{2} d t=0 \\
& h(x, u) \geq 0 \Longleftrightarrow \int_{0}^{T}[\min \{h(x, u), 0\}]^{2} d t=0
\end{aligned}
$$

Therefore we introduce r additional control problems with objective functions K_{i}.

$$
\begin{equation*}
K=q(x(T), T)+\int_{0}^{T} M(x, u, t) d t=0 \in \mathbb{R}^{r} \tag{2}
\end{equation*}
$$

For $K=\left[K_{i}\right]_{i=1}^{r}$ let the associated Hamilton function be

$$
\begin{align*}
H_{i} & =M_{i}+y_{i}^{T} f, i=1, \ldots, r \tag{3}\\
\dot{y}_{i} & =-\left[H_{i}\right]_{x}, y_{i}(T)=\left[q_{i}\right]_{x}(x(T), T) .
\end{align*}
$$

The data of the original problem (1)(a)(b) shall be denoted by the index $i=0$. If (1)(a)(b) and (3) are fulfilled, then

$$
\delta K_{i}=\int_{0}^{T}\left[H_{i}\right]_{u}^{T} \delta u d t
$$

Choose

$$
\begin{equation*}
u^{j+1}=u^{j}-\varepsilon \delta u=u^{j}+\varepsilon\left[\left[H_{0}\right]_{u}+\sum_{k=1}^{r} z_{k}\left[H_{k}\right]_{u}\right] . \tag{4}
\end{equation*}
$$

Then, in addition, the vector $z=\left[z_{1}, \ldots, z_{r}\right]$ is to be chosen that $|K|$ decreases. For a nominal solution we have in normal case

$$
\delta K_{i}=\varepsilon \int_{0}^{T}\left[H_{i}\right]_{u}^{T}\left[\left[H_{0}\right]_{u}+\sum_{k=1}^{r} z_{k}\left[H_{k}\right]_{u}\right] d t \neq 0, i=1, \ldots, r
$$

hence

$$
\begin{equation*}
\delta K=b+Q z \tag{5}
\end{equation*}
$$

This relation is a linear system for the Lagrange multipliers z. It has a unique solution if the matrix Q is regular. This represents the controllability condition for the problem. For δK we choose the residuum

$$
\delta K=K\left(x^{j}, u^{j}\right) .
$$

Algorithm (b) Gradient Method
Choose an arbitrary control $u^{0}: t \mapsto u^{0}(t)$.
FOR $\mathrm{j}=0,1, \ldots$
(1.) Calculate J^{j}, x^{j} by solving $\dot{x}=f(x, u), x(0)=a, u=u^{0}$.
(2.) Calculate y_{0}^{j+1} by solving $\dot{y}=-H_{x}\left(x^{j}, u^{j}, y\right), y_{0}(T)=p_{x}\left(x^{j}(T), T\right)$.

Calculate y_{k}^{j+1} for $k=1, \ldots, r$ by solving

$$
\dot{y}=-\left[M_{k}\right]_{x}\left(x^{j}, u^{j}, t\right)-\left[f^{T} y\right]_{x}\left(x^{j}, u^{j}, t\right), y(T)=\left[q_{k}\right]_{x}\left(x^{j}(T), T\right) .
$$

(3.) Calculate residuum of constraints:

$$
K\left(x^{j}, u^{j}\right)=q\left(x^{j}(T), T\right)+\int_{0}^{T} M\left(x^{j}, u^{j}, t\right) d t
$$

Calculate vector z^{j+1} by solving (5) with arguments $x^{j}, u^{j}, y_{0}^{j+1}, y_{k}^{j+1}$.
Calculate

$$
u^{j+1}=u^{j}-\varepsilon\left[\left[H_{0}\right]_{u}+\left[z^{j+1}\right]^{T}\left[\left[H_{1}\right]_{u}, \ldots\left[H_{r}\right]_{u}\right]^{T}\right], \varepsilon \text { sufficiently small. }
$$

(4.) Calculate x^{j+1} by solving $\dot{x}=f\left(x, u^{j+1}, t\right), x(0)=a$.
(5.) Calculate J^{j+1}.

The remaining part is the same as in Algorithm (a).

