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Supplements 6 to Chapter III E. Gekeler
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Local Lagrange Theory

Let X , Y , Z be again real normed vector spaces, let K ⊂ Y be an order cone with adjoined
cone Kd. We consider the general minimum problem (MP): Find x∗ ∈ X such that

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0, h(x) = 0} (1)

where f : C → R, g : C → Y , h : C → Z.

The following linearized minimum problem is associated to the minimum problem (1):

min{∇f(x∗)(x− x∗), x ∈ C, g(x∗) +∇g(x∗)(x− x∗) ≤ 0, ∇h(x∗)(x− x∗) = 0} (2)

Definition 1 Let g : X ⊃ C → Y Fréchet-differentiable, K ⊂ Y a positive cone, g(x∗) ≤ 0,
and let

LC(g, x∗) := {v ∈ X , g(x∗) +∇g(x∗)v ≤ 0}
be the linearized cone of the constraint g(x) ≤ 0 in x∗. Then g(x) ≤ 0 is locally solvable in x∗

if ∀ v ∈ LC(g, x∗)), ∃ ε > 0, ∃ ϕ : R→ X , ϕ(α) = o(|α|) :
g(x∗) +∇g(x∗)v ≤ 0, 0 < α ≤ ε =⇒ g(x∗ + αv + ϕ(α)) ≤ 0.

Theorem 1 (Linearization Theorem) Let

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0, h(x) = 0},

Let f, g, h F-differentiable, int(K) 6= ∅, and let h in x∗ w.r.t. C locally solvable. Further, let

A = {x ∈ C, ∇h(x∗)(x− x∗) = 0},
B = {x ∈ C, g(x∗) +∇g(x∗)(x− x∗) < 0},
D = {x ∈ C, ∇f(x∗)(x− x∗) < 0}.

Then A ∩ B ∩ D = ∅.
Proof. See [Craven78], p. 34. Suppose that there exists a x ∈ A ∩ B ∩ D. Then

g(x∗) +∇g(x∗)(x− x∗) < 0, h(x∗) +∇h(x∗)(x− x∗) = 0.

(i) For sufficiently small 0 < α

g(x∗ + α(x− x∗) + o(|α|)) = g(x∗) + α∇g(x∗)(x− x∗) + o(|α|)
= (1− α)g(x∗) + α[g(x∗) +∇g(x∗)(x− x∗) + o(|α|)/α].

Both terms on the right side lie in −K by assumption for sufficiently small α > 0 therefore

g(x∗ + α(x− x∗) + ϕ(α)) ≤ 0

for sufficiently small α > 0 and arbitrary ϕ(α) = o(|α|).
(ii) h(x) = 0 is in x∗ w.r.t. C local solvable by assumption, therefore

∃ ε > 0, ∃ ϕ ∈ o(|α|) : 0 < α < ε =⇒ x∗ + α(x− x∗) + ϕ(α) ∈ S.
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(iii) For sufficiently small α > 0 by assumption

0 ≤ α−1[f(x∗ + α(x− x∗) + ϕ(α))− f(x∗)]
= α−1[∇f(x∗)α(x− x∗) + ϕ(α)]
= ∇f(x∗)(x− x∗) + ϕ(α)/α → ∇f(x∗)(x− x∗), α → 0,

Therefore ∇f(x∗)(x− x∗) ≥ 0 hence x /∈ D in contradiction to the assumption.

Definition 2 Let X be a normed vector space and C,D ⊂ X .
(1◦) aff(C) is the smallest affine subspace of X which contains C , C ⊂ aff(C) .
(2◦) Let x ∈ C ∩ D then x is interior point of C relative to D if there exists a neighborhood of
x in D which is entirely contained in C :

∃ ε > 0, ∀ u ∈ D : ‖u− x‖ ≤ ε =⇒ u ∈ C.
(3◦) relint(C) is the set of interior points of C relative to aff(C).

Let e.g. h : C → Z affine linear then relint(h(C)) 6= ∅, if Z finite-dimensional or relint(C) 6= ∅.
Cf. [Kirsch], p. 50.

Definition 3 Let int(K) 6= ∅.
(a) The pair (g, h) suffices the Slater condition (S) if

A := {x ∈ C, g(x) < 0, h(x) = 0} 6= ∅.
(b) (g, h) suffices the Karlin condition (K) if

B := {(y, z) ∈ Kd × Zd, ∀ x ∈ C : y ◦ g(x) + z ◦ h(x) ≥ 0} = {(0, 0)}.
¬(S) is therefore the condition A = ∅ and ¬(K) is the condition B 6= {(0, 0)}.
Theorem 2 Let C ⊂ X convex, g K-convex, and h affine linear. Further, let

int(K) 6= ∅, relint(h(C)) 6= ∅.
Then
(1◦) (S) and 0 ∈ int(h(C)) =⇒ (K),
(2◦) ¬(S) =⇒ ¬(K).

Proof see [Kirsch], S. 50 ff. So (S) and (K) are nearly equivalent.

Theorem 3 Let the minimum problem (1) be F-differenzierbar and suppose that:
(1◦)

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0, h(x) = 0},
(2◦) int(K) 6= ∅,
(3◦) relint(∇h(x∗)(C)) 6= ∅.
(4◦) h in x∗ w.r.t. C local solvable,
Then there exists a triple (0, 0, 0) 6= (%∗, y∗, z∗) ∈ R≥0 ×Kd × Zd such that
(i) ∀ x ∈ C : [%∗∇f(x∗) + y∗ ◦ ∇g(x∗) + z∗ ◦ ∇h(x∗)](x− x∗) ≥ 0,

(ii) y∗ ◦ g(x∗) = 0.
(iii) If there exists a x ∈ C so that

g(x∗) +∇g(x∗)(x− x∗) < 0, ∇h(x∗)(x− x∗) = 0,

and if x∗ ∈ int(∇h(x∗)(C)), then %∗ = 1 can be chosen and y∗ 6= 0.
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em Proof. See also [Kirsch]. Let W = R × Y, J = R≥0 × Kd. Then J ⊂ W is a convex cone
with int(J ) = R>0 × int(Kd) 6= ∅. Let G : X → W be defined by

G(x) = [∇f(x∗)(x− x∗), g(x∗) +∇g(x∗)(x− x∗)]

then G is J -convex. Let H : X → Z definiert durch

H(x) = ∇h(x∗)(x− x∗)

dann ist H affine linear. Then we obtain by the linearization theorem that

A := {x ∈ C, G(x)
J
< 0, H(x) = 0} = ∅.

Therefore ¬(S) for (G,H). Because relint(H(C)) = relint(∇h(x∗)(C) 6= ∅ , Theorem 2 supplies
the exisrence of (0, 0) 6= (ỹ∗, z∗) ∈ Jd × Zd such that

∀ x ∈ C : ỹ∗ ◦G(x) + z∗ ◦H(x) ≥ 0.

Since ỹ∗ = (%∗, y∗) ∈ R≥0 ×K′d , we obtain by this way directly that

∀ x ∈ C :
%∗∇f(x∗)(x− x∗) + y∗ ◦ [g(x∗) +∇g(x∗)(x− x∗)] + z∗ ◦ ∇h(x∗)(x− x∗) ≥ 0.

(3)

Furthermore we have g(x∗) ≤ 0 hence y∗ ◦g(x∗) ≤ 0 . For x = x∗ (3) implies that y∗ ◦g(x∗) ≥ 0,
hence together y∗ ◦ g(x∗) = 0. Now the assertion follows from (3).

Suppose %∗ = 0 then necessarily (y∗, z∗) 6= (0, 0). It then follows from (3) that

∀ x ∈ C : y∗ ◦ [g(x∗) +∇g(x∗)(x− x∗)] + z∗ ◦ ∇h(x∗)(x− x∗) ≥ 0.

By Ass. (iii) there exists a x ∈ C which fulfills this inequality. For this x we obtain by Lemma
1.26 of the section on convex sets that

y∗ ◦ [g(x∗) +∇g(x∗)(x− x∗)] + z∗ ◦ ∇h(x∗)(x− x∗) < 0,

or y∗ = 0. Suppose y∗ 6= 0 then necessarily %∗ 6= 0 . Suppose y∗ = 0 and %∗ = 0 then necessarily
z∗ 6= 0 , and it follows from (3) that z∗ ∈ (∇h(x∗)(C − x∗))d. Because x∗ ∈ int(∇h(x∗)(C))
then 0 ∈ int(∇h(x∗)(C − x∗)). By Lemma 1.26 then z∗ = 0 . This is a contradiction to to
(%∗, y∗, z∗) 6= (0, 0, 0) therefore y∗ 6= 0 under the named additional assumptions. By division
with %∗ then the last assertion of the Theorem is verfied.

Definition 4 A feasible point x∗ is a regular point if:
(1◦) There exists a x ∈ C such that

g(x∗) +∇g(x∗)(x− x∗) < 0, ∇h(x∗)(x− x∗) = 0.

(2◦) h is in x∗ w.r.t. C local solvable.

Theorem 4 (Robinson) Let X be a Banach space, Y a normed space, K ⊂ Y closed and
g : X → Y continuously F-differentiable. Then g(x) ≤ 0 is local solvable x∗ ∈ X if

0 ∈ int[g(x∗) +∇g(x∗)(X ) +K].
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Proof see [Robinson].

Theorem 5 (Ljusternik) Let X , Y be Banach spaces, g : X → Y continuously F-differen-
tiable, g(x∗) = 0, and ∇g(x∗)(X ) = Y. Then g(x) = 0 is in x∗ local solvable.

Proof see [Ljusternik].

Apparently the theorem of Ljusternik follows from the theorem of Robinson. Assume now
that Z = ∇h(x∗)(X ) then relint(∇h(x∗)(X ) = int(Z) 6= ∅, 0 ∈ int(∇h(x∗)(X ) and h in x∗

local solvable by Robinson’s theorem if h(x∗) = 0 . Theorem 3 then leads to the following
result:

Corollary 1 Let the minimum problem (1) be continuously F-differentiable and suppose that:
(1◦)

x∗ = arg min{f(x), x ∈ X , g(x) ≤ 0, h(x) = 0},
(2◦) int(K) 6= ∅,
(3◦) ∇h(x∗) : X → Z surjective,
(4◦) ∃ x ∈ X : g(x∗) +∇g(x∗)x < 0, ∇h(x∗)x = 0.
Then there exists a pair (y∗, z∗) ∈ Kd ×Zd with y∗ 6= 0 such that
(i) ∇f(x∗) + y∗ ◦ ∇g(x∗) + z∗ ◦ ∇h(x∗) = 0.

(ii) y∗ ◦ g(x∗) = 0 .

Theorem 6 Let the minimum problem (MP) (1) for C = X be convex (h affine linear), F-
differentiable, x∗ ∈ S, and let the multiplier rule (MR) be fulfilled:

∃ (y∗, z∗) ∈ Kd ×Zd : ∇xL(x∗, y∗, z∗) = 0, and y∗ ◦ g(x∗) = 0.

Then x∗ is solution of (MP).

Proof. Since f, g convex and h affine linear, we have

f(x) ≥ f(x∗) +∇f(x∗)(x− x∗),
g(x) ≥ g(x∗) +∇g(x∗)(x− x∗),
h(x) = h(x∗) +∇h(x∗)(x− x∗).

Then, by (MR) for x ∈ X

f(x) ≥ f(x) + y∗ ◦ g(x) + z∗ ◦ h(x)
≥ f(x∗) + y∗ ◦ [g(x∗) +∇g(x∗)(x− x∗)] + z∗ ◦ [h(x∗) +∇h(x∗)(x− x∗)]
= f(x∗) + y∗ ◦ g(x∗) + z∗ ◦ h(x∗) +∇xL(x∗, y∗, z∗)(x− x∗)
= f(x∗).

Briefly: (MR) is necessary for (MP) and sufficient if (MP) convex.


