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Supplements 1 to Chapter IV E. Gekeler
11/10/06

To Variational Calculus

Lemma 1 (Lagrange, Fundamentallemma of Calculus of Variations)
Let f, g ∈ C([0, T ];Rn) and h ∈ C1

0([0, T ];Rn) then

(1◦) ∀ h :

∫ T

0

f(t)T h(t) dt = 0 =⇒ f ≡ 0 ,

(2◦) ∀ h :

∫ T

0

f(t)T ḣ(t) dt = 0 =⇒ f = constant,

(3◦) ∀ h :

∫ T

0

[f(t)T h(t) + g(t)T ḣ(t)] dt = 0 =⇒ g ∈ C1([0 , T ];Rn)

and f = ġ .

Proof. (1◦) following [Amann]. We suppose that f 6= 0. Then there exists an i = 1:n so that
fi 6= 0. Since fi continuous, there exist an x0 ∈ (0, T ) and an ε > 0 so that Uε := (x0−ε, x0 +ε)
is still contained entirely in [0, T ] and that fi(t) 6= 0 for all t ∈ Uε . Now we choose a function
hi ∈ C∞(R,R) such that supp(hi) ⊂ Uε and hi > 0. Then

h := [0, . . . , 0, hi, 0, . . . , 0]T ∈ C1
0([0, T ],Rn)

and ∫ T

0

f(t)T h(t) dt =

∫ T

0

fi(t)hi(t) dt =

∫ x0+ε

x0−ε

fi(t)hi(t) dt 6= 0

since fihi continuous, does not change sign, and does not disappear. This contradiction yields
the assertion.

For the existence of a function hi with the desired properties see [Amann], Bemerkung (2.12).

(2◦) Following [Clegg],[Kosmol], p. 106. Let c := T−1
∫ T

0
f(t) dt ∈ Rn then

∫ T

0

(f(t)− c) dt =

∫ T

0

f(t) dt−
∫ T

0

dt = 0 , choose h(t) =

∫ t

0

(f(t)− c) dt

then ḣ(t) = f(t)− c and h(0) = h(T ) = 0. Now, by assumption

∫ T

0

(f(t)− c)T (f(t)− c) dt =

∫ T

0

(f(t)− c)T ḣ(t) dt

=

∫ T

0

f(t)T ḣ(t) dt− cT

∫ T

0

ḣ(t) dt = 0− cT (h(b)− h(a)) = 0.

Therefore |f(t)− c| = 0 for all t hence f(t) = c.

Slight generalization possible [Clegg].

(3◦) [Kosmol], p. 107, Let

a(t) :=

∫ t

0

f(τ) dτ ∈ Rn ,
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and h ∈ C1([0, T ],Rn) where h(a) = h(b) = 0. Partial integration yields

∫ T

0

f(t)T h(t) dt = a(T )T h(T )− a(0)T h(0)−
∫ T

0

a(t)T ḣ(t) = 0−
∫ T

0

a(t)T ḣ(t) dt

By assumption ∫ T

0

f(t)T h(t) dt = −
∫ T

0

g(t)T ḣ(t) dt

therefore we obtain

∫ T

0

g(t)T ḣ(t) dt =

∫ T

0

a(t)T ḣ(t) dt =⇒
∫ T

0

(g(t)T − a(t))T ḣ(t) dt = 0

But g(t)− a(t) constant by (2◦) thus there exists a c ∈ Rn so that g(t) = c + a(t). By the main
theorem of differential and integral calculus, a(t) is differentiable with derivative f(t), therefore
ġ(t) = f(t).

Theorem 1 [Amann] Let X be a normed vector space, U ⊂ X a subspace, w ∈ X arbitrary,
V = w + U an affine subspace, D ⊂ V open. Further, let J : D → R, x∗ ∈ D and let
δJ(x∗, · ) : U → R exist. Then

∀ x ∈ D : J(x∗) ≤ J(x) =⇒ ∀ h ∈ U : δJ(x∗; h) = 0.

Variational Problem: Let 0 < T < ∞, M⊂ Rm × Rm open, a, b ∈ Rm,

Z := {x ∈ C1([0, T ];Rm), x(0) = a, x(T ) = b, (x(t), ẋ(t)) ⊂M ∀ t ∈ [0, T ]},
L ∈ C1([0, T ]×M;R), J : Z 3 x 7→ J(x) :=

∫ T

0
L(t, x(t), ẋ(t)) dt.

Then the problem
min{J(x), x ∈ Z} (1)

is called variational problem with fixed boundary conditions. Obviously this problem has not
always a solution and in case a solution exists, it must not be unique. In the sequel, we derive
a necessary condition for the existence of a solution. This condition is known under the name
Euler equations. But, at first we write the problem in a more abstract form.

Theorem 2 (1◦) X := C1([0, T ];Rm) is a Banach space w.r.t. the norm.

‖x‖X := max
0≤t≤T

|x(t)|+ max
0≤t≤T

|ẋ(t)|.

(2◦) DM := {x ∈ X , (x(t), ẋ(t)) ∈M ∀ t ∈ [0, T ]} is open in X .
(3◦) U := C1

0([0, T ];Rm) := {x ∈ X , x(0) = x(T ) = 0} is a closed subspace in X w.r.t. the norm
‖ · ‖X .
(4◦) Let w ∈ X arbitrary such that w(0) = a, w(T ) = b, then V = w + U is an affine subspace
(linear manifold) in X .

Proof. [Amann] Lemmata 2.4, 2.5, Aufg. 1.2.4, p. 31.

Let now D = DM ∩ V then D open in V and, using the above notations and assumptions,
Theorem 1 yields

∀ x ∈ D : J(x∗) ≤ J(x) =⇒ ∀ ∈ U : δJ(x∗; h) = 0 .
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Theorem 3 Adopt the above notations and assumptions, then

δJ(x; h) =

∫ T

0

[D2L(t, x(t), ẋ(t))h(t) + D3L(t, x(t), ẋ(t))ḣ(t)]dt

∀ x ∈ D ∀ h ∈ U , and δJ(x; · ) is the Frechet-derivative of J at the point x.

Beweis [Amann], p. 21, [Heuser] II, § 191.

In Theorem 3, D2L is the gradient of the mapping x 7→ L(t, x, y) (in m variables) for fixed
(t, y) and D3L is the gradient of the mapping y 7→ L(t, x, y) for fixed (t, x).

Theorem 4 Let moreover the mapping [0, T ] 3 t 7→ D3L(t, x(t)ẋ(t)) ∈ Rm be continuously
differentiable then

δJ(x; h) =

∫ T

0

[D2L(t, x(t)ẋ(t))− d

dt
D3L(t, x(t)ẋ(t))]h(t)dt + D3L(t, x(t), ẋ(t))h(t)|T0

=

∫ T

0

[D2L(t, x(t), ẋ(t))− d

dt
D3L(t, x(t), ẋ(t))]h(t)dt.

Proof. Partial integration regarding h ∈ U .

An application of Lemma 1(3◦) to Theorem 3 and 4 shows that the assumption of Theorem 4
can be cancelled.

Summary: Under the above assumptoins

δJ(x∗; v) = 0 ∀ v ∈ C1
0([0, T ];Rm)

⇐⇒ [gradx L− d

dt
gradẋ L](t, x∗(t), ẋ∗(t)) = 0 ∀ t ∈ [0, T ].

Examples. (1.) Euler equation in some special cases where m = 1 (abbreviated notation).

∫ T

0

L(t, ẋ)dt = extr! =⇒ d

dt
Lẋ = c =⇒ ẋ = f(t, c),

if Lẋ invertible w.r.t. ẋ .
∫ T

0

L(ẋ)dt = Extr.! =⇒ Lẋ(ẋ) = c =⇒ ẋ = konst =⇒ x straight line.

∫ T

0

L(x, ẋ)dt = Extr.! =⇒ Lx − Lẋxẋ− Lẋẋẍ = 0.

Multiplication by ẋ yields

Lxẋ− Lẋxẋẋ− Lẋẋẋẍ = 0 or
d

dt
(L− ẋLẋ) = 0

and after integration the Dubois-Reymond condition

L− ẋLẋ = constant implicit differential equation for x.

(2.) Mass point in central field (dimension m = 3). According to Newton’s law (axiom) for
x(t) ∈ R3

mẍ = f(x) = − grad U(x) U potential energy,

T =
m

2
|ẋ|2 kinetic energy,

E = T + U =
m

2
|ẋ|2 + U(x) total energy (constant).
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According to Example 1(c)

−mẍ− grad U(x) = −(mẍ + grad U(x)) = 0

Euler’s equation of the variational problem

J(x) =

∫ t2

t1

L(x, ẋ)dt =

∫ t2

t1

[
m

2
|ẋ|2 − U(x)]dt = extr.! (2)

where L = T − U is the Lagrange function! This result is called Hamilton’s principle of
least action (dimension of J = energy · time) and is generally valid. Introducing y = mẋ = Lẋ

for new (additinal) variable (mass m constant) then we obtain the differential system

ẋ = grady H := y/m (definition),
ẏ = − gradx H := − grad U(x) Newton’s law.

It follows immediately that H = E is an invariant of the system:

konst = E =
1

2
yT ẋ + U(x) =

1

2m
yT y + U(x) = H(x, y)

= T + U = 2T − (T − U) = yT ẋ− L.

Because H = yT ẋ − L, the Hamilton function H is the Legendre transformation of the
Lagrange function L w.r.t. ẋ .

In general however not ẋ is introduced for new variable but ∂L/∂ẋ where in generalized coor-
dinate systems commonly q is written in place of x for the vector of space variables. Then the
Legendre transformation H of L is defined by H(t, p, q) = pq̇−L(t, q, q̇) where it is assumed
that p := ∂L/∂q̇ is resolvable w.r.t. q̇ and that the result is inserted in H.

Consider the variational problem:

J(y) =

∫ β

α

y(x)n(1 + y′(x)2)1/2dx = Extr.! ∀ y ∈ C1([α, β];R), y(α) = a, y(β) = b. (3)

where x (instead t) is the independent variable and y is the dependent variable. Here the case
n = 1, 1/2, 0, −1/2, −1 are of particular interest.

Case 1. n = 0. Shortest connection between two points in the plane. Because Ly = 0 , the
Euler equation yields immediately

d

dx
Ly′(. . .) =

d

dx
[y′(1 + (y′)2)−1/2] = 0 =⇒ y′′ = 0.

y = py + q is the unique straight line through the points (α, a) and (β, b).

Case 2. n = 1. See § 4.1; cf. also [Bryson-Ho], p. 64,65.
Case 3. n = −1/2. See § 4.1; cf. also [Clegg], p. 49; [Kosmol], §4.2.
Case 4. n = 1/2. Free motion in a homogeneous field, e.g. parabola trajectory.

In the following lemma let (T ∗, x∗) ∈ R+×C1[0, T0] be a solution of (??) hence g(T ∗, x∗(T ∗)) =
0. The vector space C1([0, T0];Rn) is equipped with the norm ‖x‖ := ‖x‖∞ + ‖ẋ‖∞ being
a Banach space by this way, and we suppose that ∅ 6= Uε(x

∗) = {x, ‖x − x∗‖ < ε} be a
neighborhood of x∗ in that space.
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Lemma 2 Let

d

dt
g(t, x∗(t))

∣∣∣
t=T ∗

= gt(T
∗, x∗(T ∗)) +∇xg(T ∗, x∗(T ∗))ẋ∗(T ∗) 6= 0 ,

then there exists a ε > 0 and a function ϕ ∈ C1(Uε;R) such that

g(ϕ(x), x(ϕ(x))) = 0 und ϕ(x∗) = T ∗ .

Proof. By the Implicit Function Theorem in Banach spaces the equation
G(t, x) := g(t, x(t)) = 0 ∈ R is resolvable w.r.t. t in a neighborhood of (T ∗, x∗(T ∗)) without
defect of smoothness if ∂

∂t
G(t, x∗)

∣∣∣
t=T ∗

6= 0 .

ut
This function ϕ is now substituted into the objective function

J̃(ϕ(x), x) = p(ϕ(x), x(ϕ(x)) +

∫ ϕ(x)

0

q(t, x, ẋ) dt ,

and ensuing the first variation is set equal to zero again. Regarding the Euler equations we
then obtain for all test functions v where v(0) = 0 by partial integration and by an application
of Leibniz’ rule

0 = ∂J̃(x∗; v) =
d

dε
J̃(x∗ + εv)

∣∣∣
ε=0

=
d

dε

∣∣∣
ε=0

[
p
(
ϕ(x∗ + εv), x∗

(
ϕ(x∗ + εv)

)
+ εv

(
ϕ(x∗ + εv)

))

+

∫ ϕ(x∗+εv)

0

q(t, x∗(t) + εv(t), ẋ∗(t) + εv̇(t)) dt
]

= D1p(T ∗, x∗(T ∗))∂ϕ(x∗; v) +∇2p
(
T ∗, x∗(T ∗)

)(
v(T ∗) + ẋ∗(T ∗)∂ϕ(x∗; v)

)

+ q(T ∗, x∗(T ∗), ẋ∗(T ∗))∂ϕ(x∗; v) +∇3q(T
∗, x∗(T ∗), ẋ∗(T ∗))v(T ∗)

+

∫ T ∗=ϕ(x∗)

0

[∇2q(t, x
∗, ẋ∗)− d

dt
∇3q(t, x

∗, ẋ∗)
]
v dt .

Suppose first that
(∇2p +∇3q)v + (∇2pẋ + pt + q)∂ϕ(x∗; v) = 0 (4)

where the arguments T ∗ and x∗ are dropped for simplicity, then the Fundamentallemma 1 yields
the Euler equations in interval [0, T ∗] again. But the constraint g(T, x(T )) = 0 ∈ R does also
hold for sufficiently small |ε| in the following variated form

B(ε) := g
(
ϕ(x∗ + εv), x∗

(
ϕ(x∗ + εv)

)
+ εv

(
ϕ(x∗ + εv)

))
= 0 ,

by the above regularity assumption, hence

0 =
d

dε
B(ε)

∣∣∣
ε=0

=
∂g

∂t
(T ∗, x∗(T ∗))∂ϕ(x∗; v) +∇xg(T ∗, x∗(T ∗))[v(T ∗) + ẋ∗(T ∗)∂ϕ(x∗; v)] .
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Substitution of the resolution w.r.t. ∂ϕ(x∗; v) into (4) yields — again in abbreviated form

∇xpv +∇ẋqv +
[∇xpẋ + pt + q

] ∇xgv

∇xgẋ + gt

= 0 (5)

for arbitrary v(T ∗). By this way we obtain the necessary condition of transversality for the
terminal time T ∗ at the point (t, x(t)) = (T ∗, x∗(T ∗)), namely

(∇xgẋ∗ + gt) [∇xp +∇ẋq] + (∇xpẋ
∗ + pt + q)∇xg = 0 ∈ Rn , (6)

in addition to the Euler equation. By Lemma 2 it does make sense to suppose that the
denominator in (5) is nonzero. Note also that no additional properties at all are required for
the variation ∂ϕ(x; v) of ϕ in the above computation.


