Dual Method of Linear-Quadratic Programming

(a) We apply the notations of \S 3.3 and observe first that the minimum problem

$$f(x) = \frac{1}{2} x^T A x - a^T x = \text{Min!}, \ x \in \mathbb{R}^n,$$

$$g(x) = B x + b \geq 0 \in \mathbb{R}^m,$$
(1)

is equivalent to the LAGRANGE problem

Find a
$$(x^*, y^*) \in \mathbb{R}^n \times \mathbb{R}^m$$
 such that

$$L(x^*, y^*) = \max_{y \ge 0} \inf_x \left\{ \frac{1}{2} x^T A x - a^T x - y^T (B x + b) \right\}$$
(2)

Of course the problem is convex now as before therefore the multiplier rule is sufficient for a solution. Starting from the absolute minimum $x = A^{-1}a$, the objective function f(x) is enlarged until the multiplier rule is fulfilled or, in other words until x is as near as possible to the feasible domain.

Notations and Conventions:

There is always $\mathcal{B} \subset \mathcal{A}(x)$ but not necessarily $\mathcal{A}(x) \subset \mathcal{J}$. Conversely, if (4°) for some (x, \mathcal{B}) then there is a index set $\mathcal{J} \supset \mathcal{B}$ such that (x, \mathcal{B}) is S-pair of LQ(\mathcal{J}); the index set \mathcal{J} however plays a minor role in the sequel. By (4°) and Theorem 3.8 we obtain immediately the following intermediate result:

Let $(d, y^{\mathcal{B}})$ be solution of

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T \\ B^{\mathcal{B}} & O \end{bmatrix} \begin{bmatrix} d \\ y^{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} \nabla f(x)^T \\ 0 \ (\equiv g^{\mathcal{B}}(x)) \end{bmatrix}$$

and let $y^{\mathcal{B}} \geq 0$ as well as $g^{\mathcal{B}}(x) = 0$ then $(x+d, \mathcal{B})$ is S-pair of LQ(\mathcal{B}) and solution of LQ(\mathcal{J}) for all \mathcal{J} such that $\mathcal{B} \subset \mathcal{J}$ and $g^{j}(x) \geq 0$, $j \in \mathcal{J}$. Therefore $S(\mathcal{J}) := \{x \in \mathbb{R}^{n}, g^{j}(x) \geq 0, j \in \mathcal{J}\}$ is the set of feasible points for LQ(\mathcal{B}). But, in activating a restriction with index p, some or even all conditions of \mathcal{B} may become infeasible again! The latter case corresponds practically to a restart of the method with a different start position.

(b) V-Triple and S-pair A triple (v, \mathcal{B}, p) is called V(iolated)-triple, if

(1°) $g^{\mathcal{B}}(v) = 0$ (i.e. $\mathcal{B} \subset \mathcal{A}(v)$) (2°) $\gamma := g^{p}(v) < 0$ (p-th constraint violated)

(3°) Die Matrix $\begin{bmatrix} B^{\mathcal{B}} \\ b^{p} \end{bmatrix}$ has maximum row rank.

(4°) In the solution $(s, y_{\mathcal{B}}, y_p)$ of the linear system

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T & [b^p]^T \\ B^{\mathcal{B}} & O & O \\ b^p & 0 & 0 \end{bmatrix} \begin{bmatrix} s \\ y^{\mathcal{B}} \\ y^p \end{bmatrix} = \begin{bmatrix} \nabla f(v)^T \\ 0 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} Av - a \\ g^{\mathcal{B}}(v) = 0 \\ g^p(v) - \gamma = 0 \end{bmatrix}$$
(3)

the components satisfy s = 0, $(y_{\mathcal{B}}, y_p) \ge 0$, $y_{\mathcal{B}} > 0$.

(Rows and columns of the system with index $j \in \mathcal{B}$, $y_j = 0$ can be omitted.)

Suppose that $\gamma = g^p(v) = 0$ then the V-triple would be a S-pair for some index set $\mathcal{J} \supset \{B \cup \{p\}\}$ by (2°), but as $g_p(x) < 0$ the V-triple is only a S-pair for a *modified* problem $\widetilde{LQ}(\{\mathcal{B}, p\})$ where $\widetilde{LQ}(\{\mathcal{B}, p\})$ where $\widetilde{LQ}(\{\mathcal{B}, p\})$ is $\mathcal{D}^{\mathcal{B} \cup p} = \mathcal{D}^{\mathcal{B} \cup p}$

$$\widetilde{g}(x) := B^{\mathcal{B} \cup p} x + b^{\mathcal{B} \cup p} - \gamma e^p, \ e^p = [\delta^i_p] \in \mathbb{R}^{|\mathcal{B}|+1}$$

This relation says that v lies on the boundary of the feasible domain \mathcal{S} being shifted by the vector γe^p . Or, in other words, if (v, \mathcal{B}, p) is a V-triple then v is solution of the problem

$$f(x) = \min!, x \in \{x \in \mathbb{R}^n, g^j(x) = 0, j \in \mathcal{B}, g^p - \gamma = 0\}.$$

The question is now how we come from a V-triple to a new S-pair. Let for the time being A a symmetric and positive matrix and let

$$D^{-1} = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}^{-1} = \begin{bmatrix} H & N^T \\ N & F \end{bmatrix},$$

then by the "bordering lemma"

$$F = -(BA^{-1}B^T)^{-1}, \ N = -FBA^{-1}, \ H = A^{-1}(I + B^TFBA^{-1}).$$

Therefore the solution of the linear system

$$D\left[\begin{array}{c}z\\r^{\mathcal{B}}\end{array}\right] = \left[\begin{array}{c}q\\0\end{array}\right]$$

(later $q = b^p$) satisfies

$$z = Hq$$
, primal corrector direction,
 $r^{\mathcal{B}} = Nq$, $(r^{\mathcal{B}}, -1)$ dual corrector direction

Lemma 1 Let (v, \mathcal{B}, p) be V-triple and let

ſ

$$[b^p]^T \equiv B^T e^p, \ z = H [b^p]^T, \ r^{\mathcal{B}} = N [b^p]^T, \ \alpha = g^p(v) - g^p(x),$$

then for all $t \in \mathbb{R}$

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T & [b^p]^T \\ B^{\mathcal{B}} & O & O \\ b^p & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ y^{\mathcal{B}} \\ y^p \end{bmatrix} + \begin{bmatrix} -tz \\ -tr^{\mathcal{B}} \\ t \end{bmatrix} = \begin{bmatrix} Av - a \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix} \end{bmatrix}$$
(4)

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T & [b^p]^T \\ B^{\mathcal{B}} & O & O \\ b^p & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ y^{\mathcal{B}} \\ y^p \end{bmatrix} = \begin{bmatrix} \nabla f(v)^T \\ 0 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} Av - a \\ 0 \\ 0 \end{bmatrix}.$$
 (5)

Therefore we have to show that

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T & [b^p]^T \\ B^{\mathcal{B}} & O & O \\ b^p & 0 & 0 \end{bmatrix} \begin{bmatrix} -tz \\ -tr^{\mathcal{B}} \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \alpha \end{bmatrix}.$$
 (6)

Now indices are omitted!

Equation 1: Show that $Az + B^T r = q$, $q = b^T$, z = Hq, r = Nq.

$$A(A^{-1}(I - B^T N))q + B^T N q = q$$

Equation 2:

If

$$Bz = BHq = BA^{-1}(I - B^T N)q$$

= $[BA^{-1} - (BA^{-1}B^T)(BA^{-1}B^T)^{-1}BA^{-1}]q = 0$

Equation 3: Clear! See above! \Box

The linear system (6) differs from the system (3) only by the value

$$0 \neq \alpha = -g^{p}(x) + g^{p}(v) = -g^{p}(v) + g^{p}(v) - b^{p}t \, z = -t \, b^{p}z.$$

We now consider the primal and the dual correcture

$$x = v + tz$$
, $y^T = \begin{bmatrix} y^{\mathcal{B}} - tr^{\mathcal{B}} \\ y^p + t \end{bmatrix}$,

then we have to choose t such that q^p becomes active if possible (q^p linear):

$$g^{p}(x) = g^{p}(x+tz) \equiv g^{p}(v) + tb^{p}z = 0$$
$$\iff t = t_{2} := -g^{p}(v)/b^{p}z.$$

Here $t_2 > 0$ since on the one hand $g^p(v) < 0$ by the assumption on the V-triple, and on the other hand, $b^p z = b^p H[b^p]^T > 0$ because H positive definit for rank-maximal $B^{\mathcal{B}}$. Conclusion:

$$t = t_2$$
 and $y^{\mathcal{B}} - t_2 r^{\mathcal{B}} \ge 0, \ y^p + t_2 \ge 0,$

then $(x + t_2 z, \mathcal{B} \cup \{p\})$ is a new S-pair for some $\mathcal{J} \supset \{\mathcal{B} \cup \{p\}\}$.

Suppose that (7) is violated then we must choose $t < t_2$ and a suitable index of the index set \mathcal{B} must be cancelled in order to obtain a new V-triple, but with the additional condition that (1°) the infeasibility $g^p(v) < 0$ decreases, i.e. $g^p(x) > g^p(v)$,

$$(2^{\circ}) f(x) \ge f(v)$$
 i.e. the cost functional does *not* decrease.

This procedure can be performed at most $|\mathcal{B}|$ -times then $\mathcal{B} = \emptyset$, $y^{\mathcal{B}}$ is disappeared and $y^p \ge 0$ by assumption (cf. (2°). Thus we obtain after at most $|\mathcal{B}|$ steps of inactivation and one step of activation with $t = t_2$ a new S-pair where $\mathcal{B} = \{p\}$ and f(x) > f(v). The cost functional is enlarged in every new L-pair and only a finite number of index subsets do exist therefore the algorithm breakso off some time.

(7)

Lemma 2 Let (v, \mathcal{B}, p) be a V-triple, let $b := b^p$ and

$$x = v + tz, \ z = Hb^T, \ r = Nb^T, t_1 = \operatorname{Min}\{y^i/r^i, \ i \in \mathcal{B}, \ r^i > 0\}, \ t_2 = -g^p(v)/b \ z, \ t = \operatorname{Min}\{t_1, t_2\}.$$

Then

(1°) $g^{p}(x) \ge g^{p}(v)$ for $0 \le t \le t_{2}$ (> if t > 0), (2°) $f(x) - f(v) = t(b z) \left(\frac{1}{2}t + y^{p}\right)$ (> if t > 0), (2°) (Inactivation step) Suppose that

$$t = t_1 = y^j / r^j < t_2 \text{ for } a j \in \mathcal{B}, \ j \neq p,$$

then $(x, \mathcal{B} \setminus \{j\}, p)$ is a V-triple, (4°) (Activation step) Suppose $t = t_2$ then $(x, \mathcal{B} \cup \{p\})$ is a S-pair.

Proof. The matrix H is regular as long as the matrix $[[B^{\mathcal{B}}]^T, b^T]$ has maximum rank. We have $b z = b H b^T > 0$ hence

$$g^{p}(x)g^{p}(v) + tb \, z \ge g^{p}(v) \ (>0 \ f'' ur \, t > 0)$$

According to Taylor

$$f(x) - f(v) = t\nabla f(x)z + \frac{1}{2}t^2z^TAz$$

Because the assumption to be a V-triple, by the first row of (3)

$$\nabla f(x) = \left[[B^{\mathcal{B}}]^T, b^T \right] \left[\begin{array}{c} y^{\mathcal{B}} \\ y^p \end{array} \right] \quad z = A^{-1} (I - B^T N) b^T = H b^T$$

therefore, since $B^{\mathcal{B}}z = 0$,

$$\begin{split} f(x) &- f(v) = ty^{p}b \, z + ty^{\mathcal{B}}B^{\mathcal{B}}z \\ &+ \frac{1}{2}t^{2}(b(I - N^{T}B)A^{-1}AA^{-1}(I - B^{T}N)b^{T}) \\ &= ty^{p}b \, z + \frac{1}{2}t^{2}(b \, z) \ (correct), \ b \, z > 0 \\ &= t(b \, z)(\frac{1}{2}t + y^{p}) \end{split}$$

where $y^p > 0$ by assumption.

By definition of t_1 and t we have $y^{\mathcal{B}} - tr^{\mathcal{B}} \ge 0$ hence $g^i(x) = 0, i \in \mathcal{B}, x = v + tz$ and

$$y_{+} = \left[\begin{array}{c} y^{\mathcal{B}} \\ y^{p} \end{array} \right] + t \left[\begin{array}{c} -r^{\mathcal{B}} \\ 1 \end{array} \right] \ge 0$$

By construction we have

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T & [b^p]^T \\ B^{\mathcal{B}} & O & O \\ b^p & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ y_+ \end{bmatrix} = \begin{bmatrix} Ax - a \\ 0 \\ g^p(x) \end{bmatrix}$$

where $g^p(x) = 0$ for $t = t_2$. Therefore, by definition $t = t_2$, then $(x, \mathcal{B} \cup \{p\})$ S-pair

 $0 < t < t_2$, then (x, \mathcal{B}, p) V-triple

 $t = t_1$, then $(y_+)_j = 0$, hence also $(x, \mathcal{B} \setminus \{j\})$ V-triple $(b^j$ to be cancelled!). Let $y^{\mathcal{B}} > 0$ without loss of generalization (other rows/columns cancelled), then always $t = \min\{t_1, t_2\} > 0.\square$

Therefore we obtain a *new* S-pair after $q = |\mathcal{B}|$ inactivation steps at the latest and one activation step with $t = t_2$ since f always increases; in the case where

$$g_p(x) < 0$$
, and $\begin{bmatrix} B^{\mathcal{B}} \\ b^p \end{bmatrix}$ row regular.

Finally we have to weaken the maximum rank condition of the matrix $\begin{bmatrix} B^{\mathcal{B}} \\ b^{p} \end{bmatrix}$ in the assumption on the V-triple. This is managed by the following result which constitutes the keystone of the method dlqp:

Lemma 3 Let (x, \mathcal{B}) be a S-pair and $p \in \mathcal{K} \setminus \mathcal{B}$ such that

$$g^p(x) < 0, \quad r^T B^{\mathcal{B}} = b^p.$$

Then

(1°) If $r \leq 0$, the problem $LQ(\mathcal{B} \cup \{p\})$ and thus the original problem (1) has no solution. (2°) If there exists a $r^i > 0$, then ist $(x, \mathcal{B} \setminus \{j\}, p)$ is a V-triple where

$$j = \arg\min\left\{\frac{y^i}{r^i}, \ r^i > 0, i \in \mathcal{B}\right\}.$$
(8)

Proof. (1°) Let u be arbitrary feasible for $QP(\mathcal{B} \cup \{p\})$. Since (x, \mathcal{B}) shall be a S-pair we then have $g^i(x) = 0, i \in \mathcal{B}$ and $g^i(u) \ge 0, i \in \mathcal{B}$, therefore $b^i(u-x) \ge 0, i \in \mathcal{B}$, i.e. $B^{\mathcal{B}}(u-x) \ge 0$. Furthermore, by assumption,

$$g^{p}(x) < 0$$
, $g^{p}(u) \ge 0$, hence $b^{p}(u-x) \ge 0$.

Let now $r \leq 0$ then

$$b^p(u-x) = r^T B^{\mathcal{B}}(u-x) \le 0$$

which is a contradictin. Therefore the feasible set is empty in this case.

(2°) Accordingly, let $r_j > 0$ for a $j \in \mathcal{B} = \{1, \dots, q\}$ and let without loss of generality j = q. Since $b^p = r^T B^{\mathcal{B}}$ then

$$b^{q} = \frac{1}{r_{q}} \left(-\sum_{i=1}^{q-1} r_{i} t b^{i} + b^{p} \right) \,.$$

Since (x, \mathcal{B}) shall be a S-pair and since

$$\begin{bmatrix} A & [B^{\mathcal{B}}]^T \\ B^{\mathcal{B}} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ y^{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} \nabla f^T \\ 0 \end{bmatrix}$$

we then have

$$\nabla f(x) = \sum_{\substack{i=1\\q-1}}^{q} y_i b^i = \sum_{i=1}^{q-1} y_i b^i + b^p$$
$$= \sum_{i=1}^{q-1} y_i b^i + \frac{y_q}{r_q} \left(-\sum_{i=1}^{q-1} r_i b^i + b^q \right)$$
$$= \frac{y_q}{r_q} b^p + \sum_{i=1}^{q-1} b^i \left(y_i - \frac{y_q}{r_q} r_i \right)$$

Assume $r_i = 0$ then $y_i \ge 0$ since (x, \mathcal{B}) shall be a S-pair. Assume $r_i \ge 0$ then $(....) \ge 0$ because condition (8). Therefore, altogether $[b^1, \ldots, b^{q-1}, b_p]w = \nabla f(x)^T, \ w \ge 0.$

Let $\widetilde{\mathcal{B}} = \{\mathcal{B} \setminus \{q\}\} \cup \{p\}$ then, as an assumption for a V-triple, it is to be shown that $B^{\widetilde{B}}$ is row-regular.

But now $B^{\mathcal{B}}$ is row-regular therefore also $B^{\mathcal{B}\setminus\{q\}}$. Suppose that $B^{\widetilde{\mathcal{B}}}$ is not row-regular then (assumption) $b^{p} = \widetilde{r}^{T} B^{\mathcal{B}\setminus\{q\}} = [r^{\mathcal{B}}]^{T} B^{\mathcal{B}}$

hence $r_q = 0$ which is a contradiction.