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To Variational Calculus

Lemma 1 (LAGRANGE, Fundamentallemma of Calculus of Variations)
Let f, g € C([0,T];R"™) and h € C}([0,T]; R™) then

T
(1°) Vh:/ f@®)Th(t)dt =0 — =0,
0
T
(2°) Vh :/ FOTh(t)dt =0 —> f = constant,
0

(3°) Vh: /0 FOTh) + g)Th()]dt =0 = g e CY[0, T];R")
and f = g.

Proof. (1°) following [Amann]. We suppose that f # 0. Then there exists an i = 1:n so that
fi # 0. Since f; continuous, there exist an zq € (0,7) and an & > 0 so that U, := (xg—¢, x0+¢)
is still contained entirely in [0, 7] and that f;(¢) # 0 for all t € U.. Now we choose a function
h; € C*(R,R) such that supp(h;) C U. and h; > 0. Then

h:=10,...,0,h;0,...,0]" € C3([0,T],R"™)

and

[ romoa= [ nemoa= [ sonoao

0—¢€
since f;h; continuous, does not change sign, and does not disappear. This contradiction yields
the assertion.

For the existence of a function h; with the desired properties see [Amann|, Bemerkung (2.12).
(2°) Following [Clegg],[Kosmol], p. 106. Let ¢ := T~ ! fOTf(t) dt € R" then
T T T ¢
/ (F(t) — ) dt :/ f(t)dt—/ dt =0, choose h(t) = / (F(t) — ) dt
0 0 0 0

then A(t) = f(t) — ¢ and h(0) = h(T) = 0. Now, by assumption

| uw-ate-aa= [ o-oia
_ /OT FOTR(E) dt — ¢ /OT () dt = 0 — ¢ (h(b) — h(a)) = 0.

Therefore |f(t) — ¢| = 0 for all ¢ hence f(t) = c.
Slight generalization possible [Clegg].

(3°) [Kosmol], p. 107, Let .
alt) ::/ f(r)dr € R",
0



and h € C'([0, T],R™) where h(a) = h(b) = 0. Partial integration yields

By assumption

T T
/fw%wﬁz—/g@%ww
0 0
therefore we obtain

/OTg(t)Th(t)dt:/O a(t)Th(t) dt :>/ () Th(t)dt =0

But g(t) — a(t) constant by (2°) thus there exists a ¢ € R" so that g(t) = ¢+ a(t). By the main
theorem of differential and integral calculus, a(t) is differentiable with derivative f(t), therefore

9(t) = f(t).

Theorem 1 [Amann] Let X be a normed vector space, U C X a subspace, w € X arbitrary,
YV = w+ U an affine subspace, D C V open. Further, let J : D — R, z* € D and let
dJ(x*, ) : U — R exist. Then

VeeD:Jz")<Jx)=VYheld:J(z";h) =0.

Variational Problem: Let 0 < T < co, M C R™ x R™ open, a,b € R™,

Z:={x e C0, T);R™), 2(0) =a, z(T) =0, (z(t),z(t)) c MV tel0,T]}
LeCY[0,T] x M;R), J: Z3x— J(z):= f L(t,z(t), z(t)) dt.

Then the problem

min{J(z), z € Z} (1)
is called variational problem with fixed boundary conditions. Obviously this problem has not
always a solution and in case a solution exists, it must not be unique. In the sequel, we derive
a necessary condition for the existence of a solution. This condition is known under the name
EULER equations. But, at first we write the problem in a more abstract form.

Theorem 2 (1°) X := C([0,T];R™) is a BANACH space w.r.t. the norm.

el = s [o(0)] + s, |i(6)].
(2°) Dy :={x e X, (x(t),2(t) e MVt el0,T]} is open in X.
(3°)U :=CY([0, T);R™) := {x € X,2(0) = z(T) = 0} is a closed subspace in X w.r.t. the norm

|-l
(4°) Let w € X arbitrary such that w(0) = a, w(T) = b, then ¥V = w + U is an affine subspace
(linear manifold) in X .

Proof. [Amann| Lemmata 2.4, 2.5, Aufg. 1.2.4, p. 31.

Let now D = Dy; NV then D open in V and, using the above notations and assumptions,
Theorem 1 yields

VeeD:Jx")<J(x) = V el :0J(x";h)=0.



Theorem 3 Adopt the above notations and assumptions, then
T
§J(ash) = [ IDaL(t,w(t),5()h(t) + Dal(t.a(t), a(e)hlo))
0

VeeD Vhel, and §J(x; -) is the FRECHET-derivative of J at the point x.

Beweis [Amann], p. 21, [Heuser] II, § 191.

In Theorem 3, DyL is the gradient of the mapping = — L(t,z,y) (in m variables) for fixed
(t,y) and DsL is the gradient of the mapping y — L(t,x,y) for fixed (t, z).

Theorem 4 Let moreover the mapping [0,T] > t — DsL(t,xz(t)2(t)) € R™ be continuously
differentiable then
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Proof. Partial integration regarding h € U.

An application of Lemma 1(3°) to Theorem 3 and 4 shows that the assumption of Theorem 4
can be cancelled.

Summary: Under the above assumptoins
§J(z*0) =0V v e Cj([0,T]; R™)
d
< [grad, L — p grad, L](t,z*(t),z*(t)) =0V t € [0,T].

Ezamples. (1.) EULER equation in some special cases where m = 1 (abbreviated notation).

T
d
/ L(t,7)dt = extrl = %Li =c= 1= f(t,c),
0

if L; invertible w.r.t. .

T
/ L(z)dt = Extr.! = L;(&) = ¢ = & = konst = x straight line.
0

T
0
Multiplication by z yields

d

and after integration the DUBOIS-REYMOND condition
L — &L; = constant implicit differential equation for x.

(2.) Mass point in central field (dimension m = 3). According to NEWTON’s law (axiom) for

t) € R3
=(t) mi = f(z) = —gradU(z) U potential energy,

T =—l&f kinetic energy,

E =T+U-= T[:i:\z + U(x) total energy (constant).



According to Example 1(c)
—md — grad U(z) = —(mi + grad U(z)) =0

EULER’s equation of the variational problem

J(x) :/2L(x,ab)dt:/Q[%]:t\Q—U(x)]dt: extr.! @)

t1 t1

where L = T — U is the LAGRANGE function! This result is called HAMILTON’s principle of
least action (dimension of J = energy - time) and is generally valid. Introducing y = mi = L,
for new (additinal) variable (mass m constant) then we obtain the differential system

& =grad, H =y/m (definition),
y =—grad, H := —gradU(z) NEWTON’s law.

It follows immediately that H = E is an invariant of the system:

1 1
konst = E = §yT:i:+U(x) = %yTijU(x) = H(z,y)
—T+U=2T—(T-U)=yTi— L.

Because H = y’4 — L, the HAMILTON function H is the LEGENDRE transformation of the
LAGRANGE function L w.r.t. z.

In general however not # is introduced for new variable but 0L /0¢ where in generalized coor-
dinate systems commonly ¢ is written in place of x for the vector of space variables. Then the
LEGENDRE transformation H of L is defined by H(t,p,q) = pqg — L(t, ¢, ) where it is assumed
that p := 0L/0q is resolvable w.r.t. ¢ and that the result is inserted in H.

Consider the variational problem:

8
J(y) =/ y(z)"(1+ ¢/ (x)?)"?dz = Extr.!Vy € C'([o, B;R), y(a) =a, y(B) =b.  (3)

where x (instead t) is the independent variable and y is the dependent variable. Here the case
n=1,1/2,0, —1/2, —1 are of particular interest.

Case 1. n = 0. Shortest connection between two points in the plane. Because L, = 0, the
EULER equation yields immediately

d _ d / NnN2\—-1/21 __ " o__
oLy )=+ ()) ] =0=y"=0.

y = py + q is the unique straight line through the points («, a) and (53,0).
Case 2. n = 1. See § 4.1; cf. also [Bryson-Hol, p. 64,65.

Case 3. n = —1/2. See § 4.1; cf. also [Clegg], p. 49; [Kosmol], §4.2.

Case 4. n = 1/2. Free motion in a homogeneous field, e.g. parabola trajectory.

In the following lemma let (T, z*) € Ry x C'[0, Ty] be a solution of (??) hence g(T™*, z*(T*)) =
0. The vector space C*([0, Ty]; R™) is equipped with the norm ||z|| = [|z]c + ||%]|cc being
a BANACH space by this way, and we suppose that (§ # U.(z*) = {z, ||z — 2*|| < €} be a
neighborhood of x* in that space.



Lemma 2 Let

St O)] = 0T (17) + Vag (T2 (7)) () £0,

then there exists a € > 0 and a function p € CY(U.;R) such that
9(p(x), z(p(2))) = 0 und p(a*) = T".

Proof. By the Implicit Function Theorem in BANACH spaces the equation
G(t,z) := g(t,z(t)) = 0 € R is resolvable w.r.t. ¢ in a neighborhood of (7%, z*(T*)) without
defect of smoothness if

- #0.

0 :

This function ¢ is now substituted into the objective function

o(z)
To(e), 2) = plo(e), o(p(x)) + / o(t,z, ) dt

and ensuing the first variation is set equal to zero again. Regarding the EULER equations we
then obtain for all test functions v where v(0) = 0 by partial integration and by an application
of LEIBNIZ’ rule

0 = 8J(z*v) = %J(m* + ev)

L2

dg *+ev

+ /O " )q(t,x*(t) +eu(t), i (t) + ci(t)) dt}

= Dip(T*, 2*(T*))dp(*;v) 4+ Vop(T*, 2*(T*)) (0(T*) + &*(T*)dp(x*; v))
+q(T7, 2 (T7), 2" (1)) 0p (3" v) + Vaq(T*, 2*(T%), 2" (T"))v(T")

e=0

o [p (90(:5* + ev), 2 (p(z* + ev)) +ev(p(z* + 52})))

T =p(z*) d
+/ [qu(t,$*, T*) — avgq(t, x*,j:*)}vdt.
0

Suppose first that ' .
(Vap + Vaq)v + (Vapi + py + q)0p(2*;v) = 0 (4)

where the arguments 7™ and x* are dropped for simplicity, then the Fundamentallemma 1 yields
the EULER equations in interval [0, 7%] again. But the constraint ¢(7T’,z(7T")) = 0 € R does also
hold for sufficiently small |¢| in the following variated form

Ble) = 9(90(:)3* +ev), z*(p(z* + ev)) +ev(p(z* + 52;))) =0,
by the above regularity assumption, hence

0= iB(s)

de
= %(T*, 2 (T))0p(z*v) + Vog(T*, " (TN [o(T*) + *(T*)0p(z*;v)] .

e=0



Substitution of the resolution w.r.t. dp(z*;v) into (4) yields — again in abbreviated form

V.gv

Vapv + Viqu + [prx' + py + Q} m =
T t

()

for arbitrary v(7*). By this way we obtain the necessary condition of transversality for the
terminal time 7™ at the point (¢, z(t)) = (T, 2*(T")), namely

(Vegi* + g1) [Vap + Vgl + (Vepi* +p+q) Vg =0€ R, |, (6)

in addition to the EULER equation. By Lemma 2 it does make sense to suppose that the
denominator in (5) is nonzero. Note also that no additional properties at all are required for
the variation d¢(x;v) of ¢ in the above computation.



