Supplements 6 to Chapter I1I E. Gekeler
11/10/06

Local Lagrange Theory

Let X, Y, Z be again real normed vector spaces, let K C ) be an order cone with adjoined
cone K4. We consider the general minimum problem (MP): Find z* € X such that

" =argmin{f(x), z € C, g(x) <0, h(z) =0} (1)

where f:C—R, g:C— Y, h:C— Z.
The following linearized minimum problem is associated to the minimum problem (1):

min{V f(z*)(x — z*), z € C, g(z*) + Vg(z*)(x — ") <0, Vh(z")(x — 2") = 0} (2)
Definition 1 Let g : X D C — Y FRECHET-differentiable, I C Y a positive cone, g(z*) < 0,

and let
LC(g,2") == {v € X, g(z") + Vg(z")v < 0}

be the linearized cone of the constraint g(x) < 0 in z*. Then g(x) < 0 is locally solvable in z*

i VoveLC(g,z%), 3¢ >0, Jp: R - X, p(a) =o|a]) :
g(x*) + Vg(z* ) <0, 0 < a < & => g(2* + av + () < 0.

Theorem 1 (Linearization Theorem) Let
¢ = argmin{f(z), z € C, g(x) <0, h(z) =0},
Let f, g, h F-differentiable, int(KC) # 0, and let h in x* w.r.t. C locally solvable. Further, let
A = {zxeC, Vh(z*)(x — z*) = 0},
B = {zeC, g(z*)+ Vg(z*)(x — x*) < 0},
D = {zxeC, Vf(z*)(x —z*) < 0}.

Then
ANBND =0.

Proof. See [Craven78|, p. 34. Suppose that there exists a € ANBND. Then
g(z") + Vg(a*)(x — ) <0, h(z") + Vh(z")(x —x¥) = 0.
(i) For sufficiently small 0 < «

9(z" + alr —z%) + o(|a])) = g(z7) + aVg(z")(z — 2*) + o(|a])
= (1 —a)g(z”) + alg(z”) + Vg(a™)(z — 27) + o(|al)/a].

Both terms on the right side lie in —K by assumption for sufficiently small o > 0 therefore
9@ + oz —2") + ¢(a)) <0

for sufficiently small o > 0 and arbitrary p(«) = o(]a]).
(ii) h(z) = 0 is in z* w.r.t. C local solvable by assumption, therefore

de>0,3dpco(la):0<a<e=a2"+alx—2")+pla) €S.



(iii) For sufficiently small o > 0 by assumption

0 a f(z* + alz — 2*) + (a)) — f(z*)]
a [V f(z")a(z —2*) + p(a)]
Vi) (z —2%) + p(a)/a — V(") (z —2%), a =0,
>

Therefore V f(z*)(x — z*)

I A

0 hence = ¢ D in contradiction to the assumption.

Definition 2 Let X be a normed vector space and C,D C X.

(1°) aff(C) is the smallest affine subspace of X which contains C, C C aff(C) .

(2°) Let x € CND then x is interior point of C relative to D if there exists a neighborhood of
x in D which is entirely contained in C :

de>0,VueD:|ju—z||<e=ueC.

(3°) relint(C) is the set of interior points of C relative to aff(C).

Let e.g. h : C — Z affine linear then relint(h(C)) # 0, if Z finite-dimensional or relint(C) # 0.
Cf. [Kirsch], p. 50.

Definition 3 Let int(K) # 0.
(a) The pair (g, h) suffices the SLATER condition (S) if

A:={xeC, g(x) <0, h(x) =0} #0.
(b) (g, h) suffices the KARLIN condition (K) if
B:={(y,z) €Kgx Zg Yz €C:yoglz)+zoh(z)>0}={(0,0)}
—(S) is therefore the condition A = @) and —(K) is the condition B # {(0,0)}.

Theorem 2 Let C C X convex, g K-convex, and h affine linear. Further, let
int(K) # 0, relint(h(C)) # 0.

Then
(1°) (S) and 0 € int(h(C)) = (K),
(2°) ~(8) = —~(K).

Proof see [Kirsch], S. 50 ff. So (S) and (K) are nearly equivalent.

Theorem 3 Let the minimum problem (1) be F-differenzierbar and suppose that:

(1°)

(2) int(K) # 0,
(3°) relint(Vh(x*)(C)) # 0.

(4°) h in x* w.r.t. C local solvable,

Then there exists a triple (0,0,0) # (0%, y*, 2*) € Rsg x Ky X Zy such that

l

(¥ Veel: [0°Vf(z")+y oVg(z")+ 2" o Vh(z™)](x — z¥) > 0,

(it) y* o g(z*) = 0.
(iii) If there exists a x € C so that

9(z") + Vg(a")(x — 2%) <0, Vh(z")(z —z7) =0,
and if * € int(Vh(z*)(C)), then o* =1 can be chosen and y* # 0.

" =argmin{f(z), z € C, g(z) <0, h(z) =0},



em Proof. See also [Kirsch]. Let W =R x Y, J =Ry x K4. Then J C W is a convex cone
with int(J) = Rsg X int(Ky) # 0. Let G : X — W be defined by

G(z) = [Vf(z")(x —2"), g(z") + Vg(z")(z — z7)]
then G is J-convex. Let H : X — Z definiert durch
H(z) = Vh(z")(z — z¥)

dann ist H affine linear. Then we obtain by the linearization theorem that

A={zeC Gz) 20, Hx) =0} =0.

Therefore —(S) for (G, H). Because relint(H(C)) = relint(Vh(z*)(C) # 0 , Theorem 2 supplies
the exisrence of (0,0) # (y*, 2*) € Ju4 X Z4 such that

VeelC: y oG(x)+z2"oH(z)>0.
Since y* = (0", y*) € Rs¢ x K}, we obtain by this way directly that

VexecC: (3)
OV )@ - 2) " 0 [9(a") + V() (@ — )] + 2* 0 Vh(at)(z — %) 2 0.

Furthermore we have g(z*) < 0 hence y*og(z*) < 0. For z = 2* (3) implies that y*og(z*) > 0,
hence together y* o g(z*) = 0. Now the assertion follows from (3).

Suppose o* = 0 then necessarily (y*, z*) # (0,0). It then follows from (3) that
VezelC:y olg(z")+ Vg(z*)(x — 2")] + 2" o Vh(z™)(z — z*) > 0.

By Ass. (iii) there exists a # € C which fulfills this inequality. For this  we obtain by Lemma
1.26 of the section on convex sets that

y*og(x®) + Vg(a*)(z — 2")] + 2" o Vh(z™)(z — 2¥) <0,
or y* = 0. Suppose y* # 0 then necessarily o* # 0. Suppose y* = 0 and p* = 0 then necessarily
z* # 0, and it follows from (3) that z* € (Vh(z*)(C — 2*))4. Because z* € int(Vh(z*)(C))
then 0 € int(Vh(z*)(C — z*)). By Lemma 1.26 then z* = 0. This is a contradiction to to

(0*,y*, 2*) # (0,0,0) therefore y* # 0 under the named additional assumptions. By division
with ¢* then the last assertion of the Theorem is verfied.

Definition 4 A feasible point x* is a reqular point if:
(1°) There exists a x € C such that

g(x*) + Vg(x*)(z — 2*) < 0, Vh(z")(x —z%) = 0.
(2°) h is in z* w.r.t. C local solvable.

Theorem 4 (ROBINSON) Let X' be a BANACH space, } a normed space, KK C Y closed and
g: X — Y continuously F-differentiable. Then g(x) < 0 is local solvable z* € X if

0 € intlg(z") + Vg(z*)(X) + K.



Proof see [Robinson).

Theorem 5 (LJUSTERNIK) Let X', ) be BANACH spaces, g : X — Y continuously F-differen-
tiable, g(z*) =0, and Vg(x*)(X) =Y. Then g(x) =0 is in x* local solvable.

Proof see [Ljusternik].

Apparently the theorem of LIUSTERNIK follows from the theorem of ROBINSON. Assume now
that Z = Vh(z*)(X) then relint(Vh(z*)(X) = int(Z) # 0, 0 € int(Vh(z*)(X) and h in z*
local solvable by ROBINSON’s theorem if A(z*) = 0. Theorem 3 then leads to the following
result:

Corollary 1 Let the minimum problem (1) be continuously F-differentiable and suppose that:

(1°)

(2°) int(K) # 0,

(3°) Vh(z*) : X — Z surjective,

(4°) Jz e X : g(z*)+ Vg(z*)xr <0, Vh(z*)z = 0.

Then there ezists a pair (y*, z*) € Kq X Z4 with y* # 0 such that

(1)
(i) y* o g(z*) = 0.

Theorem 6 Let the minimum problem (MP) (1) for C = X be convex (h affine linear), F-
differentiable, x* € S, and let the multiplier rule (MR) be fulfilled:

" = argmin{f(x), x € X, g(z) <0, h(z) =0},

Vi) +y oVg(z*)+ 2" o Vh(z*) = 0.

I (y*,2") € Ky x Z4: V L(z",y",2") =0, andy* o g(x*) = 0.
Then z* is solution of (MP).

Proof. Since f, g convex and h affine linear, we have

fl@) = fl@")+ V() (z —a7),
g(x) = g(*) + Vg(a*)(x — z7),
h(z*) + Vh(z*)(x — x*).

=
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Then, by (MR) for x € X
f(z) f(@) +y og(x)+ 2" oh(x)

(%) +y" o [g(z") + Vg(a*)(z — 27)] + 2" o [a(2") + Vh(z") (2 — 27)]

Ew*) +y*og(z*) + 2" o h(z*) + V,L(x*, y*, 2*)(x — z¥)
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Briefly: (MR) is necessary for (MP) and sufficient if (MP) convex.



