To Variational Calculus

Lemma 1 (Lagrange, Fundamentallemma of Calculus of Variations)

Let $f, g \in \mathcal{C}\left([0, T] ; \mathbb{R}^{n}\right)$ and $h \in \mathcal{C}_{0}^{1}\left([0, T] ; \mathbb{R}^{n}\right)$ then

$$
\begin{aligned}
\left(1^{\circ}\right) \forall h: \int_{0}^{T} f(t)^{T} h(t) d t=0 & \Longrightarrow f \equiv 0, \\
\left(2^{\circ}\right) \forall h: \int_{0}^{T} f(t)^{T} \dot{h}(t) d t=0 & \Longrightarrow f=\text { constant }, \\
\left(3^{\circ}\right) \forall h: \int_{0}^{T}\left[f(t)^{T} h(t)+g(t)^{T} \dot{h}(t)\right] d t=0 \Longrightarrow & g \in C^{1}\left([0, T] ; \mathbb{R}^{n}\right) \\
& \text { and } f=\dot{g} .
\end{aligned}
$$

Proof. (1°) following [Amann]. We suppose that $f \neq 0$. Then there exists an $\mathrm{i}=1$:n so that $f_{i} \neq 0$. Since f_{i} continuous, there exist an $x_{0} \in(0, T)$ and an $\varepsilon>0$ so that $U_{\varepsilon}:=\left(x_{0}-\varepsilon, x_{0}+\varepsilon\right)$ is still contained entirely in $[0, T]$ and that $f_{i}(t) \neq 0$ for all $t \in U_{\varepsilon}$. Now we choose a function $h_{i} \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ such that $\operatorname{supp}\left(h_{i}\right) \subset U_{\varepsilon}$ and $h_{i}>0$. Then

$$
h:=\left[0, \ldots, 0, h_{i}, 0, \ldots, 0\right]^{T} \in C_{0}^{1}\left([0, T], \mathbb{R}^{n}\right)
$$

and

$$
\int_{0}^{T} f(t)^{T} h(t) d t=\int_{0}^{T} f_{i}(t) h_{i}(t) d t=\int_{x_{0}-\varepsilon}^{x_{0}+\varepsilon} f_{i}(t) h_{i}(t) d t \neq 0
$$

since $f_{i} h_{i}$ continuous, does not change sign, and does not disappear. This contradiction yields the assertion.
For the existence of a function h_{i} with the desired properties see [Amann], Bemerkung (2.12).
$\left(2^{\circ}\right)$ Following [Clegg],[Kosmol], p. 106. Let $c:=T^{-1} \int_{0}^{T} f(t) d t \in \mathbb{R}^{n}$ then

$$
\int_{0}^{T}(f(t)-c) d t=\int_{0}^{T} f(t) d t-\int_{0}^{T} d t=0, \quad \text { choose } h(t)=\int_{0}^{t}(f(t)-c) d t
$$

then $\dot{h}(t)=f(t)-c$ and $h(0)=h(T)=0$. Now, by assumption

$$
\begin{aligned}
& \int_{0}^{T}(f(t)-c)^{T}(f(t)-c) d t=\int_{0}^{T}(f(t)-c)^{T} \dot{h}(t) d t \\
& =\int_{0}^{T} f(t)^{T} \dot{h}(t) d t-c^{T} \int_{0}^{T} \dot{h}(t) d t=0-c^{T}(h(b)-h(a))=0 .
\end{aligned}
$$

Therefore $|f(t)-c|=0$ for all t hence $f(t)=c$.
Slight generalization possible [Clegg].
(3) [Kosmol], p. 107, Let

$$
a(t):=\int_{0}^{t} f(\tau) d \tau \in \mathbb{R}^{n}
$$

and $h \in \mathcal{C}^{1}\left([0, T], \mathbb{R}^{n}\right)$ where $h(a)=h(b)=0$. Partial integration yields

$$
\int_{0}^{T} f(t)^{T} h(t) d t=a(T)^{T} h(T)-a(0)^{T} h(0)-\int_{0}^{T} a(t)^{T} \dot{h}(t)=0-\int_{0}^{T} a(t)^{T} \dot{h}(t) d t
$$

By assumption

$$
\int_{0}^{T} f(t)^{T} h(t) d t=-\int_{0}^{T} g(t)^{T} \dot{h}(t) d t
$$

therefore we obtain

$$
\int_{0}^{T} g(t)^{T} \dot{h}(t) d t=\int_{0}^{T} a(t)^{T} \dot{h}(t) d t \Longrightarrow \int_{0}^{T}\left(g(t)^{T}-a(t)\right)^{T} \dot{h}(t) d t=0
$$

But $g(t)-a(t)$ constant by $\left(2^{\circ}\right)$ thus there exists a $c \in \mathbb{R}^{n}$ so that $g(t)=c+a(t)$. By the main theorem of differential and integral calculus, $a(t)$ is differentiable with derivative $f(t)$, therefore $\dot{g}(t)=f(t)$.

Theorem 1 [Amann] Let \mathcal{X} be a normed vector space, $\mathcal{U} \subset \mathcal{X}$ a subspace, $w \in \mathcal{X}$ arbitrary, $\mathcal{V}=w+\mathcal{U}$ an affine subspace, $\mathcal{D} \subset \mathcal{V}$ open. Further, let $J: \mathcal{D} \rightarrow \mathbb{R}, x^{*} \in \mathcal{D}$ and let $\delta J\left(x^{*}, \cdot\right): \mathcal{U} \rightarrow \mathbb{R}$ exist. Then

$$
\forall x \in \mathcal{D}: J\left(x^{*}\right) \leq J(x) \Longrightarrow \forall h \in \mathcal{U}: \delta J\left(x^{*} ; h\right)=0 .
$$

Variational Problem: Let $0<T<\infty, \mathcal{M} \subset \mathbb{R}^{m} \times \mathbb{R}^{m}$ open, $a, b \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \mathcal{Z}:=\left\{x \in \mathcal{C}^{1}\left([0, T] ; \mathbb{R}^{m}\right), x(0)=a, x(T)=b,(x(t), \dot{x}(t)) \subset \mathcal{M} \forall t \in[0, T]\right\}, \\
& L \in \mathcal{C}^{1}([0, T] \times \mathcal{M} ; \mathbb{R}), J: \mathcal{Z} \ni x \mapsto J(x):=\int_{0}^{T} L(t, x(t), \dot{x}(t)) d t
\end{aligned}
$$

Then the problem

$$
\begin{equation*}
\min \{J(x), x \in \mathcal{Z}\} \tag{1}
\end{equation*}
$$

is called variational problem with fixed boundary conditions. Obviously this problem has not always a solution and in case a solution exists, it must not be unique. In the sequel, we derive a necessary condition for the existence of a solution. This condition is known under the name EULER equations. But, at first we write the problem in a more abstract form.

Theorem $2\left(1^{\circ}\right) \mathcal{X}:=\mathcal{C}^{1}\left([0, T] ; \mathbb{R}^{m}\right)$ is a BANACH space w.r.t. the norm.

$$
\|x\|_{\mathcal{X}}:=\max _{0 \leq t \leq T}|x(t)|+\max _{0 \leq t \leq T}|\dot{x}(t)| .
$$

$\left(2^{\circ}\right) \mathcal{D}_{M}:=\{x \in \mathcal{X},(x(t), \dot{x}(t)) \in \mathcal{M} \forall t \in[0, T]\}$ is open in \mathcal{X}.
$\left(3^{\circ}\right) \mathcal{U}:=\mathcal{C}_{0}^{1}\left([0, T] ; \mathbb{R}^{m}\right):=\{x \in \mathcal{X}, x(0)=x(T)=0\}$ is a closed subspace in \mathcal{X} w.r.t. the norm $\|\cdot\|_{\mathcal{X}}$.
(4) Let $w \in \mathcal{X}$ arbitrary such that $w(0)=a, w(T)=b$, then $\mathcal{V}=w+\mathcal{U}$ is an affine subspace (linear manifold) in \mathcal{X}.

Proof. [Amann] Lemmata 2.4, 2.5, Aufg. 1.2.4, p. 31.
Let now $\mathcal{D}=\mathcal{D}_{M} \cap \mathcal{V}$ then \mathcal{D} open in \mathcal{V} and, using the above notations and assumptions, Theorem 1 yields

$$
\forall x \in \mathcal{D}: J\left(x^{*}\right) \leq J(x) \Longrightarrow \forall \in \mathcal{U}: \delta J\left(x^{*} ; h\right)=0
$$

Theorem 3 Adopt the above notations and assumptions, then

$$
\delta J(x ; h)=\int_{0}^{T}\left[D_{2} L(t, x(t), \dot{x}(t)) h(t)+D_{3} L(t, x(t), \dot{x}(t)) \dot{h}(t)\right] d t
$$

$\forall x \in \mathcal{D} \forall h \in \mathcal{U}$, and $\delta J(x ; \cdot)$ is the Frechet-derivative of J at the point x.
Beweis [Amann], p. 21, [Heuser] II, § 191.
In Theorem $3, D_{2} L$ is the gradient of the mapping $x \mapsto L(t, x, y)$ (in m variables) for fixed (t, y) and $D_{3} L$ is the gradient of the mapping $y \mapsto L(t, x, y)$ for fixed (t, x).

Theorem 4 Let moreover the mapping $[0, T] \ni t \mapsto D_{3} L(t, x(t) \dot{x}(t)) \in \mathbb{R}^{m}$ be continuously differentiable then

$$
\begin{aligned}
& \delta J(x ; h)=\int_{0}^{T}\left[D_{2} L(t, x(t) \dot{x}(t))-\frac{d}{d t} D_{3} L(t, x(t) \dot{x}(t))\right] h(t) d t+\left.D_{3} L(t, x(t), \dot{x}(t)) h(t)\right|_{0} ^{T} \\
& =\int_{0}^{T}\left[D_{2} L(t, x(t), \dot{x}(t))-\frac{d}{d t} D_{3} L(t, x(t), \dot{x}(t))\right] h(t) d t .
\end{aligned}
$$

Proof. Partial integration regarding $h \in \mathcal{U}$.
An application of Lemma $1\left(3^{\circ}\right)$ to Theorem 3 and 4 shows that the assumption of Theorem 4 can be cancelled.
Summary: Under the above assumptoins

$$
\begin{aligned}
& \delta J\left(x^{*} ; v\right)=0 \forall v \in C_{0}^{1}\left([0, T] ; \mathbb{R}^{m}\right) \\
& \Longleftrightarrow\left[\operatorname{grad}_{x} L-\frac{d}{d t} \operatorname{grad}_{\dot{x}} L\right]\left(t, x^{*}(t), \dot{x}^{*}(t)\right)=0 \forall t \in[0, T] .
\end{aligned}
$$

Examples. (1.) EULER equation in some special cases where $m=1$ (abbreviated notation).

$$
\int_{0}^{T} L(t, \dot{x}) d t=\operatorname{extr}!\Longrightarrow \frac{d}{d t} L_{\dot{x}}=c \Longrightarrow \dot{x}=f(t, c)
$$

if $L_{\dot{x}}$ invertible w.r.t. \dot{x}.

$$
\begin{gathered}
\int_{0}^{T} L(\dot{x}) d t=\text { Extr }!\Longrightarrow L_{\dot{x}}(\dot{x})=c \Longrightarrow \dot{x}=\text { konst } \Longrightarrow x \text { straight line. } \\
\int_{0}^{T} L(x, \dot{x}) d t=\text { Extr. }!\Longrightarrow L_{x}-L_{\dot{x} x} \dot{x}-L_{\dot{x} \dot{x}} \ddot{x}=0
\end{gathered}
$$

Multiplication by \dot{x} yields

$$
L_{x} \dot{x}-L_{\dot{x} x} \dot{x} \dot{x}-L_{\dot{x} \dot{x}} \dot{x} \ddot{x}=0 \text { or } \frac{d}{d t}\left(L-\dot{x} L_{\dot{x}}\right)=0
$$

and after integration the Dubois-Reymond condition

$$
L-\dot{x} L_{\dot{x}}=\text { constant implicit differential equation for } x \text {. }
$$

(2.) Mass point in central field (dimension $m=3$). According to Newton's law (axiom) for $x(t) \in \mathbb{R}^{3}$

$$
\begin{array}{lll}
m \ddot{x} & =f(x)=-\operatorname{grad} U(x) & U \text { potential energy, } \\
T & =\frac{m}{2}|\dot{x}|^{2} & \text { kinetic energy } \\
E & =T+U=\frac{m}{2}|\dot{x}|^{2}+U(x) & \text { total energy (constant). }
\end{array}
$$

According to Example 1(c)

$$
-m \ddot{x}-\operatorname{grad} U(x)=-(m \ddot{x}+\operatorname{grad} U(x))=0
$$

EULER's equation of the variational problem

$$
\begin{equation*}
J(x)=\int_{t_{1}}^{t_{2}} L(x, \dot{x}) d t=\int_{t_{1}}^{t_{2}}\left[\frac{m}{2}|\dot{x}|^{2}-U(x)\right] d t=\text { extr.! } \tag{2}
\end{equation*}
$$

where $L=T-U$ is the Lagrange function! This result is called Hamilton's principle of least action (dimension of $J=$ energy \cdot time) and is generally valid. Introducing $y=m \dot{x}=L_{\dot{x}}$ for new (additinal) variable (mass m constant) then we obtain the differential system

$$
\begin{array}{llll}
\dot{x}=\operatorname{grad}_{y} H & :=y / m & \text { (definition), } \\
\dot{y}=-\operatorname{grad}_{x} H & :=-\operatorname{grad} U(x) & \text { Newton's law. }
\end{array}
$$

It follows immediately that $H=E$ is an invariant of the system:

$$
\begin{aligned}
& \text { konst }=E=\frac{1}{2} y^{T} \dot{x}+U(x)=\frac{1}{2 m} y^{T} y+U(x)=H(x, y) \\
& =T+U=2 T-(T-U)=y^{T} \dot{x}-L .
\end{aligned}
$$

Because $H=y^{T} \dot{x}-L$, the Hamilton function H is the Legendre transformation of the Lagrange function L w.r.t. \dot{x}.
In general however not \dot{x} is introduced for new variable but $\partial L / \partial \dot{x}$ where in generalized coordinate systems commonly q is written in place of x for the vector of space variables. Then the Legendre transformation H of L is defined by $H(t, p, q)=p \dot{q}-L(t, q, \dot{q})$ where it is assumed that $p:=\partial L / \partial \dot{q}$ is resolvable w.r.t. \dot{q} and that the result is inserted in H.

Consider the variational problem:

$$
\begin{equation*}
J(y)=\int_{\alpha}^{\beta} y(x)^{n}\left(1+y^{\prime}(x)^{2}\right)^{1 / 2} d x=\operatorname{Extr} .!\forall y \in C^{1}([\alpha, \beta] ; \mathbb{R}), y(\alpha)=a, y(\beta)=b \tag{3}
\end{equation*}
$$

where x (instead t) is the independent variable and y is the dependent variable. Here the case $n=1,1 / 2,0,-1 / 2,-1$ are of particular interest.
Case 1. $\mathrm{n}=0$. Shortest connection between two points in the plane. Because $L_{y}=0$, the EuLER equation yields immediately

$$
\frac{d}{d x} L_{y^{\prime}}(\ldots)=\frac{d}{d x}\left[y^{\prime}\left(1+\left(y^{\prime}\right)^{2}\right)^{-1 / 2}\right]=0 \Longrightarrow y^{\prime \prime}=0
$$

$y=p y+q$ is the unique straight line through the points (α, a) and (β, b).
Case 2. $n=1$. See § 4.1; cf. also [Bryson-Ho], p. 64,65.
Case 3. $n=-1 / 2$. See $\S 4.1$; cf. also [Clegg], p. 49; [Kosmol], §4.2.
Case 4. $n=1 / 2$. Free motion in a homogeneous field, e.g. parabola trajectory.
In the following lemma let $\left(T^{*}, x^{*}\right) \in \mathbb{R}_{+} \times C^{1}\left[0, T_{0}\right]$ be a solution of (??) hence $g\left(T^{*}, x^{*}\left(T^{*}\right)\right)=$ 0 . The vector space $C^{1}\left(\left[0, T_{0}\right] ; \mathbb{R}^{n}\right)$ is equipped with the norm $\|x\|:=\|x\|_{\infty}+\|\dot{x}\|_{\infty}$ being a Banach space by this way, and we suppose that $\emptyset \neq \mathcal{U}_{\varepsilon}\left(x^{*}\right)=\left\{x,\left\|x-x^{*}\right\|<\varepsilon\right\}$ be a neighborhood of x^{*} in that space.

Lemma 2 Let

$$
\left.\frac{d}{d t} g\left(t, x^{*}(t)\right)\right|_{t=T^{*}}=g_{t}\left(T^{*}, x^{*}\left(T^{*}\right)\right)+\nabla_{x} g\left(T^{*}, x^{*}\left(T^{*}\right)\right) \dot{x}^{*}\left(T^{*}\right) \neq 0
$$

then there exists $a \varepsilon>0$ and a function $\varphi \in C^{1}\left(\mathcal{U}_{\varepsilon} ; \mathbb{R}\right)$ such that

$$
g(\varphi(x), x(\varphi(x)))=0 \text { und } \varphi\left(x^{*}\right)=T^{*} .
$$

Proof. By the Implicit Function Theorem in Banach spaces the equation
$G(t, x):=g(t, x(t))=0 \in \mathbb{R}$ is resolvable w.r.t. t in a neighborhood of $\left(T^{*}, x^{*}\left(T^{*}\right)\right)$ without defect of smoothness if

$$
\left.\frac{\partial}{\partial t} G\left(t, x^{*}\right)\right|_{t=T^{*}} \neq 0
$$

This function φ is now substituted into the objective function

$$
\widetilde{J}(\varphi(x), x)=p\left(\varphi(x), x(\varphi(x))+\int_{0}^{\varphi(x)} q(t, x, \dot{x}) d t\right.
$$

and ensuing the first variation is set equal to zero again. Regarding the Euler equations we then obtain for all test functions v where $v(0)=0$ by partial integration and by an application of Leibniz' rule

$$
\begin{aligned}
0= & \partial \widetilde{J}\left(x^{*} ; v\right)=\left.\frac{d}{d \varepsilon} \widetilde{J}\left(x^{*}+\varepsilon v\right)\right|_{\varepsilon=0} \\
= & \left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left[p\left(\varphi\left(x^{*}+\varepsilon v\right), x^{*}\left(\varphi\left(x^{*}+\varepsilon v\right)\right)+\varepsilon v\left(\varphi\left(x^{*}+\varepsilon v\right)\right)\right)\right. \\
& \left.+\int_{0}^{\varphi\left(x^{*}+\varepsilon v\right)} q\left(t, x^{*}(t)+\varepsilon v(t), \dot{x}^{*}(t)+\varepsilon \dot{v}(t)\right) d t\right] \\
= & D_{1} p\left(T^{*}, x^{*}\left(T^{*}\right)\right) \partial \varphi\left(x^{*} ; v\right)+\nabla_{2} p\left(T^{*}, x^{*}\left(T^{*}\right)\right)\left(v\left(T^{*}\right)+\dot{x}^{*}\left(T^{*}\right) \partial \varphi\left(x^{*} ; v\right)\right) \\
& +q\left(T^{*}, x^{*}\left(T^{*}\right), \dot{x}^{*}\left(T^{*}\right)\right) \partial \varphi\left(x^{*} ; v\right)+\nabla_{3} q\left(T^{*}, x^{*}\left(T^{*}\right), \dot{x}^{*}\left(T^{*}\right)\right) v\left(T^{*}\right) \\
& +\int_{0}^{T^{*}=\varphi\left(x^{*}\right)}\left[\nabla_{2} q\left(t, x^{*}, \dot{x}^{*}\right)-\frac{d}{d t} \nabla_{3} q\left(t, x^{*}, \dot{x}^{*}\right)\right] v d t .
\end{aligned}
$$

Suppose first that

$$
\begin{equation*}
\left(\nabla_{2} p+\nabla_{3} q\right) v+\left(\nabla_{2} p \dot{x}+p_{t}+q\right) \partial \varphi\left(x^{*} ; v\right)=0 \tag{4}
\end{equation*}
$$

where the arguments T^{*} and x^{*} are dropped for simplicity, then the Fundamentallemma 1 yields the Euler equations in interval $\left[0, T^{*}\right]$ again. But the constraint $g(T, x(T))=0 \in \mathbb{R}$ does also hold for sufficiently small $|\varepsilon|$ in the following variated form

$$
B(\varepsilon):=g\left(\varphi\left(x^{*}+\varepsilon v\right), x^{*}\left(\varphi\left(x^{*}+\varepsilon v\right)\right)+\varepsilon v\left(\varphi\left(x^{*}+\varepsilon v\right)\right)\right)=0,
$$

by the above regularity assumption, hence

$$
\begin{gathered}
0=\left.\frac{d}{d \varepsilon} B(\varepsilon)\right|_{\varepsilon=0} \\
=\frac{\partial g}{\partial t}\left(T^{*}, x^{*}\left(T^{*}\right)\right) \partial \varphi\left(x^{*} ; v\right)+\nabla_{x} g\left(T^{*}, x^{*}\left(T^{*}\right)\right)\left[v\left(T^{*}\right)+\dot{x}^{*}\left(T^{*}\right) \partial \varphi\left(x^{*} ; v\right)\right] .
\end{gathered}
$$

Substitution of the resolution w.r.t. $\partial \varphi\left(x^{*} ; v\right)$ into (4) yields - again in abbreviated form

$$
\begin{equation*}
\nabla_{x} p v+\nabla_{\dot{x}} q v+\left[\nabla_{x} p \dot{x}+p_{t}+q\right] \frac{\nabla_{x} g v}{\nabla_{x} g \dot{x}+g_{t}}=0 \tag{5}
\end{equation*}
$$

for arbitrary $v\left(T^{*}\right)$. By this way we obtain the necessary condition of transversality for the terminal time T^{*} at the point $(t, x(t))=\left(T^{*}, x^{*}\left(T^{*}\right)\right)$, namely

$$
\begin{equation*}
\left(\nabla_{x} g \dot{x}^{*}+g_{t}\right)\left[\nabla_{x} p+\nabla_{\dot{x}} q\right]+\left(\nabla_{x} p \dot{x}^{*}+p_{t}+q\right) \nabla_{x} g=0 \in \mathbb{R}_{n} \tag{6}
\end{equation*}
$$

in addition to the Euler equation. By Lemma 2 it does make sense to suppose that the denominator in (5) is nonzero. Note also that no additional properties at all are required for the variation $\partial \varphi(x ; v)$ of φ in the above computation.

