Dual Method of Linear-Quadratic Programming

(a) We apply the notations of $\S 3.3$ and observe first that the minimum problem

$$
\begin{align*}
& f(x)=\frac{1}{2} x^{T} A x-a^{T} x=\operatorname{Min}!, x \in \mathbb{R}^{n}, \tag{1}\\
& g(x)=B x+b \quad \geq 0 \in \mathbb{R}^{m},
\end{align*}
$$

is equivalent to the Lagrange problem
Find a $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ such that

$$
\begin{equation*}
L\left(x^{*}, y^{*}\right)=\max _{y \geq 0} \operatorname{Inf}_{x}\left\{\frac{1}{2} x^{T} A x-a^{T} x-y^{T}(B x+b)\right\} \tag{2}
\end{equation*}
$$

Of course the problem is convex now as before therefore the multiplier rule is sufficient for a solution. Starting from the absolute minimum $x=A^{-1} a$, the objective function $f(x)$ is enlarged until the multiplier rule is fulfilled or, in other words until x is as near as possible to the feasible domain.

Notations and Conventions:
$\left(1^{\circ}\right) g^{i}(x)>0 \Longrightarrow y^{i}=0$.
$\left(2^{\circ}\right) \mathcal{K}:=\{1, \ldots, m\}$ und $\mathcal{J} \subset \mathcal{K}$ index sets; at the beginning normally $\mathcal{J}=\emptyset$.
(3°) The problem

$$
\left\{f(x) ; g^{j}(x):=b^{j} x+\beta^{j} \geq 0, j \in \mathcal{J}\right\}=\operatorname{Min}!
$$

is briefly called $\mathrm{LQ}(\mathcal{J})$.
$\left(4^{\circ}\right)(x, \mathcal{B})$ is called S (olution) pair of $\mathrm{LQ}(\mathcal{J})$, if x is solution of $\mathrm{LQ}(\mathcal{J})$, if $g^{j}(x)=0$ for all $j \in \mathcal{B} \subset \mathcal{J}$ and if $B^{\mathcal{B}}=$ $\left[\nabla g^{j}(x)\right]_{j \in \mathcal{B}}$ has maximum row rank.

There is always $\mathcal{B} \subset \mathcal{A}(x)$ but not necessarily $\mathcal{A}(x) \subset \mathcal{J}$. Conversely, if (4°) for some (x, \mathcal{B}) then there is a index set $\mathcal{J} \supset \mathcal{B}$ such that (x, \mathcal{B}) is S-pair of $\mathrm{LQ}(\mathcal{J})$; the index set \mathcal{J} however plays a minor role in the sequel. By $\left(4^{\circ}\right)$ and Theorem 3.8 we obtain immediately the following intermediate result:
Let $\left(d, y^{\mathcal{B}}\right)$ be solution of

$$
\left[\begin{array}{cc}
A & {\left[B^{\mathcal{B}}\right]^{T}} \\
B^{\mathcal{B}} & O
\end{array}\right]\left[\begin{array}{c}
d \\
y^{\mathcal{B}}
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)^{T} \\
0\left(\equiv g^{\mathcal{B}}(x)\right)
\end{array}\right],
$$

and let $y^{\mathcal{B}} \geq 0$ as well as $g^{\mathcal{B}}(x)=0$ then $(x+d, \mathcal{B})$ is S-pair of $\mathrm{LQ}(\mathcal{B})$ and solution of $\mathrm{LQ}(\mathcal{J})$ for all \mathcal{J} such that $\mathcal{B} \subset \mathcal{J}$ and $g^{j}(x) \geq 0, j \in \mathcal{J}$. Therefore $S(\mathcal{J}):=\left\{x \in \mathbb{R}^{n}, g^{j}(x) \geq 0, j \in \mathcal{J}\right\}$ is the set of feasible points for $\mathrm{LQ}(\mathcal{B})$.

But, in activating a restriction with index p, some or even all conditions of \mathcal{B} may become infeasible again! The latter case corresponds practically to a restart of the method with a different start position.
(b) V-Triple and S-pair A triple (v, \mathcal{B}, p) is called V (iolated)-triple, if
$\left(1^{\circ}\right) g^{\mathcal{B}}(v)=0($ i.e. $\mathcal{B} \subset \mathcal{A}(v))$
$\left(2^{\circ}\right) \gamma:=g^{p}(v)<0$ (p-th constraint violated)
$\left(3^{\circ}\right)$ Die Matrix $\left[\begin{array}{c}B^{\mathcal{B}} \\ b^{p}\end{array}\right]$ has maximum row rank.
(4 ${ }^{\circ}$) In the solution $\left(s, y_{\mathcal{B}}, y_{p}\right)$ of the linear system

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{B}}\right]^{T}} & {\left[b^{p}\right]^{T}} \tag{3}\\
B^{\mathcal{B}} & O & O \\
b^{p} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
s \\
y^{\mathcal{B}} \\
y^{p}
\end{array}\right]=\left[\begin{array}{c}
\nabla f(v)^{T} \\
0 \\
0
\end{array}\right] \equiv\left[\begin{array}{c}
A v-a \\
g^{\mathcal{B}}(v)=0 \\
g^{p}(v)-\gamma=0
\end{array}\right]
$$

the components satisfy $s=0,\left(y_{\mathcal{B}}, y_{p}\right) \geq 0, y_{\mathcal{B}}>0$.
(Rows and columns of the system with index $j \in \mathcal{B}, y_{j}=0$ can be omitted.)
Suppose that $\gamma=g^{p}(v)=0$ then the V-triple would be a S-pair for some index set $\mathcal{J} \supset$ $\{B \cup\{p\}\}$ by $\left(2^{\circ}\right)$, but as $g_{p}(x)<0$ the V-triple is only a S-pair for a modified problem $\widetilde{L Q}(\{\mathcal{B}, p\})$ where

$$
\widetilde{g}(x):=B^{\mathcal{B} \cup p} x+b^{\mathcal{B} \cup p}-\gamma e^{p}, e^{p}=\left[\delta^{i}{ }_{p}\right] \in \mathbb{R}^{|\mathcal{B}|+1} .
$$

This relation says that v lies on the boundary of the feasible domain \mathcal{S} being shifted by the vector γe^{p}. Or, in other words, if (v, \mathcal{B}, p) is a V-triple then v is solution of the problem

$$
f(x)=\min !, x \in\left\{x \in \mathbb{R}^{n}, g^{j}(x)=0, j \in \mathcal{B}, g^{p}-\gamma=0\right\} .
$$

The question is now how we come from a V-triple to a new S-pair.
Let for the time being A a symmetric and positive matrix and let

$$
D^{-1}=\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]^{-1}=\left[\begin{array}{cc}
H & N^{T} \\
N & F
\end{array}\right],
$$

then by the "bordering lemma"

$$
F=-\left(B A^{-1} B^{T}\right)^{-1}, N=-F B A^{-1}, H=A^{-1}\left(I+B^{T} F B A^{-1}\right) .
$$

Therefore the solution of the linear system

$$
D\left[\begin{array}{c}
z \\
r^{\mathcal{B}}
\end{array}\right]=\left[\begin{array}{l}
q \\
0
\end{array}\right]
$$

(later $q=b^{p}$) satisfies

$$
\begin{aligned}
z & =H q, \quad \text { primal corrector direction, } \\
r^{\mathcal{B}} & =N q, \quad\left(r^{\mathcal{B}},-1\right) \text { dual corrector direction }
\end{aligned}
$$

Lemma 1 Let (v, \mathcal{B}, p) be V-triple and let

$$
\left[b^{p}\right]^{T} \equiv B^{T} e^{p}, z=H\left[b^{p}\right]^{T}, r^{\mathcal{B}}=N\left[b^{p}\right]^{T}, \alpha=g^{p}(v)-g^{p}(x),
$$

then for all $t \in \mathbb{R}$

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{B}}\right]^{T}} & {\left[b^{p}\right]^{T}} \tag{4}\\
B^{\mathcal{B}} & O & O \\
b^{p} & 0 & 0
\end{array}\right]\left[\left[\begin{array}{c}
0 \\
y^{\mathcal{B}} \\
y^{p}
\end{array}\right]+\left[\begin{array}{c}
-t z \\
-t r^{\mathcal{B}} \\
t
\end{array}\right]\right]=\left[\left[\begin{array}{c}
A v-a \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right]\right]
$$

Proof. Since (v, \mathcal{B}, p) is a V-triple we have

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{B}}\right]^{T}} & {\left[b^{p}\right]^{T}} \tag{5}\\
B^{\mathcal{B}} & O & O \\
b^{p} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
y^{\mathcal{B}} \\
y^{p}
\end{array}\right]=\left[\begin{array}{c}
\nabla f(v)^{T} \\
0 \\
0
\end{array}\right] \equiv\left[\begin{array}{c}
A v-a \\
0 \\
0
\end{array}\right] .
$$

Therefore we have to show that

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{B}}\right]^{T}} & {\left[b^{p}\right]^{T}} \tag{6}\\
B^{\mathcal{B}} & O & O \\
b^{p} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-t z \\
-t r^{\mathcal{B}} \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\alpha
\end{array}\right] .
$$

Now indices are omitted!
Equation 1: Show that $A z+B^{T} r=q, q=b^{T}, z=H q, r=N q$.

$$
A\left(A^{-1}\left(I-B^{T} N\right)\right) q+B^{T} N q=q
$$

Equation 2:

$$
\begin{aligned}
B z & =B H q=B A^{-1}\left(I-B^{T} N\right) q \\
& =\left[B A^{-1}-\left(B A^{-1} B^{T}\right)\left(B A^{-1} B^{T}\right)^{-1} B A^{-1}\right] q=0 .
\end{aligned}
$$

Equation 3: Clear! See above!
The linear system (6) differs from the system (3) only by the value

$$
0 \neq \alpha=-g^{p}(x)+g^{p}(v)=-g^{p}(v)+g^{p}(v)-b^{p} t z=-t b^{p} z .
$$

We now consider the primal and the dual correcture

$$
x=v+t z, \quad y^{T}=\left[\begin{array}{c}
y^{\mathcal{B}}-t r^{\mathcal{B}} \\
y^{p}+t
\end{array}\right],
$$

then we have to choose t such that g^{p} becomes active if possible (g^{p} linear):

$$
\begin{aligned}
& g^{p}(x)=g^{p}(x+t z) \equiv g^{p}(v)+t b^{p} z=0 \\
& \Longleftrightarrow t=t_{2}:=-g^{p}(v) / b^{p} z .
\end{aligned}
$$

Here $t_{2}>0$ since on the one hand $g^{p}(v)<0$ by the assumption on the V-triple, and on the other hand, $b^{p} z=b^{p} H\left[b^{p}\right]^{T}>0$ because H positive definit for rank-maximal $B^{\mathcal{B}}$.
Conclusion:
If $t=t_{2}$ and

$$
\begin{equation*}
y^{\mathcal{B}}-t_{2} r^{\mathcal{B}} \geq 0, y^{p}+t_{2} \geq 0, \tag{7}
\end{equation*}
$$

then $\left(x+t_{2} z, \mathcal{B} \cup\{p\}\right)$ is a new S -pair for some $\mathcal{J} \supset\{\mathcal{B} \cup\{p\}\}$.
Suppose that (7) is violated then we must choose $t<t_{2}$ and a suitable index of the index set \mathcal{B} must be cancelled in order to obtain a new V-triple, but with the additional condition that
$\left(1^{\circ}\right)$ the infeasibility $g^{p}(v)<0$ decreases, i.e. $g^{p}(x)>g^{p}(v)$,
$\left(2^{\circ}\right) f(x) \geq f(v)$ i.e. the cost functional does not decrease.
This procedure can be performed at most $|\mathcal{B}|$-times then $\mathcal{B}=\emptyset, y^{\mathcal{B}}$ is disappeared and $y^{p} \geq 0$ by assumption (cf. $\left(2^{\circ}\right)$. Thus we obtain after at most $|\mathcal{B}|$ steps of inactivation and one step of activation with $t=t_{2}$ a new S-pair where $\mathcal{B}=\{p\}$ and $f(x)>f(v)$. The cost functional is enlarged in every new L-pair and only a finite number of index subsets do exist therefore the algorithm breakso off some time.

Lemma 2 Let (v, \mathcal{B}, p) be a V-triple, let $b:=b^{p}$ and

$$
\begin{aligned}
& x=v+t z, z=H b^{T}, r=N b^{T} \\
& t_{1}=\operatorname{Min}\left\{y^{i} / r^{i}, i \in \mathcal{B}, r^{i}>0\right\}, t_{2}=-g^{p}(v) / b z, t=\operatorname{Min}\left\{t_{1}, t_{2}\right\} .
\end{aligned}
$$

Then
$\left(1^{\circ}\right) g^{p}(x) \geq g^{p}(v)$ for $0 \leq t \leq t_{2}(>$ if $t>0)$,
$\left(2^{\circ}\right) f(x)-f(v)=t(b z)\left(\frac{1}{2} t+y^{p}\right)(>$ if $t>0)$,
(2 ${ }^{\circ}$) (Inactivation step) Suppose that

$$
t=t_{1}=y^{j} / r^{j}<t_{2} \text { for } a j \in \mathcal{B}, j \neq p,
$$

then $(x, \mathcal{B} \backslash\{j\}, p)$ is a V-triple,
$\left(4^{\circ}\right)$ (Activation step) Suppose $t=t_{2}$ then $(x, \mathcal{B} \cup\{p\})$ is a S-pair.
Proof. The matrix H is regular as long as the matrix $\left.\left[B^{\mathcal{B}}\right]^{T}, b^{T}\right]$ has maximum rank. We have $b z=b H b^{T}>0$ hence

$$
g^{p}(x) g^{p}(v)+t b z \geq g^{p}(v)\left(>0 f^{\prime \prime} u r t>0\right)
$$

According to Taylor

$$
f(x)-f(v)=t \nabla f(x) z+\frac{1}{2} t^{2} z^{T} A z
$$

Because the assumption to be a V-triple, by the first row of (3)

$$
\nabla f(x)=\left[\left[B^{\mathcal{B}}\right]^{T}, b^{T}\right]\left[\begin{array}{c}
y^{\mathcal{B}} \\
y^{p}
\end{array}\right] \quad z=A^{-1}\left(I-B^{T} N\right) b^{T}=H b^{T}
$$

therefore, since $B^{\mathcal{B}} z=0$,

$$
\begin{aligned}
& f(x)-f(v)=t y^{p} b z+t y^{\mathcal{B}} B^{\mathcal{B}} z \\
& +\frac{1}{2} t^{2}\left(b\left(I-N^{T} B\right) A^{-1} A A^{-1}\left(I-B^{T} N\right) b^{T}\right. \\
& =t y^{p} b z+\frac{1}{2} t^{2}(b z)(\text { correct }), \quad b z>0 \\
& =t(b z)\left(\frac{1}{2} t+y^{p}\right)
\end{aligned}
$$

where $y^{p}>0$ by assumption.
By definition of t_{1} and t we have $y^{\mathcal{B}}-t r^{\mathcal{B}} \geq 0$ hence $g^{i}(x)=0, i \in \mathcal{B}, x=v+t z$ and

$$
y_{+}=\left[\begin{array}{l}
y^{\mathcal{B}} \\
y^{p}
\end{array}\right]+t\left[\begin{array}{c}
-r^{\mathcal{B}} \\
1
\end{array}\right] \geq 0
$$

By construction we have

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{B}}\right]^{T}} & {\left[b^{p}\right]^{T}} \\
B^{\mathcal{B}} & O & O \\
b^{p} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
\\
y_{+}
\end{array}\right]=\left[\begin{array}{c}
A x-a \\
0 \\
g^{p}(x)
\end{array}\right]
$$

where $g^{p}(x)=0$ for $t=t_{2}$. Therefore, by definition
$t=t_{2}$, then $(x, \mathcal{B} \cup\{p\})$ S-pair
$0<t<t_{2}$, then (x, \mathcal{B}, p) V-triple
$t=t_{1}$, then $\left(y_{+}\right)_{j}=0$, hence also ($x, \mathcal{B} \backslash\{j\}$) V-triple (b^{j} to be cancelled!). Let $y^{\mathcal{B}}>0$ without loss of generalization (other rows/columns cancelled), then always $t=\min \left\{t_{1}, t_{2}\right\}>0$.
Therefore we obtain a new S-pair after $q=|\mathcal{B}|$ inactivation steps at the latest and one activation step with $t=t_{2}$ since f always increases; in the case where

$$
g_{p}(x)<0, \text { and }\left[\begin{array}{c}
B^{\mathcal{B}} \\
b^{p}
\end{array}\right] \text { row regular } .
$$

Finally we have to weaken the maximum rank condition of the matrix $\left[\begin{array}{c}B^{\mathcal{B}} \\ b^{p}\end{array}\right]$ in the assumption on the V-triple. This is managed by the following result which constitutes the keystone of the method dlqp:

Lemma 3 Let (x, \mathcal{B}) be a S-pair and $p \in \mathcal{K} \backslash \mathcal{B}$ such that

$$
g^{p}(x)<0, \quad r^{T} B^{\mathcal{B}}=b^{p} .
$$

Then
$\left(1^{\circ}\right)$ If $r \leq 0$, the problem $L Q(\mathcal{B} \cup\{p\})$ and thus the original problem (1) has no solution.
$\left(2^{\circ}\right)$ If there exists a $r^{i}>0$, then ist $(x, \mathcal{B} \backslash\{j\}, p)$ is a V-triple where

$$
\begin{equation*}
j=\arg \min \left\{\frac{y^{i}}{r^{i}}, r^{i}>0, i \in \mathcal{B}\right\} . \tag{8}
\end{equation*}
$$

Proof. (1°) Let u be arbitrary feasible for $Q P(\mathcal{B} \cup\{p\})$. Since (x, \mathcal{B}) shall be a S-pair we then have $g^{i}(x)=0, i \in \mathcal{B}$ and $g^{i}(u) \geq 0, i \in \mathcal{B}$, therefore $b^{i}(u-x) \geq 0, i \in \mathcal{B}$, i.e. $B^{\mathcal{B}}(u-x) \geq 0$. Furthermore, by assumption,

$$
g^{p}(x)<0, g^{p}(u) \geq 0, \text { hence } b^{p}(u-x) \geq 0
$$

Let now $r \leq 0$ then

$$
b^{p}(u-x)=r^{T} B^{\mathcal{B}}(u-x) \leq 0
$$

which is a contradictin. Therefore the feasible set is empty in this case.
$\left(2^{\circ}\right)$ Accordingly, let $r_{j}>0$ for a $j \in \mathcal{B}=\{1, \ldots, q\}$ and let without loss of generality $j=q$. Since $b^{p}=r^{T} B^{\mathcal{B}}$ then

$$
b^{q}=\frac{1}{r_{q}}\left(-\sum_{i=1}^{q-1} r_{i} t b^{i}+b^{p}\right)
$$

Since (x, \mathcal{B}) shall be a S-pair and since

$$
\left[\begin{array}{cc}
A & {\left[B^{\mathcal{B}}\right]^{T}} \\
B^{\mathcal{B}} & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
y^{\mathcal{B}}
\end{array}\right]=\left[\begin{array}{l}
\nabla f^{T} \\
0
\end{array}\right]
$$

we then have

$$
\begin{aligned}
\nabla f(x) & =\sum_{i=1}^{q} y_{i} b^{i}=\sum_{i=1}^{q-1} y_{i} b^{i}+b^{p} \\
& =\sum_{i=1}^{q-1} y_{i} b^{i}+\frac{y_{q}}{r_{q}}\left(-\sum_{i=1}^{q-1} r_{i} b^{i}+b^{q}\right) \\
& =\frac{y_{q}}{r_{q}} b^{p}+\sum_{i=1}^{q-1} b^{i}\left(y_{i}-\frac{y_{q}}{r_{q}} r_{i}\right)
\end{aligned}
$$

Assume $r_{i}=0$ then $y_{i} \geq 0$ since (x, \mathcal{B}) shall be a S-pair.
Assume $r_{i} \geq 0$ then (...) ≥ 0 because condition (8).
Therefore, altogether

$$
\left[b^{1}, \ldots, b^{q-1}, b_{p}\right] w=\nabla f(x)^{T}, w \geq 0
$$

Let $\widetilde{\mathcal{B}}=\{\mathcal{B} \backslash\{q\}\} \cup\{p\}$ then, as an assumption for a V-triple, it is to be shown that $B^{\widetilde{B}}$ is row-regular.
But now $B^{\mathcal{B}}$ is row-regular therefore also $B^{\mathcal{B} \backslash\{q\}}$. Suppose that $B^{\widetilde{\mathcal{B}}}$ is not row-regular then (assumption)

$$
b^{p}=\widetilde{r}^{T} B^{\mathcal{B} \backslash\{q\}}=\left[r^{\mathcal{B}}\right]^{T} B^{\mathcal{B}}
$$

hence $r_{q}=0$ which is a contradiction.

