11/10/06

Local Lagrange Theory

Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be again real normed vector spaces, let $\mathcal{K} \subset \mathcal{Y}$ be an order cone with adjoined cone \mathcal{K}_{d}. We consider the general minimum problem (MP): Find $x^{*} \in \mathcal{X}$ such that

$$
\begin{equation*}
x^{*}=\arg \min \{f(x), x \in \mathcal{C}, g(x) \leq 0, h(x)=0\} \tag{1}
\end{equation*}
$$

where $f: \mathcal{C} \rightarrow \mathbb{R}, g: \mathcal{C} \rightarrow \mathcal{Y}, h: \mathcal{C} \rightarrow \mathcal{Z}$.
The following linearized minimum problem is associated to the minimum problem (1):

$$
\begin{equation*}
\min \left\{\nabla f\left(x^{*}\right)\left(x-x^{*}\right), x \in \mathcal{C}, g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right) \leq 0, \nabla h\left(x^{*}\right)\left(x-x^{*}\right)=0\right\} \tag{2}
\end{equation*}
$$

Definition 1 Let $g: \mathcal{X} \supset \mathcal{C} \rightarrow \mathcal{Y}$ Fréchet-differentiable, $\mathcal{K} \subset \mathcal{Y}$ a positive cone, $g\left(x^{*}\right) \leq 0$, and let

$$
\mathrm{LC}\left(g, x^{*}\right):=\left\{v \in \mathcal{X}, g\left(x^{*}\right)+\nabla g\left(x^{*}\right) v \leq 0\right\}
$$

be the linearized cone of the constraint $g(x) \leq 0$ in x^{*}. Then $g(x) \leq 0$ is locally solvable in x^{*} if

$$
\begin{aligned}
& \left.\forall v \in \operatorname{LC}\left(g, x^{*}\right)\right), \exists \varepsilon>0, \exists \varphi: \mathbb{R} \rightarrow \mathcal{X}, \varphi(\alpha)=o(|\alpha|): \\
& g\left(x^{*}\right)+\nabla g\left(x^{*}\right) v \leq 0,0<\alpha \leq \varepsilon \Longrightarrow g\left(x^{*}+\alpha v+\varphi(\alpha)\right) \leq 0 .
\end{aligned}
$$

Theorem 1 (Linearization Theorem) Let

$$
x^{*}=\arg \min \{f(x), x \in \mathcal{C}, g(x) \leq 0, h(x)=0\},
$$

Let f, g, h F-differentiable, $\operatorname{int}(\mathcal{K}) \neq \emptyset$, and let h in x^{*} w.r.t. \mathcal{C} locally solvable. Further, let

$$
\begin{aligned}
\mathcal{A} & =\left\{x \in \mathcal{C}, \nabla h\left(x^{*}\right)\left(x-x^{*}\right)=0\right\} \\
\mathcal{B} & =\left\{x \in \mathcal{C}, g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)<0\right\}, \\
\mathcal{D} & =\left\{x \in \mathcal{C}, \nabla f\left(x^{*}\right)\left(x-x^{*}\right)<0\right\}
\end{aligned}
$$

Then

$$
\mathcal{A} \cap \mathcal{B} \cap \mathcal{D}=\emptyset
$$

Proof. See [Craven78], p. 34. Suppose that there exists a $x \in \mathcal{A} \cap \mathcal{B} \cap \mathcal{D}$. Then

$$
g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)<0, h\left(x^{*}\right)+\nabla h\left(x^{*}\right)\left(x-x^{*}\right)=0 .
$$

(i) For sufficiently small $0<\alpha$

$$
\begin{aligned}
& g\left(x^{*}+\alpha\left(x-x^{*}\right)+o(|\alpha|)\right)=g\left(x^{*}\right)+\alpha \nabla g\left(x^{*}\right)\left(x-x^{*}\right)+o(|\alpha|) \\
& =(1-\alpha) g\left(x^{*}\right)+\alpha\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)+o(|\alpha|) / \alpha\right] .
\end{aligned}
$$

Both terms on the right side lie in $-\mathcal{K}$ by assumption for sufficiently small $\alpha>0$ therefore

$$
g\left(x^{*}+\alpha\left(x-x^{*}\right)+\varphi(\alpha)\right) \leq 0
$$

for sufficiently small $\alpha>0$ and arbitrary $\varphi(\alpha)=o(|\alpha|)$.
(ii) $h(x)=0$ is in x^{*} w.r.t. \mathcal{C} local solvable by assumption, therefore

$$
\exists \varepsilon>0, \exists \varphi \in o(|\alpha|): 0<\alpha<\varepsilon \Longrightarrow x^{*}+\alpha\left(x-x^{*}\right)+\varphi(\alpha) \in \mathcal{S} .
$$

(iii) For sufficiently small $\alpha>0$ by assumption

$$
\begin{aligned}
0 & \leq \alpha^{-1}\left[f\left(x^{*}+\alpha\left(x-x^{*}\right)+\varphi(\alpha)\right)-f\left(x^{*}\right)\right] \\
& =\alpha^{-1}\left[\nabla f\left(x^{*}\right) \alpha\left(x-x^{*}\right)+\varphi(\alpha)\right] \\
& =\nabla f\left(x^{*}\right)\left(x-x^{*}\right)+\varphi(\alpha) / \alpha \rightarrow \nabla f\left(x^{*}\right)\left(x-x^{*}\right), \alpha \rightarrow 0,
\end{aligned}
$$

Therefore $\nabla f\left(x^{*}\right)\left(x-x^{*}\right) \geq 0$ hence $x \notin \mathcal{D}$ in contradiction to the assumption.
Definition 2 Let \mathcal{X} be a normed vector space and $\mathcal{C}, \mathcal{D} \subset \mathcal{X}$.
$\left(1^{\circ}\right) \operatorname{aff}(\mathcal{C})$ is the smallest affine subspace of \mathcal{X} which contains $\mathcal{C}, \mathcal{C} \subset \operatorname{aff}(\mathcal{C})$.
(2°) Let $x \in \mathcal{C} \cap \mathcal{D}$ then x is interior point of \mathcal{C} relative to \mathcal{D} if there exists a neighborhood of x in \mathcal{D} which is entirely contained in \mathcal{C} :

$$
\exists \varepsilon>0, \forall u \in \mathcal{D}:\|u-x\| \leq \varepsilon \Longrightarrow u \in \mathcal{C}
$$

$\left(3^{\circ}\right) \operatorname{relint}(\mathcal{C})$ is the set of interior points of \mathcal{C} relative to $\operatorname{aff}(\mathcal{C})$.
Let e.g. $h: \mathcal{C} \rightarrow \mathcal{Z}$ affine linear then $\operatorname{relint}(h(\mathcal{C})) \neq \emptyset$, if \mathcal{Z} finite-dimensional or $\operatorname{relint}(\mathcal{C}) \neq \emptyset$.
Cf. [Kirsch], p. 50.
Definition 3 Let $\operatorname{int}(\mathcal{K}) \neq \emptyset$.
(a) The pair (g, h) suffices the Slater condition (S) if

$$
\mathcal{A}:=\{x \in \mathcal{C}, g(x)<0, h(x)=0\} \neq \emptyset .
$$

(b) (g, h) suffices the Karlin condition (K) if

$$
\mathcal{B}:=\left\{(y, z) \in \mathcal{K}_{d} \times Z_{d}, \forall x \in \mathcal{C}: y \circ g(x)+z \circ h(x) \geq 0\right\}=\{(0,0)\}
$$

$\neg(S)$ is therefore the condition $\mathcal{A}=\emptyset$ and $\neg(K)$ is the condition $\mathcal{B} \neq\{(0,0)\}$.
Theorem 2 Let $\mathcal{C} \subset X$ convex, $g \mathcal{K}$-convex, and h affine linear. Further, let

$$
\operatorname{int}(\mathcal{K}) \neq \emptyset, \operatorname{relint}(h(\mathcal{C})) \neq \emptyset
$$

Then
$\left(1^{\circ}\right)(S)$ and $0 \in \operatorname{int}(h(\mathcal{C})) \Longrightarrow(K)$,
$\left(2^{\circ}\right) \neg(S) \Longrightarrow \neg(K)$.
Proof see [Kirsch], S. 50 ff . So (S) and (K) are nearly equivalent.
Theorem 3 Let the minimum problem (1) be F-differenzierbar and suppose that:
(1 ${ }^{\circ}$)

$$
x^{*}=\arg \min \{f(x), x \in \mathcal{C}, g(x) \leq 0, h(x)=0\}
$$

$\left(2^{\circ}\right) \operatorname{int}(\mathcal{K}) \neq \emptyset$,
$\left(3^{\circ}\right) \operatorname{relint}\left(\nabla h\left(x^{*}\right)(\mathcal{C})\right) \neq \emptyset$.
$\left(4^{\circ}\right) h$ in x^{*} w.r.t. \mathcal{C} local solvable,
Then there exists a triple $(0,0,0) \neq\left(\varrho^{*}, y^{*}, z^{*}\right) \in \mathbb{R}_{\geq 0} \times \mathcal{K}_{d} \times Z_{d}$ such that
(i)

$$
\forall x \in \mathcal{C}:\left[\varrho^{*} \nabla f\left(x^{*}\right)+y^{*} \circ \nabla g\left(x^{*}\right)+z^{*} \circ \nabla h\left(x^{*}\right)\right]\left(x-x^{*}\right) \geq 0,
$$

(ii) $y^{*} \circ g\left(x^{*}\right)=0$.
(iii) If there exists a $x \in \mathcal{C}$ so that

$$
g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)<0, \nabla h\left(x^{*}\right)\left(x-x^{*}\right)=0,
$$

and if $x^{*} \in \operatorname{int}\left(\nabla h\left(x^{*}\right)(\mathcal{C})\right)$, then $\varrho^{*}=1$ can be chosen and $y^{*} \neq 0$.
em Proof. See also [Kirsch]. Let $\mathcal{W}=\mathbb{R} \times Y, \mathcal{J}=\mathbb{R}_{\geq 0} \times \mathcal{K}_{d}$. Then $\mathcal{J} \subset \mathcal{W}$ is a convex cone with $\operatorname{int}(\mathcal{J})=\mathbb{R}_{>0} \times \operatorname{int}\left(\mathcal{K}_{d}\right) \neq \emptyset$. Let $G: \mathcal{X} \rightarrow \mathcal{W}$ be defined by

$$
G(x)=\left[\nabla f\left(x^{*}\right)\left(x-x^{*}\right), g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)\right]
$$

then G is \mathcal{J}-convex. Let $H: \mathcal{X} \rightarrow \mathcal{Z}$ definiert durch

$$
H(x)=\nabla h\left(x^{*}\right)\left(x-x^{*}\right)
$$

dann ist H affine linear. Then we obtain by the linearization theorem that

$$
\mathcal{A}:=\{x \in \mathcal{C}, G(x) \stackrel{\mathcal{J}}{<} 0, H(x)=0\}=\emptyset .
$$

Therefore $\neg(S)$ for (G, H). Because $\operatorname{relint}(H(\mathcal{C}))=\operatorname{relint}\left(\nabla h\left(x^{*}\right)(\mathcal{C}) \neq \emptyset\right.$, Theorem 2 supplies the exisrence of $(0,0) \neq\left(\widetilde{y}^{*}, z^{*}\right) \in \mathcal{J}_{d} \times Z_{d}$ such that

$$
\forall x \in \mathcal{C}: \widetilde{y}^{*} \circ G(x)+z^{*} \circ H(x) \geq 0 .
$$

Since $\widetilde{y}^{*}=\left(\varrho^{*}, y^{*}\right) \in \mathbb{R}_{\geq 0} \times \mathcal{K}_{d}^{\prime}$, we obtain by this way directly that

$$
\begin{align*}
& \forall x \in \mathcal{C}: \\
& \varrho^{*} \nabla f\left(x^{*}\right)\left(x-x^{*}\right)+y^{*} \circ\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)\right]+z^{*} \circ \nabla h\left(x^{*}\right)\left(x-x^{*}\right) \geq 0 . \tag{3}
\end{align*}
$$

Furthermore we have $g\left(x^{*}\right) \leq 0$ hence $y^{*} \circ g\left(x^{*}\right) \leq 0$. For $x=x^{*}(3)$ implies that $y^{*} \circ g\left(x^{*}\right) \geq 0$, hence together $y^{*} \circ g\left(x^{*}\right)=0$. Now the assertion follows from (3).
Suppose $\varrho^{*}=0$ then necessarily $\left(y^{*}, z^{*}\right) \neq(0,0)$. It then follows from (3) that

$$
\forall x \in \mathcal{C}: y^{*} \circ\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)\right]+z^{*} \circ \nabla h\left(x^{*}\right)\left(x-x^{*}\right) \geq 0 .
$$

By Ass. (iii) there exists a $x \in \mathcal{C}$ which fulfills this inequality. For this x we obtain by Lemma 1.26 of the section on convex sets that

$$
y^{*} \circ\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)\right]+z^{*} \circ \nabla h\left(x^{*}\right)\left(x-x^{*}\right)<0,
$$

or $y^{*}=0$. Suppose $y^{*} \neq 0$ then necessarily $\varrho^{*} \neq 0$. Suppose $y^{*}=0$ and $\varrho^{*}=0$ then necessarily $z^{*} \neq 0$, and it follows from (3) that $z^{*} \in\left(\nabla h\left(x^{*}\right)\left(\mathcal{C}-x^{*}\right)\right)_{d}$. Because $x^{*} \in \operatorname{int}\left(\nabla h\left(x^{*}\right)(\mathcal{C})\right)$ then $0 \in \operatorname{int}\left(\nabla h\left(x^{*}\right)\left(\mathcal{C}-x^{*}\right)\right)$. By Lemma 1.26 then $z^{*}=0$. This is a contradiction to to $\left(\varrho^{*}, y^{*}, z^{*}\right) \neq(0,0,0)$ therefore $y^{*} \neq 0$ under the named additional assumptions. By division with ϱ^{*} then the last assertion of the Theorem is verfied.

Definition $4 A$ feasible point x^{*} is a regular point if:
(1) There exists a $x \in \mathcal{C}$ such that

$$
g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)<0, \nabla h\left(x^{*}\right)\left(x-x^{*}\right)=0 .
$$

$\left(2^{\circ}\right) h$ is in x^{*} w.r.t. \mathcal{C} local solvable.
Theorem 4 (Robinson) Let \mathcal{X} be a Banach space, \mathcal{Y} a normed space, $\mathcal{K} \subset \mathcal{Y}$ closed and $g: \mathcal{X} \rightarrow \mathcal{Y}$ continuously F-differentiable. Then $g(x) \leq 0$ is local solvable $x^{*} \in \mathcal{X}$ if

$$
0 \in \operatorname{int}\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)(\mathcal{X})+\mathcal{K}\right]
$$

Proof see [Robinson].
Theorem 5 (Luusternik) Let \mathcal{X}, \mathcal{Y} be Banach spaces, $g: \mathcal{X} \rightarrow \mathcal{Y}$ continuously F-differentiable, $g\left(x^{*}\right)=0$, and $\nabla g\left(x^{*}\right)(\mathcal{X})=\mathcal{Y}$. Then $g(x)=0$ is in x^{*} local solvable.

Proof see [Ljusternik].
Apparently the theorem of Luusternik follows from the theorem of Robinson. Assume now that $\mathcal{Z}=\nabla h\left(x^{*}\right)(\mathcal{X})$ then $\operatorname{relint}\left(\nabla h\left(x^{*}\right)(\mathcal{X})=\operatorname{int}(\mathcal{Z}) \neq \emptyset, 0 \in \operatorname{int}\left(\nabla h\left(x^{*}\right)(\mathcal{X})\right.\right.$ and h in x^{*} local solvable by Robinson's theorem if $h\left(x^{*}\right)=0$. Theorem 3 then leads to the following result:

Corollary 1 Let the minimum problem (1) be continuously F-differentiable and suppose that:

$$
x^{*}=\arg \min \{f(x), x \in \mathcal{X}, g(x) \leq 0, h(x)=0\}
$$

$\left(2^{\circ}\right) \operatorname{int}(\mathcal{K}) \neq \emptyset$,
(3) $\nabla h\left(x^{*}\right): \mathcal{X} \rightarrow \mathcal{Z}$ surjective,
(4) $\exists x \in \mathcal{X}: g\left(x^{*}\right)+\nabla g\left(x^{*}\right) x<0, \nabla h\left(x^{*}\right) x=0$.

Then there exists a pair $\left(y^{*}, z^{*}\right) \in \mathcal{K}_{d} \times \mathcal{Z}_{d}$ with $y^{*} \neq 0$ such that
(i)

$$
\nabla f\left(x^{*}\right)+y^{*} \circ \nabla g\left(x^{*}\right)+z^{*} \circ \nabla h\left(x^{*}\right)=0 .
$$

(ii) $y^{*} \circ g\left(x^{*}\right)=0$.

Theorem 6 Let the minimum problem (MP) (1) for $\mathcal{C}=\mathcal{X}$ be convex (h affine linear), F differentiable, $x^{*} \in \mathcal{S}$, and let the multiplier rule (MR) be fulfilled:

$$
\exists\left(y^{*}, z^{*}\right) \in \mathcal{K}_{d} \times \mathcal{Z}_{d}: \nabla_{x} L\left(x^{*}, y^{*}, z^{*}\right)=0, \text { and } y^{*} \circ g\left(x^{*}\right)=0 .
$$

Then x^{*} is solution of (MP).
Proof. Since f, g convex and h affine linear, we have

$$
\begin{aligned}
& f(x) \geq f\left(x^{*}\right)+\nabla f\left(x^{*}\right)\left(x-x^{*}\right), \\
& g(x) \geq g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right), \\
& h(x)=h\left(x^{*}\right)+\nabla h\left(x^{*}\right)\left(x-x^{*}\right) .
\end{aligned}
$$

Then, by (MR) for $x \in \mathcal{X}$

$$
\begin{aligned}
f(x) & \geq f(x)+y^{*} \circ g(x)+z^{*} \circ h(x) \\
& \geq f\left(x^{*}\right)+y^{*} \circ\left[g\left(x^{*}\right)+\nabla g\left(x^{*}\right)\left(x-x^{*}\right)\right]+z^{*} \circ\left[h\left(x^{*}\right)+\nabla h\left(x^{*}\right)\left(x-x^{*}\right)\right] \\
& =f\left(x^{*}\right)+y^{*} \circ g\left(x^{*}\right)+z^{*} \circ h\left(x^{*}\right)+\nabla_{x} L\left(x^{*}, y^{*}, z^{*}\right)\left(x-x^{*}\right) \\
& =f\left(x^{*}\right) .
\end{aligned}
$$

Briefly: (MR) is necessary for (MP) and sufficient if (MP) convex.

