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Supplements 5 to Chapter III E. Gekeler
11/10/06

Duality Theory for the minimum problem with h = 0,

{f(x) ; x ∈ C , −g(x) ∈ K} = min! (1)

(a) In the following both results let A , B be arbitrary sets and

f : A× B 3 (x, y) 7→ f(x, y) ∈ R

an arbitrary function.

Lemma 1
sup y∈B inf x∈Af(x, y) ≤ inf x∈A sup y∈Bf(x, y).

Proof. See [Ekeland]. At first, we have

∀ z ∈ A, ∀ y ∈ B : inf x∈Af(x, y) ≤ f(z, y).

Consequently ∀ z ∈ A : sup y∈B inf x∈Af(x, y) ≤ sup y∈Bf(z, y)

and therefore also
sup y∈B inf x∈Af(x, y) ≤ inf z∈A sup y∈Bf(z, y). ¤

Definition 1 A pair (x∗, y∗) ∈ A× B is a saddlepoint of f if

∀ x ∈ A, ∀ y ∈ B : f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). (2)

Lemma 2 The function f has a saddlepoint in A× B if and only if

max y∈B inf x∈Af(x, y) = min x∈A sup y∈Bf(x, y). (3)

Here, max instead sup says that the supremum is really attained.

Proof. [Ekeland].
(1◦) Let there exist a saddlepoint (x∗, y∗) then by (2)

sup y∈Bf(x∗, y) = f(x∗, y∗) = inf x∈Af(x, y∗). (4)

But
inf x∈A sup y∈Bf(x, y) ≤ sup y∈Bf(x∗, y), (5)

and
inf x∈Af(x, y∗) ≤ sup y∈B inf x∈Af(x, y). (6)

Therefore also, by (4),

inf x∈A sup y∈Bf(x, y) ≤ sup y∈B inf x∈Af(x, y). (7)

Now, by Lemma 1, it follows that equation (7) is valid with the equality sign. This result
together with (4) shows that also (5) and (6) are valid with the quality sign. By this way we
obtain f(x∗, y∗) = sup y∈Bf(x∗, y) = min x∈A sup y∈Bf(x, y)

= inf x∈Af(x, y∗) = maxy∈B infx∈A f(x, y).
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(2◦) Let conversely (3) be fulfilled, let the minimum be attained in x∗ and the maximum in y∗ .
Then obviously

inf x∈Af(x, y∗) ≤ f(x∗, y∗) ≤ sup y∈Bf(x∗, y),

and both inequalites are even equalities. Therefore (x∗, y∗) is a saddlepoint. ¤
Accordingly, for a saddlepoint (x∗, y∗) ,

max y∈B inf x∈Af(x, y) = f(x∗, y∗) = min x∈A sup y∈Bf(x, y),

but not every point with this property is a saddlepoint as the simple example f : R2 3 (x, y) 7→
f(x, y) = x · y shows.

(b) Now return to the original problem

{f(x), x ∈ C, g(x) ∈ −K} = min!

with Lagrange function

L : X × Yd 3 (x, y) 7→ L(x, y) = f(x) + y ◦ g(x) ∈ R
and consider the following three problems where K ⊂ Y is the order cone and Kd ⊂ Y the dual
cone:

(1◦) The minimum problem (MP): Find a x∗ ∈ X such that

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0}. (8)

(2◦) The primal Lagrange problem (LP): Find a pair (x∗, y∗) ∈ X ×Kd such that

L(x∗, y∗) = min x∈C sup y∈Kd
L(x, y). (9)

(3◦) The dual Lagrange problem (DLP): Find a pair (x∗, y∗) ∈ X ×Kd such that

L(x∗, y∗) = max y∈Kd
inf x∈CL(x, y). (10)

If the primal Lagrange problem and the dual Lagrange problem have both a unique solution
and if both values of L are the same, (x∗, y∗) is a saddlepoint of the minimum problem by Lemma
2.

Lemma 3 (1◦) ∀ x ∈ S : f(x) = L(x, 0) = max y∈Kd
L(x, y). (11)

(2◦) Let K be closed, x ∈ C, and let

∃ y∗ ∈ Kd : L(x, y∗) = max y∈Kd
L(x, y), (12)

then x ∈ S (i.e. x feasible) and y∗ ◦ g(x) = 0.

(3◦) S = ∅ ⇐⇒ ∀ x ∈ C : sup y∈Kd
L(x, y) = ∞.

Proof. See [Krabs], §2.1. (1◦) Let x ∈ S then g(x) ≤ 0 hence

∀ y ∈ Kd : y ◦ g(x) ≤ 0,

which yields the assertion.
(2◦) By assumption ∀ y ∈ Kd : y∗ ◦ g(x∗) ≥ y ◦ g(x∗), (13)
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therefore y∗ ◦ g(x∗) ≥ 0 for y = 0. But, on the other side, y ◦ g(x∗) ≤ 0 for all y ∈ Kd. Else
there would be a contradicition to (12) since with y ∈ Kd also αy ∈ Kd for all α ≥ 0 . Therefore
g(x∗) ≤ 0 by the cone corollary because K closed therefore x∗ feasible. On setting y = y∗ we
obtain together y∗ ◦ g(x∗) = 0.
(3◦) Let S be non-empty then it follows from (1◦) for x ∈ S that

f(x) = sup y∈Kd
L(x, y) < ∞.

Let S be empty and x ∈ C then −g(x) /∈ K. Then, by the cone corollary, there exists a
y∗ ∈ Kd such that y∗ ◦ g(x) > 0. Since αy∗ ∈ Kd for α ∈ R (cone not pointed), we obtain
sup y∈Kd

L(x, y) = ∞. ¤
Let in particular (x∗, y∗) be a solution of (LP) then x∗ ∈ C and

L(x∗, y∗) = max y∈Kd
L(x∗, y)

(sup y∈Kd
L(x, y) is not necessarily attained for all x ∈ C by by assumption for x∗). Then, by

Lemma 3(2◦),
(L(x∗, y∗) =) f(x∗) = min x∈C sup y∈Kd

L(x, y).

We say that the minimum problem (MP) and the Lagrange problem (LP) are equivalent if,
for every solution x∗ of (MP), there exists a y∗ ∈ Kd such that (x∗, y∗) is solution of (LP) and,
conversely, for every solution (x∗, y∗) of (LP) the first component x∗ is a solution of (MP).

Lemma 4 Let K be closed, then the minimum problem and the Lagrange problem are equiv-
alent.

Proof. (1◦) Let x∗ be a solution of (MP) and y∗ arbitrary but such that y∗ ◦ g(x∗) = 0 , e.g.
y∗ = 0 . Then

f(x∗) = min x∈C,g(x)≤0f(x)

= min x∈C,g(x)≤0 sup y≥0{f(x) + y ◦ g(x)},
= min x∈C sup y≥0L(x, y) (Lemma 3(c))

= L(x∗, y∗) .

(14)

Thus (x∗, y∗) is solution of (LP) for all y∗ such that y∗ ◦ g(x∗) = 0.
(2◦) Let (x∗, y∗) be a solution of (LP) then y∗ ◦ g(x∗) = 0 and x∗ feasible by Lemma 3(2◦).
Moreover f(x∗) = L(x∗, y∗), and the same conclusion as in (14) holds in the other direction.
Therefore x∗ is solution of (MP). ¤
As an inference to Lemma 2 we now obtain:

Corollary 1
max y∈Kd

inf x∈CL(x, y) = min x∈C sup y∈Kd
L(x, y)

holds if and only if the minimum problem (MP) has a saddlepoint.

(c) In global Lagrange theory we derive the existence of saddlepoints from the existence of a
solution of the minimum problem under various assumptions. For instance, the following result
is due to [Craven78], § 2.5:

Theorem 1 Let the minimum problem (MP) be convex and solvable. Further, let int(K) 6= ∅
and let the following Karlin condition be fulfilled:

∀ 0 6= y ∈ Kd ∃ x ∈ C : y ◦ g(x) < 0.

Then (MP) has a saddlepoint.
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We now recall F. John’s set

A = (g, f)(C) + (K × R+) = {(g(x) + k, f(x) + %), x ∈ C, k ∈ K, % ≥ 0}.

The set S of feasible points is non-empty if and only if there exists a σ ∈ R such that (0, σ) ∈ A
and

inf{f(x), x ∈ S} = inf{σ, (0, σ) ∈ A}.
By this way the calculation of a solution of (MP) consists in the calculation of the smallest
intersection point of A wit the R-axis. The dual problem then consists of the calculation of
a supporting hyperplane H in Y × R which contains A in the non-negative half-plane and on
the other side has a maximum (and unique) intersection point (0, σ) with the R-axis. Such
hyperplanes have the form

H(y, σ) := {(u, %) ∈ Y × R, % + y ◦ u = σ}

where (y, σ) ∈ Yd × R. Let

H(y, σ)+ := {(u, %) ∈ Y × R, % + y ◦ u ≥ σ}

denote the non-negative half-space of H(y, σ) then

A ⊂ H(y, σ)+ ⇐⇒ ∀ x ∈ C, ∀ k ∈ K : f(x) + y ◦ (g(x) + k) ≥ σ.

We now introduce the dual-functional

ϕ : Yd 3 y 7→ ϕ(y) = inf x∈C{f(x) + y ◦ g(x)} ∈ R

and the dual problem (DP)

{ϕ(y), y ∈ T } = max!, T = {y ∈ Kd, ϕ(y) > −∞},

then the following result on weak duality is easily derived:

Theorem 2 (1◦) Let x ∈ S and y ∈ T then ϕ(y) ≤ f(x).
(2◦) Let ϕ(y∗) = f(x∗) for feasible arguments then x∗ is solution of (MP) and y∗ is solution of
(DP).

Proof. Because x ∈ S and y ∈ Kd we have

ϕ(y) ≤ f(x) + y ◦ g(x) ≤ f(x)

The rest is clear. ¤
If

ϕ(y∗) < f(x∗),

holds for the resp. solutions of (MP) and (DP) then we speak of a duality gap. Further assump-
tions are necessary to avoid such gaps. For instance, duality gaps do not occur if the problem
(MP) is linear or if the assumptions on the existence of a saddlepoint are fulfilled in convex
nonlinear problems.
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Theorem 3 Let the minimum problem (MP) be convex, let Y be normed and A closed. Then
(1◦) S 6= ∅ and inf x∈Sf(x) > −∞⇐⇒ T 6= ∅ und sup y∈T ϕ(y) < +∞.

In both cases, (MP) has a solution and, moreover,

−∞ < sup y∈T ϕ(y) = min x∈Sf(x) < ∞.

(3◦) S = ∅ and T 6= ∅ =⇒ sup y∈T ϕ(y) = +∞.

(3◦) T = ∅ and S 6= ∅ =⇒ inf x∈Sf(x) = −∞.

Proof see [Werner], Theorem 4.3.1.

Theorem 4 Let the minimum problem (MP) be convex, Y normed, and let int(A)∩{0}×R 6= ∅.
Then S non-empty and:
(1◦) If inf x∈Sf(x) > −∞, the dual problem (DP) has a solution y∗ and, moreover,

max y∈T ϕ(y) = inf x∈Sf(x).

(2◦) If the minimum problem (MP) has a solution x∗, then y∗ ◦ g(x∗) = 0.

Proof see [Werner], Theorem 4.3.2.

For instance, condition int(A)∩ {0}×R 6= ∅ is fulfilled if the Slater condition is fulfilled, i.e.
if int(K) 6= ∅ and g(x0) < 0 for some x0 ∈ C. Namely, then

{(g(x) + k, f(x) + %) ∈ Y × R, x ∈ C, k ∈ int(K), % > 0} ⊂ int(A)

and thus in particular

(g(x0) + (−g(x0)), f(x0) + %) = (0, f(x0) + %) ∈ int(A) ∩ {0} ∩ R

for all % > 0. ¤
Remark. In analogy to the dual functional also a primal functional

ψ(x) = sup y∈Kd
{f(x) + y ◦ g(x)}

may be introduced. Since ψ(x) < ∞⇐⇒ g(x) < ∞ however this functional is not of interest,
and the notion “primal functional” is used in an other context.


