Local Lagrange Theory

Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be again real normed vector spaces, let $\mathcal{K} \subset \mathcal{Y}$ be an order cone with adjoined cone \mathcal{K}_d . We consider the general minimum problem (MP): Find $x^* \in \mathcal{X}$ such that

$$x^* = \arg\min\{f(x), \ x \in \mathcal{C}, \ g(x) \le 0, \ h(x) = 0\}$$
(1)

where $f: \mathcal{C} \to \mathbb{R}, g: \mathcal{C} \to \mathcal{Y}, h: \mathcal{C} \to \mathcal{Z}.$

The following *linearized* minimum problem is associated to the minimum problem (1):

$$\min\{\nabla f(x^*)(x-x^*), \ x \in \mathcal{C}, \ g(x^*) + \nabla g(x^*)(x-x^*) \le 0, \ \nabla h(x^*)(x-x^*) = 0\}$$
(2)

Definition 1 Let $g : \mathcal{X} \supset \mathcal{C} \rightarrow \mathcal{Y}$ FRÉCHET-differentiable, $\mathcal{K} \subset \mathcal{Y}$ a positive cone, $g(x^*) \leq 0$, and let

$$\mathrm{LC}(g, x^*) := \{ v \in \mathcal{X}, \ g(x^*) + \nabla g(x^*)v \le 0 \}$$

be the linearized cone of the constraint $g(x) \le 0$ in x^* . Then $g(x) \le 0$ is locally solvable in x^* if $\forall x \in IC(a, x^*)$, $\exists x > 0, \exists x > \mathbb{R} \rightarrow \mathcal{X}$ $(z(\alpha) = o(|\alpha|)$.

$$g(x^*) + \nabla g(x^*)v \le 0, \ 0 < \alpha \le \varepsilon \Longrightarrow g(x^* + \alpha v + \varphi(\alpha)) \le 0.$$

Theorem 1 (Linearization Theorem) Let

$$x^* = \arg\min\{f(x), x \in \mathcal{C}, g(x) \le 0, h(x) = 0\},\$$

Let f, g, h F-differentiable, $int(\mathcal{K}) \neq \emptyset$, and let h in x^* w.r.t. \mathcal{C} locally solvable. Further, let

$$\begin{aligned} \mathcal{A} &= \{ x \in \mathcal{C}, \ \nabla h(x^*)(x - x^*) = 0 \}, \\ \mathcal{B} &= \{ x \in \mathcal{C}, \ g(x^*) + \nabla g(x^*)(x - x^*) < 0 \}, \\ \mathcal{D} &= \{ x \in \mathcal{C}, \ \nabla f(x^*)(x - x^*) < 0 \}. \end{aligned}$$

Then

 $\mathcal{A} \cap \mathcal{B} \cap \mathcal{D} = \emptyset.$

Proof. See [Craven78], p. 34. Suppose that there exists a $x \in \mathcal{A} \cap \mathcal{B} \cap \mathcal{D}$. Then

$$g(x^*) + \nabla g(x^*)(x - x^*) < 0, \ h(x^*) + \nabla h(x^*)(x - x^*) = 0.$$

(i) For sufficiently small $0 < \alpha$

$$g(x^* + \alpha(x - x^*) + o(|\alpha|)) = g(x^*) + \alpha \nabla g(x^*)(x - x^*) + o(|\alpha|)$$

= $(1 - \alpha)g(x^*) + \alpha[g(x^*) + \nabla g(x^*)(x - x^*) + o(|\alpha|)/\alpha].$

Both terms on the right side lie in $-\mathcal{K}$ by assumption for sufficiently small $\alpha > 0$ therefore

$$g(x^* + \alpha(x - x^*) + \varphi(\alpha)) \le 0$$

for sufficiently small $\alpha > 0$ and arbitrary $\varphi(\alpha) = o(|\alpha|)$. (ii) h(x) = 0 is in x^* w.r.t. \mathcal{C} local solvable by assumption, therefore

$$\exists \varepsilon > 0, \ \exists \varphi \in o(|\alpha|) : 0 < \alpha < \varepsilon \Longrightarrow x^* + \alpha(x - x^*) + \varphi(\alpha) \in \mathcal{S}.$$

(iii) For sufficiently small $\alpha > 0$ by assumption

$$0 \leq \alpha^{-1}[f(x^* + \alpha(x - x^*) + \varphi(\alpha)) - f(x^*)]$$

= $\alpha^{-1}[\nabla f(x^*)\alpha(x - x^*) + \varphi(\alpha)]$
= $\nabla f(x^*)(x - x^*) + \varphi(\alpha)/\alpha \rightarrow \nabla f(x^*)(x - x^*), \ \alpha \rightarrow 0,$

Therefore $\nabla f(x^*)(x-x^*) \ge 0$ hence $x \notin \mathcal{D}$ in contradiction to the assumption.

Definition 2 Let \mathcal{X} be a normed vector space and $\mathcal{C}, \mathcal{D} \subset \mathcal{X}$. (1°) aff(\mathcal{C}) is the smallest affine subspace of \mathcal{X} which contains $\mathcal{C}, \mathcal{C} \subset \text{aff}(\mathcal{C})$. (2°) Let $x \in \mathcal{C} \cap \mathcal{D}$ then x is interior point of \mathcal{C} relative to \mathcal{D} if there exists a neighborhood of x in \mathcal{D} which is entirely contained in \mathcal{C} :

$$\exists \varepsilon > 0, \ \forall u \in \mathcal{D} : ||u - x|| \le \varepsilon \Longrightarrow u \in \mathcal{C}.$$

 (3°) relint(\mathcal{C}) is the set of interior points of \mathcal{C} relative to aff(\mathcal{C}).

Let e.g. $h : \mathcal{C} \to \mathcal{Z}$ affine linear then relint $(h(\mathcal{C})) \neq \emptyset$, if \mathcal{Z} finite-dimensional or relint $(\mathcal{C}) \neq \emptyset$. Cf. [Kirsch], p. 50.

Definition 3 Let $int(\mathcal{K}) \neq \emptyset$.

(a) The pair (g, h) suffices the SLATER condition (S) if

$$\mathcal{A} := \{ x \in \mathcal{C}, \ g(x) < 0, \ h(x) = 0 \} \neq \emptyset$$

(b) (g, h) suffices the KARLIN condition (K) if

$$\mathcal{B} := \{ (y, z) \in \mathcal{K}_d \times Z_d, \ \forall \ x \in \mathcal{C} : y \circ g(x) + z \circ h(x) \ge 0 \} = \{ (0, 0) \}.$$

 $\neg(S)$ is therefore the condition $\mathcal{A} = \emptyset$ and $\neg(K)$ is the condition $\mathcal{B} \neq \{(0,0)\}$.

Theorem 2 Let $C \subset X$ convex, $g \mathcal{K}$ -convex, and h affine linear. Further, let

 $\operatorname{int}(\mathcal{K}) \neq \emptyset$, $\operatorname{relint}(h(\mathcal{C})) \neq \emptyset$.

Then (1°) (S) and $0 \in int(h(\mathcal{C})) \Longrightarrow (K),$ (2°) $\neg(S) \Longrightarrow \neg(K).$

Proof see [Kirsch], S. 50 ff. So (S) and (K) are nearly equivalent.

Theorem 3 Let the minimum problem (1) be F-differenzierbar and suppose that: (1°) $x^* = \arg\min\{f(x), x \in \mathcal{C}, q(x) < 0, h(x) = 0\},$

$$\begin{array}{l} (2^{\circ}) \ \operatorname{int}(\mathcal{K}) \neq \emptyset, \\ (3^{\circ}) \ \operatorname{relint}(\nabla h(x^{*})(\mathcal{C})) \neq \emptyset. \\ (4^{\circ}) \ h \ in \ x^{*} \ w.r.t. \ \mathcal{C} \ local \ solvable, \\ Then \ there \ exists \ a \ triple \ (0,0,0) \neq (\varrho^{*},y^{*},z^{*}) \in \mathbb{R}_{\geq 0} \times \mathcal{K}_{d} \times Z_{d} \ such \ that \\ (i) \\ \forall \ x \in \mathcal{C}: \ [\varrho^{*} \nabla f(x^{*}) + y^{*} \circ \nabla g(x^{*}) + z^{*} \circ \nabla h(x^{*})](x-x^{*}) \geq 0, \end{array}$$

 $(ii) y^* \circ g(x^*) = 0.$

(iii) If there exists a $x \in C$ so that

$$g(x^*) + \nabla g(x^*)(x - x^*) < 0, \ \nabla h(x^*)(x - x^*) = 0,$$

and if $x^* \in int(\nabla h(x^*)(\mathcal{C}))$, then $\varrho^* = 1$ can be chosen and $y^* \neq 0$.

em Proof. See also [Kirsch]. Let $\mathcal{W} = \mathbb{R} \times Y$, $\mathcal{J} = \mathbb{R}_{\geq 0} \times \mathcal{K}_d$. Then $\mathcal{J} \subset \mathcal{W}$ is a convex cone with $\operatorname{int}(\mathcal{J}) = \mathbb{R}_{>0} \times \operatorname{int}(\mathcal{K}_d) \neq \emptyset$. Let $G : \mathcal{X} \to \mathcal{W}$ be defined by

$$G(x) = [\nabla f(x^*)(x - x^*), \ g(x^*) + \nabla g(x^*)(x - x^*)]$$

then G is \mathcal{J} -convex. Let $H: \mathcal{X} \to \mathcal{Z}$ definiert durch

$$H(x) = \nabla h(x^*)(x - x^*)$$

dann ist H affine linear. Then we obtain by the linearization theorem that

$$\mathcal{A} := \{ x \in \mathcal{C}, \ G(x) \stackrel{\mathcal{J}}{<} 0, \ H(x) = 0 \} = \emptyset.$$

Therefore $\neg(S)$ for (G, H). Because relint $(H(\mathcal{C})) = \operatorname{relint}(\nabla h(x^*)(\mathcal{C}) \neq \emptyset$, Theorem 2 supplies the existence of $(0, 0) \neq (\tilde{y}^*, z^*) \in \mathcal{J}_d \times Z_d$ such that

$$\forall x \in \mathcal{C} : \ \widetilde{y}^* \circ G(x) + z^* \circ H(x) \ge 0.$$

Since $\tilde{y}^* = (\varrho^*, y^*) \in \mathbb{R}_{\geq 0} \times \mathcal{K}'_d$, we obtain by this way directly that

$$\forall x \in \mathcal{C} : \\ \varrho^* \nabla f(x^*)(x - x^*) + y^* \circ [g(x^*) + \nabla g(x^*)(x - x^*)] + z^* \circ \nabla h(x^*)(x - x^*) \ge 0.$$
(3)

Furthermore we have $g(x^*) \leq 0$ hence $y^* \circ g(x^*) \leq 0$. For $x = x^*$ (3) implies that $y^* \circ g(x^*) \geq 0$, hence together $y^* \circ g(x^*) = 0$. Now the assertion follows from (3).

Suppose $\rho^* = 0$ then necessarily $(y^*, z^*) \neq (0, 0)$. It then follows from (3) that

$$\forall \ x \in \mathcal{C} : y^* \circ [g(x^*) + \nabla g(x^*)(x - x^*)] + z^* \circ \nabla h(x^*)(x - x^*) \ge 0.$$

By Ass. (iii) there exists a $x \in C$ which fulfills this inequality. For this x we obtain by Lemma 1.26 of the section on convex sets that

$$y^* \circ [g(x^*) + \nabla g(x^*)(x - x^*)] + z^* \circ \nabla h(x^*)(x - x^*) < 0,$$

or $y^* = 0$. Suppose $y^* \neq 0$ then necessarily $\varrho^* \neq 0$. Suppose $y^* = 0$ and $\varrho^* = 0$ then necessarily $z^* \neq 0$, and it follows from (3) that $z^* \in (\nabla h(x^*)(\mathcal{C} - x^*))_d$. Because $x^* \in \operatorname{int}(\nabla h(x^*)(\mathcal{C}))$ then $0 \in \operatorname{int}(\nabla h(x^*)(\mathcal{C} - x^*))$. By Lemma 1.26 then $z^* = 0$. This is a contradiction to to $(\varrho^*, y^*, z^*) \neq (0, 0, 0)$ therefore $y^* \neq 0$ under the named additional assumptions. By division with ϱ^* then the last assertion of the Theorem is verified.

Definition 4 A feasible point x^* is a regular point if: (1°) There exists a $x \in C$ such that

$$g(x^*) + \nabla g(x^*)(x - x^*) < 0, \ \nabla h(x^*)(x - x^*) = 0.$$

(2°) h is in x^* w.r.t. C local solvable.

Theorem 4 (ROBINSON) Let \mathcal{X} be a BANACH space, \mathcal{Y} a normed space, $\mathcal{K} \subset \mathcal{Y}$ closed and $g: \mathcal{X} \to \mathcal{Y}$ continuously F-differentiable. Then $g(x) \leq 0$ is local solvable $x^* \in \mathcal{X}$ if

$$0 \in \inf[g(x^*) + \nabla g(x^*)(\mathcal{X}) + \mathcal{K}].$$

Proof see [Robinson].

Theorem 5 (LJUSTERNIK) Let \mathcal{X} , \mathcal{Y} be BANACH spaces, $g : \mathcal{X} \to \mathcal{Y}$ continuously *F*-differentiable, $g(x^*) = 0$, and $\nabla g(x^*)(\mathcal{X}) = \mathcal{Y}$. Then g(x) = 0 is in x^* local solvable.

Proof see [Ljusternik].

Apparently the theorem of LJUSTERNIK follows from the theorem of ROBINSON. Assume now that $\mathcal{Z} = \nabla h(x^*)(\mathcal{X})$ then relint $(\nabla h(x^*)(\mathcal{X}) = \operatorname{int}(\mathcal{Z}) \neq \emptyset$, $0 \in \operatorname{int}(\nabla h(x^*)(\mathcal{X})$ and h in x^* local solvable by ROBINSON's theorem if $h(x^*) = 0$. Theorem 3 then leads to the following result:

Corollary 1 Let the minimum problem (1) be continuously F-differentiable and suppose that: (1°) $x^* = \arg\min\{f(x), x \in \mathcal{X}, q(x) < 0, h(x) = 0\},$

(*ii*) $y^* \circ g(x^*) = 0$.

Theorem 6 Let the minimum problem (MP) (1) for $C = \mathcal{X}$ be convex (h affine linear), Fdifferentiable, $x^* \in S$, and let the multiplier rule (MR) be fulfilled:

$$\exists (y^*, z^*) \in \mathcal{K}_d \times \mathcal{Z}_d : \nabla_x L(x^*, y^*, z^*) = 0, \text{ and } y^* \circ g(x^*) = 0.$$

Then x^* is solution of (MP).

Proof. Since f, g convex and h affine linear, we have

$$\begin{array}{rcl} f(x) & \geq & f(x^*) + \nabla f(x^*)(x - x^*), \\ g(x) & \geq & g(x^*) + \nabla g(x^*)(x - x^*), \\ h(x) & = & h(x^*) + \nabla h(x^*)(x - x^*). \end{array}$$

Then, by (MR) for $x \in \mathcal{X}$

$$\begin{array}{rcl} f(x) & \geq & f(x) + y^* \circ g(x) + z^* \circ h(x) \\ & \geq & f(x^*) + y^* \circ [g(x^*) + \nabla g(x^*)(x - x^*)] + z^* \circ [h(x^*) + \nabla h(x^*)(x - x^*)] \\ & = & f(x^*) + y^* \circ g(x^*) + z^* \circ h(x^*) + \nabla_x L(x^*, y^*, z^*)(x - x^*) \\ & = & f(x^*). \end{array}$$

Briefly: (MR) is necessary for (MP) and sufficient if (MP) convex.