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Supplements 4 to Chapter III E. Gekeler
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Global Lagrange Theory
(a) Formulation of the Problem Let X , Y , Z be real normed vector spaces, let ∅ 6= C ⊂ X
be an arbitrary set being not necessarily open or a subspace, and let ∅ 6= K ⊂ Y be an order
cone with dual cone Kd in the dual space Yd of Y , cf. § 1.10. Further, let

f : C → R , g : C → Y , h : C → Z ,

be three mappings and consider the general minimum problem (MP)

{f(x) ; x ∈ C , −g(x) ∈ K , h(x) = 0} = min! (1)

with feasible set S = {x ∈ C , −g(x) ∈ K , h(x) = 0} and Lagrange function

L : C × Yd ×Zd 3 (x, y, z) 7→ L(x, y, z) = f(x)± y ◦ g(x) + z ◦ h(x) ∈ R .

The sign of y is positive in the present minimum problem and negative in the corresponding
maximum problem; cf. § 3.2(b). The problem (1) is called convex again if C , f convex, g
K-convex, and h affine linear. For −g(x) ∈ K we write briefly g(x) ≤ 0 and observe that, in
the present situation, the Lagrange multipliers y and z are elements of the dual spaces Yd

and Zd , resp. may be canonically identified with elements of these spaces. Altogether we are
faced with the following constellation:

mapping: f g h
range: R Y Z
order cone: R≥0 K L = {0}
dual elements: % ∈ R y ∈ Yd z ∈ Zd

.

The equality restrictions h(x) = 0 may not be replaced by double inequalities because we have
to suppose sometimes that the interior int(K) of K is not empty. In slight generalization, the
restrictions differ from each other by the two order cones K and L according to

g(x)
K≤ 0 , int(K) 6= ∅ , h(x)

L≤ 0 , int(L) = ∅ .

Definition 1 (1◦) The minimum problem (MP) is called G-, H-, F-differentiable if the map-
pings f, g, h are Gateaux-, Hadamard-, resp. Fréchet-differentiable in an open superset
of C.
(2◦) The problem (MP) is convex if C ⊂ X is a convex set, f : C → R a convex mapping,
g : C → Y a K-convex mapping, and h : C → Z a affine linear mapping.

The fundamental Theorem 3.2 now reads:

Theorem 1 Let (x∗, y∗, z∗) ∈ C × Kd ×Zd be a triple such that

x∗ = arg
min

max
{f(x∗)± y∗ ◦ g(x∗) + z∗ ◦ h(x∗) , x ∈ C} , (2)

and let x∗ ∈ S as well as y∗ ◦ g(x∗) = 0 . Then

x∗ = arg
min

max
{f(x) , x ∈ C , g(x) ≤ 0 , h(x) = 0} .
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Proof. For all x ∈ S
f(x∗) = f(x∗)± y∗ ◦ g(x∗) + z∗ ◦ h(x∗)

≤
≥ f(x)± y∗ ◦ g(x) + z∗ ◦ h(x)

≤
≥ f(x).

¤
Accordingly the candidates for maximum and minimum points can be found by (2) at the same
time.

Let the extremal problem be F-differentiable then (2) yields the necessary condition

∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) ≥ 0 (minimum problem),
∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) ≤ 0 (maximum problem),
∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) = 0 (if C open in X , e.g. C = X ).

(3)

The condition (3) is sufficient for (2) if the minimum problem is convex resp. the maximum
problem is concave since the associated Lagrange function L then is in x convex resp. concave
on the convex set C ; cf. Lemma 1.25.

(b) (Primal) Lagrange Problem (LP)
Find a triple (x∗, y∗, z∗) ∈ C × Kd ×Zd so that

(x∗, y∗, z∗) = arg minx∈C sup{L(x, y, z) , y ∈ Kd , z ∈ Zd} , (4)

Let us first summarize some properties of the Lagrange function:

Lemma 1 (Lemma 3.3) (1◦) Let x ∈ S and y∗ ∈ Kd so that y∗ ◦ g(x) = 0 (e.g. y∗ = 0). Then

∀ z ∈ Zd : f(x) = L(x, y∗, z) = max{L(x, y, z) , y ∈ Kd}.

(2◦) Let the order cone K in Y be closed and let conversely max(y,z)∈Kd×Zd
L(x, y, z) exist for

some x ∈ C. In other words let, for some x ∈ C ,

∃ (y∗, z∗) ∈ Kd ×Zd : L(x, y∗, z∗) = max{L(x, y, z) , y ∈ Kd , z ∈ Zd} ,

then x is feasible, x ∈ S , and moreover y∗ ◦ g(x) = 0 .
(3◦) S = ∅ ⇐⇒ ∀ x ∈ C : sup{L(x, y, z) , y ∈ Kd , z ∈ Zd} = ∞ .

Proof. (See [Krabs], § 2.1 for h = 0).
(1◦) Let x ∈ S then g(x) ≤ 0 and h(x) = 0, hence

∀ y ∈ Kd ∀ z ∈ Zd : y ◦ g(x) ≤ 0 and z ◦ h(x) = 0 ,

which proves the assertion.
(2◦) By assumption, for x ∈ C ,

∀ y ∈ Kd ∀ z ∈ Zd : y∗ ◦ g(x) + z∗ ◦ h(x) ≥ y ◦ g(x) + z ◦ h(x) . (5)

(2.1◦) Let 0 = z ∈ Zd. By (5) we have y∗ ◦ g(x∗) ≥ 0 for y = 0. But, on the other side,
y ◦ g(x) ≤ 0 for all y ∈ Kd, else we have a contradiction to (4) since with y ∈ Kd also α y ∈ Kd

for all α ≥ 0 . Therefore g(x) ≤ 0 by the cone corollary, since K closed. Setting y = y∗ we
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obtain together y∗ ◦ g(x) = 0.

(2.2◦) Let 0 = y ∈ Kd then h(x) = 0 because z ∈ Zd arbitrary. (If h(x)
L≤ 0 with a closed cone

L , the assertion follows in the same way as in (2.1◦). Altogether x is feasible.
(3◦) Let S be non-empty then by (1◦) for x ∈ S

f(x) = sup
(y,z)∈Kd×Zd

L(x, y, z) < ∞.

If S empty and x ∈ C , −g(x) /∈ K or h(x) 6= 0.
(3.1◦) Let −g(x) /∈ K then, by Lemma 1.20, there exists a y∗ ∈ Kd such that y∗ ◦ g(x) > 0.
Since αy∗ ∈ Kd for α ≥ 0 we obtain sup y∈Kd

L(x, y, z) = ∞.
(3.2◦) Let h(x) 6= 0 then supz∈Zd

L(x, y, z) = ∞.
¤

Corollary 1 Let the order cone K ⊂ Y be closed and x ∈ C. Then x feasible, x ∈ S , and
y∗ ◦ g(x) = 0 if and only if

L(x, y∗, z∗) = Max(y,z)∈Kd×Zd
L(x, y, z) . (6)

Proof. Let (6) then the assertion follows from Lemma 1(2◦); the other direction follows from
Lemma 1(1◦).

Theorem 2 (Theorem 3.12, Lagrange problem sufficient) Let the order cone K ⊂ Y be
closed and let (x∗, y∗, z∗) ∈ C × Kd × Zd be a solution of (LP) then x∗ is a solution of the
minimum problem (MP).

Proof. Let (x∗, y∗, z∗)) be a solution of (LP) then x∗ ∈ C and

L(x∗, y∗, z∗) = max y∈Kd,z∈Zd
L(x∗, y, z)

(sup y∈Kd,z∈Zd
L(x, y, z) is not necessarily attained for all x ∈ C but by assumption for x∗). Then

x∗ feasible by Lemma 1(2◦) and y∗ ◦ g(x∗) = 0. By Lemma 1(1◦),

(L(x∗, y∗, z∗) =) f(x∗) = min x∈C sup y∈Kd,z∈Zd
L(x, y, z) ¤.

Lemma 2 Let K be closed. Then the minimum problem (MP) (1) and the Lagrange problem
(LP) (3) are equivalent in the sense that if x∗ solution of (MP) and (x̃∗, y∗, z∗) solution of (LP),
then x∗ = x̃∗ .

Note that this result is an equivalence theorem which says nothing about the existence of the
resp. solutions.

Proof. (1◦) Let x∗ be a solution of (MP). Then

f(x∗) := min x∈C{f(x) , g(x) ≤ 0 , h(x) = 0}
= min x∈C,g(x)≤0,h(x)=0 sup y≥0,z{f(x) + y ◦ g(x) + z ◦ h(x)},
= min x∈C sup{L(x, y, z) , y ∈ Kd , z ∈ Zd} (Lemma 1(1◦))

=: L(x∗, y∗, z∗) .

(7)

Therefore (x∗, y∗, z∗) is solution of (LP).
(2◦) (Same as proof of Theorem 2.) Let (x∗, y∗, z∗) be a solution of (LP) then y∗ ◦ g(x∗) = 0
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and x∗ feasible by Lemma 1(2◦). Also f(x∗) = L(x∗, y∗, z∗) by Lemma 1(1◦), and the same
conclusions of (6) hold in converse direction therefore x∗ is solution of (MP). ¤
(c) Saddlepoint Problems In the following both results let A , B be arbitrary sets and

f : A× B 3 (x, y) 7→ f(x, y) ∈ R
an arbitrary function.

Definition 2 A pair (x∗, y∗) ∈ A× B is a saddlepoint of f if

∀ x ∈ A, ∀ y ∈ B : f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). (8)

Lemma 3 The function f has a saddlepoint in A× B if and only if

max y∈B inf x∈Af(x, y) = min x∈A sup y∈Bf(x, y). (9)

Here, max instead sup says that the supremum is actually attained.

Proof. [Ekeland].

To the minimum problem (1) we associate the following saddlepoint problem (SPP) where again
Kd ⊂ Y is the order cone:
Find a saddlepoint (x∗, y∗, z∗) ∈ C × Kd ×Zd such that

∀ (x, y, z) ∈ C × Kd ×Z ′ : L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗). (10)

Theorem 3 ((SPP) sufficient.) Let the order cone K be closed. If (x∗, y∗, z∗) is a saddle point,
i.e. a solution of (10), then x∗ is a minimum point, i.e. a solution of (1).

Proof. (a1) For z = z∗ we obtain from the left inequality in (10)

y ◦ g(x∗) ≤ y∗ ◦ g(x∗). (11)

But y + y∗ ∈ Kd for all y ∈ Kd because Kd is convex. Writing y + y∗ for y in (11) we obtain

∀ y ∈ Kd : y ◦ g(x∗) ≤ 0.

By the Cone Corollary we thus obtain g(x∗) ≤ 0 which implies y∗ ◦ g(x∗) ≤ 0. Setting y = 0 in
(11) we obtain y∗ ◦ g(x∗) ≥ 0 hence together y∗ ◦ g(x∗) = 0.
(a2) For y = y∗ in the left inequality of (10) we obtain (z − z∗) ◦ h(x∗) ≤ 0. As z − z∗ ∈ Zd is
arbitrary we then find that h(x∗) = 0. Thus x∗ is a feasible point.
(b) For feasible x we obtain from the right inequality in (10) using (a)

f(x∗) + 0 ≤ f(x) + y∗ ◦ g(x) ≤ f(x)

because y∗ ∈ Kd. Hence x∗ is a minimum point.¤
(d) Dual Lagrange Problem (DLP) Find a triple (x∗, y∗, z∗) ∈ X ×Kd ×Zd such that

L(x∗, y∗, z∗) = max (y,z)∈Kd×Zd
inf x∈CL(x, y, z) . (12)

Corollary 2 (Equivalence) Let the order cone K ∈ Y be closed and let the Lagrange function
L have a saddlepoint. Then the primal and the dual Lagrange problem (LP) and (DLP) are
equivalent,

L(x∗y∗, z∗) = arg min x∈C sup (y,z)∈Kd×Zd
L(x, y, z) = max (y,z)∈Kd×Zd

inf x∈CL(x, y, z) ,

and L(x∗, y∗, z∗) = f(x∗) if y∗ ◦ g(x∗) = 0 .
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(e) Necessary Conditions The proof of the existence of the above used Lagrange multipli-
ers is much more difficult and needs besides the convexity of the problem also further regularity
assumptions on the equality constraints h(x) = 0 .

Definition 3 Let the vector space Y be normed, K ⊂ Y the (convex) order cone with non-
empty interior, int(K) 6= ∅ , and let g : C → Y K-konvex.
(1◦) g satisfies the Slater condition (S) if

A := {x ∈ C, g(x) < 0} 6= ∅.
(2◦) g satisfies the Karlin condition (K) if

B := {y ∈ Kd : y ◦ g(C) ⊂ R≥0} = {0}.
or, in other words, ∀ 0 6= y ∈ Kd ∃ x ∈ C : y ◦ g(x) < 0.

¬(S) is the condition A = ∅ and ¬(K) is the condition B 6= {0}. The following theorem
says that either (S) holds or ¬(K) but never both. Therefore it is sometimes called the basic
alternative theorem.

Theorem 4 Adopt the assumption of definition 3 then the Slater condition (S) and the
Karlin condition (K) are equivalent.

Proof. Cf. e.g. [Craven78], § 2.5.
(1◦) Let x ∈ A and y ∈ B. From g(x) < 0 and y ∈ Kd we then obtain by the Cone Corollarry
that y = 0.
(2◦) We prove ¬(S) =⇒ ¬(K). Let W ⊂ Y be defined by

W = g(C) + int(K).

(i) W is open:
x ∈ C, k ∈ int(K) =⇒ w = g(x) + k ∈ W .

Because int(K) 6= ∅, there exists an open ball N such that k +N ⊂ int(K) hence w +N ⊂ W .
Therefore W is open.
(ii) W is convex: Let wi = g(xi) + ki ∈ W , xi ∈ C, ki ∈ int(K), i = 1, 2, let 0 < λ < 1 and
x = λx1 + (1− λ)x2. Then x ∈ C because C is convex. Let

u := (1− λ)w1 + λw2

= (1− λ)(w1 − g(x1)) + λ(w2 − g(x2))
+ [(1− λ)g(x1) + λg(x2)− g(λx1 + (1− λ)x2)] + g(x)

then [. . .] ≥ 0 hence [. . .] ∈ K because g is K-convex, and

(1− λ)(w1 − g(x1)) = (1− λ)k1 ∈ int(K),
λ(w2 − g(x2)) = λk2 ∈ int(K).

So we obtain
u ∈ int(K) + int(K) +K + g(x) = int(K) + g(x)

hence u = (1− λ)w1 + λw2 ∈ W and therefore W is a convex set.
(iii) 0 /∈ W : From ¬(S) we obtain {x ∈ C, g(x) < 0} = ∅. Let 0 ∈ W , then there exist x ∈ C
and k ∈ int(K) with 0 = g(x) + k. This equation yields k = −g(x) > 0 hence g(x) < 0 in
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contradiction to assumption.
(iv) Applying the Separation Theorem to C = W and D = {0}, there exists a 0 6= y ∈ Y ′ such
that

0 = y(0) ≤ inf
w∈W

y(w) ≤ y(w), w ∈ W .

Hence there exists a 0 6= y ∈ Yd with y(W) ⊂ R+.
(v) y ∈ Kd: Let x0 ∈ C and k ∈ int(K). Then there exists an open ball N containing zero such
that k +N ⊂ int(K). For λ sufficiently large we obtain λ−1g(x0) ∈ N hence

k − λ−1g(x0) ∈ int(K) =⇒ λ(k − λ−1g(x0)) ∈ int(K),

because K is a cone. Therefore p = λk − g(x0) ∈ int(K) if λ is sufficiently large which yields
λk = g(x0) + p ∈ W and thus

∀ k ∈ int(K) : λ−1y(λk) = y(k) ≥ 0,

by (iv). As y is continuous we also have y(k) ≥ 0 for all k ∈ K ⊂ int(K). Therefore y ∈ Kd.
(vi) The above defined 0 6= y ∈ Kd satisfies y◦g(C) ⊂ R+ hence ¬(K): For x ∈ C and k ∈ int(K)
we obtain w = g(x) + εk ∈ W for all ε > 0 by definition of W . Therefore

y(g(x)) = y(w)− εy(k) ≥ 0− εy(k) → 0, ε → 0.

We thus have y ◦ g(x) ≥ 0 for all x ∈ C. ¤
The assumption int(K) 6= ∅ implies that int(W) 6= ∅ and thus Theorem 4 can also be proved
by application of Eidelheit’s separation theorem.

By applying the basic alternative theorem we now show that the existence of a saddlepoint is
also necessary for the existence of a solution of the minimum problem (1) in the case where the
problem is convex and no equality restrictions h(x) = 0 occur:

Theorem 5 ((SPP) necessary, h = 0) Let the minimum problem (1) be convex and
h ≡ 0. Suppose that
(1◦) int(K) 6= ∅,
(2◦) g satisfies the Karlin condition.
If

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0}
then ∃ 0 6= y∗, ∀ (x, y) ∈ C × Kd : L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗). (13)

where L(x, y) = f(x) + y ◦ g(x), and moreover y∗ ◦ g(x∗) = 0.

Proof. Cf. e.g. [Craven78], § 2.5. The set

P := R≥0 ×K ⊂ R× Y

defines a convex cone with ∅ 6= int(P) ⊂ int(R≥0) × K. Moreover, we have f(x) ≥ f(x∗) for
every feasible x hence −(f(x)− f(x∗)) /∈ int(R≥0). Let the mapping G be defined by

G : C ⊃ x 7→ (f(x)− f(x∗)), g(x))

then G is P-convex and ¬ Slater holds for G:

{x ∈ C : −G(x) ∈ int(P)} = ∅.
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Therefore also ¬ Karlin is fulfilled for G, i.e., there exists a (0, 0) 6= (%∗, y∗) ∈ Pd = R≥0×Kd

such that ∀ x ∈ C : %∗(f(x)− f(x∗)) + y∗ ◦ g(x) ≥ 0. (14)

If %∗ = 0 then y∗ 6= 0 and (14) yields

∀ x ∈ C : y∗ ◦ g(x) ≥ 0.

which contradicts the Karlin condition. Therefore %∗ 6= 0 and we may write %∗ = 1 after
possible division by %∗. If the complement condition y∗ ◦ g(x∗) = 0 holds then (14) yields the
right inequality of the (SPP) (13). For x = x∗ however we obtain from (14) that y∗ ◦ g(x∗) ≥ 0.
But g(x∗) ≤ 0 and y∗ ∈ Kd hence y∗ ◦ g(x∗) ≤ 0 and the complement condition is fulfilled. The
left inequality of the (SPP) (13) holds, too, because y ◦ g(x∗) ≤ 0 for y ∈ Kd. ¤
(f) The generalization of the basic alternative Theorem 4 and of theorem 5 by incorporating
affin linear side conditions h(x) = 0 makes some difficulties because the trivial cone {0} has
an empty interior. [Kirsch et al.] develop an own theory and abandon the requirement for
closed separating hyperplane. F.John generalizes the above result by studying the “primal
functional” which is also of interest in duality theory. We follow here the latter way.

Recall that R := P +Q := {r = p + q, p ∈ P , q ∈ Q} for some subsets of a vector space. If P
and Q are convex then also P +Q is convex and

int(P) 6= ∅ =⇒ int(R) 6= ∅
as shown in the proof of Theorem 4. Define the sets

Γ = g(C) +K = {g(x) + k, x ∈ C, k ∈ K},
A = (g, f)(C) + (K × R≥0) = {(g(x) + k, f(x) + α), x ∈ C, k ∈ K, α ≥ 0},

the primal functional

ω : Γ 3 u 7→ ω(u) := inf{w, (u,w) ∈ A}
= inf{f(x), x ∈ C, ∃ k ∈ K : g(x) + k = u},

and the set B = {(u,w) ∈ Y × R, u ≤ 0, w ≤ ω(0)}.
Then, in particular, (g(x), f(x)) ∈ A for all x ∈ C, and ω is the boundary of A. We assemble
some properties in the following auxiliary result:

Lemma 4 Let the minimum problem {f(x), x ∈ C, g(x) ≤ 0} = min!, be convex and let ω(0)
exist finitely. Then
(i) Γ is convex.
(ii) ω is convex and weakly monotone decreasing.
(iii) A and B are convex.
(iv) int(A) ∩ B = ∅.
(v) A ∩ int(B) = ∅.
Proof [Luenber69], §8.3; [Kosmol] §9.3. All assertions are rather obvious besides the first
assertion of (ii). For this proof let u, v ∈ Y and 0 < λ < 1. Define

P := {x ∈ C, ∃ k ∈ K : g(x) ≤ λu + (1− λ)v},
Q := {x ∈ C, ∃ x1, x2 ∈ C, ∃ k1, k2 ∈ K :

g(x1) + k1 = u, g(x2) + k2 = v, x = λx1 + (1− λ)x2}.



8

If x ∈ Q then there exist x1, x2 ∈ C such that

g(x) = g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) ≤ λu + (1− λ)v

therefore x ∈ Q =⇒ x ∈ P and thus Q ⊂ P . Now

ω(λu + (1− λ)v) = inf{f(x), x ∈ P} ≤ inf{f(x), x ∈ Q}.
But f is convex hence

f(x) = f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

and therefore

inf{f(x), x ∈ Q}
≤ inf{λf(x1) + (1− λ)f(x2), x1 ∈ C, g(x1) ≤ u, x2 ∈ C, g(x2) ≤ v}
= λ inf{f(x1), x1 ∈ C, g(x1) ≤ u}+ (1− λ) inf{f(x2), x2 ∈ C, g(x2) ≤ v}
= λω(u) + (1− λ)ω(v). ¤

By and large, the following result is the same as Theorem 5 but allows a generalization to
additional affine linear side conditions.

Theorem 6 (F. John) Let the minimum problem (1) be convex, let h ≡ 0, and let ω(0) exist
finitely.
(i) If int(A) 6= ∅ then there exists a pair (0, 0) 6= (%∗, y∗) ∈ R≥0 ×Kd such that

%∗ω(0) = inf{%∗f(x) + y∗ ◦ g(x), x ∈ C}. (15)

(ii) If int(K) 6= ∅ and the Slater condition is satisfied then (15) holds with %∗ = 1 und
0 6= y∗ ∈ Kd.
(iii) If moreover x∗ is a solution of the minimum problem then x∗ minimizes also (15) and

y∗ ◦ g(x∗) = 0.

Proof. [Luenberger69], § 8.3; [Kosmol], § 9.3.
(i) The convex sets A and B satisfy the assumption of Eidelheit’s separation theorem thus
there exists a closed separating hyperplane. This is equivalent to the existence of a pair (0, 0) 6=
(%∗, y∗) ∈ (R× Y )d = R× Yd such that

∀ (u1, w1) ∈ B, ∀ (u2, w2) ∈ A : %∗w1 + y∗ ◦ u1 ≤ %∗w2 + y∗ ◦ u2. (16)

By the shape of B we obtain %∗ ≥ 0 and y∗ ≥ 0: %∗ < 0 contradicts (16) because w2 may be
arbitrarily large. Also, if y∗ ◦ u1 > 0 for some u1 < 0 then

y∗ ◦ nu1 = n y∗ ◦ u1, n ∈ N
may be arbitrarily large, contradicting (16), too. So, y∗ ◦u ≤ 0 for all u < 0 yielding y ∈ Kd by
the cone inclusion theorem. Because (0, ω(0)) ∈ B and (g(x), f(x)) ∈ A for all x ∈ C we have

%∗ω(0) ≤ inf{%∗f(x) + y∗ ◦ g(x), x ∈ C}. (17)

If {xn} is a sequence of feasible points with lim f(xn) = ω(0) then

inf{%∗f(x) + y∗ ◦ g(x), x ∈ C} ≤ lim %∗f(xn) = %∗ω(0).
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because y∗ ◦ g(xn) ≤ 0. This proves (i).
(ii) If int(K) 6= ∅ then int(A) 6= ∅ and the assumption of Eidelheit’s Separation Theorem is
fulfilled and assertion (i) holds. But the Slater condition yields the existence of some x0 ∈ C
such that g(x0) < 0. Then y ◦ g(x0) < 0 for all 0 6= y ∈ Kd by the cone corollary. But %∗ = 0
implies y∗ 6= 0 and then in (16)

0 = y∗ ◦ 0 ≤ y∗ ◦ g(x0),

contradicting y∗ ◦ g(x0) < 0. Therefore we now have %∗ > 0 and assertion (ii) follows after
division by %∗.
(iii) If x∗ solves the minimum problem then we obtain from (17) using %∗ = 1 and y∗ ≥ 0

ω(0) ≤ f(x∗) + y∗ ◦ g(x∗) ≤ f(x∗) = ω(0)

yielding both parts of assertion (iii). ¤
The proof of (ii) shows that the Slater condition may be replaced by the somewhat weaker
condition ∃ x ∈ C ∀ 0 6= y ∈ Kd : y ◦ g(x) < 0.

However, the following somewhat stronger result holds for A:

Lemma 5 Let D ⊂ C, int(g(D)) 6= ∅ or int(K) 6= ∅ and let f(D) ⊂ R be bounded. Then
int(A) 6= ∅.

Proof. [Kosmol], § 9.3. The interval (sup f(D),∞) ⊂ R is open and nonempty by assumption.
But int(g(D) +K) 6= ∅ by assumption hence also the set G := (g(D) +K)×{(sup f(D),∞)} ⊂
Y × R has a nonempty interior. But G ⊂ A holds because

(g(x) + k, β) = (g(x) + k, f(x) + (β − f(x)) ∈ A

for every (g(x) + k, β) ∈ G observing β − f(x) ≥ 0. ¤
Theorem 6 and Lemma 5 together yield the following useful result:

Corollary 3 [Kosmol], § 9.3, Folgerung. Let the minimum problem (1) be convex, let h ≡ 0,
and let ω(0) exist finitely.
(1◦) Let there exist a set D ⊂ C such that
(1◦)(i) f is bounded from above on D,
(1◦)(ii) int(g(D)) 6= ∅ or int(K) 6= ∅.
Then there exists a pair (0, 0) 6= (%∗, y∗) ∈ R≥0 ×Kd such that

%∗ω(0) = inf{%∗f(x) + y∗ ◦ g(x), x ∈ C}. (18)

(2◦) If moreover ∃ x ∈ C, ∀ 0 6= y ∈ Kd : y ◦ g(x) < 0.

then (18) holds with %∗ = 1 und 0 6= y∗ ∈ K′.
(c) If moreover x∗ is a solution of the minimum problem then x∗ minimizes also (18) and

y∗ ◦ g(x∗) = 0.

(g) Linear Constraints
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Lemma 6 Let X , Z be Banach spaces. Let f : X → R be convex and continuous, 0 6= h :
X → Z linear and continuous, h(X ) closed and b ∈ h(X ). Further, let

ω := inf{f(x), x ∈ X , h(x)− b = 0} (19)

exist finitely.
(1◦) There exists a z∗ ∈ Zd such that

ω = inf{f(x) + z∗ ◦ (h(x)− b), x ∈ X} . (20)

(2◦) If the infimum in (19) is attained at a point x∗ with h(x∗) − b = 0 then the infimum of
(20) is also attained in x∗ and moreover

z∗ ◦ (h(x∗)− b) = 0 . (21)

(3◦) If conversely the infimum of (20) is attained at a point x∗ such that h(x∗) = b then also
the infimum of (19) is attained at x∗ .

Proof. [Kosmol], §9.4. By assumption h(X ) is closed hence a Banach space. Let D ⊂ X be
an open bounded ball. Then f is bounded on D because f is continuous. h(D) ⊂ h(X ) is
an open subset by the Open-Mapping-Theorem being bounded also. Because h(X ) is a vector
space and b ∈ h(X ), also g(D) = h(D)− b ⊂ h(X ) and int(g(D)) = g(D) 6= ∅ where int(g(D))
is now the interior of g(D)) relative h(X ). Thus the assumptions of Corollary 3 are fulfilled
for the Banach space h(X ) instead of Y and consequently there exists a pair (0, 0) 6= (%∗, z∗)
with z∗ ∈ h(X )d and

%∗ω = inf{%∗f(x) + z∗ ◦ (h(x)− b), x ∈ X}. (22)

If %∗ = 0 then z∗ 6= 0 and then from (22)

∀ x ∈ X : z∗ ◦ (h(x)− b) ≥ 0

in contradiction to the fact that h 6= 0 and h(X ) is a vector space. Therefore %∗ 6= 0 and we
may choose %∗ = 1. By the theorem of Hahn-Banach z∗ can be continued to Zd retaining its
properties.
Part (3◦) follows in the same way as in Theorem 6. ¤
We also may write Lemma 6 in the following form using an affin linear mapping h:

Corollary 4 Let X , Z be Banach spaces, f : X → R convex and continuous, 0 6= h : X → Z
affin linear and continuous, h(X ) closed and 0 ∈ h(X ). Further, let

ω := inf{f(x), x ∈ X , h(x) = 0}
exist finitely. Then there exists a z∗ ∈ Zd such that

ω = inf{f(x) + z∗ ◦ h(x), x ∈ X}.
If moreover

x∗ = arg min{f(x), x ∈ X , h(x) = 0}
then

x∗ = arg min{f(x) + z∗ ◦ h(x), x ∈ X}
and vice versa (and z∗ ◦ h(x∗) = 0 in a trivial way).
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Definition 4 Let C,D ⊂ X arbitrary sets.
(1◦) Let x ∈ C ∩ D then x is called interior point of C relative to D if there is a neighborhood
of x in D being also neighborhood of x in C:

∃ ε > 0, ∀ u ∈ D : ‖u− x‖ ≤ ε =⇒ u ∈ C.
(2◦) aff(C) is the smallest affine subspace of X containing C .

Lemma 7 Let the minimum problem (1),

{f(x) ; x ∈ C , h(x) = 0} = min!,

be convex (h affine linear). Suppose that,
(i) inf f(C) exists finitely,
(ii) h : C → Rm finite-dimensional,
(iii) 0 ∈ h(C).
Then there exists a pair (0, 0) 6= (%∗, z∗) ∈ R× Rm such that

%∗ inf{f(x), x ∈ C, h(x) = 0} = inf{%∗f(x) + z∗ h(x), x ∈ C}.
If moreover 0 ∈ h(C) is interior point relative to aff(h(C)) then %∗ 6= 0.

Proof. [Kosmol] § 9.5. Let U ⊂ Z be the smallest affin linear subspace containing h(C) and
K = {0}. Because 0 ∈ h(C), U is a proper subspace with a basis z1, . . . , zk. Writing z0 = 0
there exist xi ∈ C, i = 0, . . . k, with zi = h(xi). For the convex hull D ⊂ C of these points we
obtain:
(a) f is bounded on D: For α0, . . . , αk ∈ [0, 1] with α0 + . . . + αk = 1 we have

f(
k∑

i=0

αixi) ≤
k∑

i=0

αif(xi) ≤ Max{|f(xi)|, i = 0, . . . , k}.

(b) int h(D) 6= ∅: h(D) is the convex hull of 0, z1, . . . , zk because h is affin linear and 0 ∈ h(C).
As z1, . . . , zk is a basis of U , int h(D) is not empty in the vector space U . Accordingly, the
assumption of Corollary 3 is fulfilled for U instead of Y and there exists a pair (0, 0) 6= (%∗, z∗) ∈
R≥0 × Ud ⊂ Rm+1 such that

%∗ inf{f(x), x ∈ C, h(x) = 0} = inf{%∗f(x) + z∗T h(x), x ∈ C}.
If %∗ = 0 then z∗ 6= 0 and this equation yields

∀ x ∈ C : 0 ≤ z∗T h(x).

This inequality however contradicts 0 6= z∗ ∈ Ud if 0 ∈ h(C) is an interior point relative to the
linear span U of h(C) . ¤
(h) Mixed Constraints

Theorem 7 (Existence) Let the minimum problem (1),

{f(x) ; x ∈ C , g(x) ≤ 0 , h(x) = 0} = min!,

be convex (h affine linear), let G = {x ∈ C , g(x) ≤ 0}. Suppose that
(1◦) int(K) 6= ∅,
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(2◦) h : C → Z = Rm,
(3◦)(i) ∃ x ∈ C : g(x) < 0 and 0 ∈ h(C) is interior point relative to aff(h(G))
or
(3◦)(ii) 0 ∈ h(C) is interior point relative to aff(h(C)) and ∃ x ∈ C : g(x) ≤ 0 , h(x) = 0.
(4◦)

ω := inf{f(x), x ∈ C, g(x) ≤ 0, h(x) = 0} (23)

exists finitely.
Then there exists a pair (y∗, z∗) ∈ Kd ×Zd with y∗ 6= 0 such that

ω = inf{f(x) + y∗ ◦ g(x) + z∗ ◦ h(x), x ∈ C}. (24)

If the infimum of (23) is attained at a feasible x∗ then x∗ minimizes also (24) and y∗◦g(x∗) = 0.

Proof. for (3◦)(ii). Let C̃ = {x ∈ C, h(x) = 0}. By Theorem 6 there exists a 0 6= y∗ ∈ Kd such
that

ω = inf{f(x), x ∈ C̃, g(x) ≤ 0}
= inf{f(x) + y∗ ◦ g(x), x ∈ C, h(x) = 0}.

Because of the regularity assumption (3◦)(ii)) there exists a z∗ ∈ Rm by Lemma 7 such that

ω = inf{f(x) + y∗ ◦ g(x) + z∗T h(x), x ∈ C}.

For (3◦)(i). Let C̃ = {x ∈ C, g(x) ≤ 0}. By Lemma 7 there exists a z∗ ∈ Rm such that

ω = inf{f(x), x ∈ C̃, h(x) = 0}
= inf{f(x) + z∗ h(x), x ∈ C̃}.

Farkas’ Theorem, applied to the convex function

f1 : C → R , f(x) = f(x) + z∗ ◦ h(x) ,

supplies a y∗ ∈ Kd such that

ω = inf{f(x) + z∗ h(x) , x ∈ C̃} = inf{f(x) + z∗ h(x) + y∗ ◦ g(x) , x ∈ C} .

The last assertion follows in the same way as part (iii) of Theorem 6.¤

Theorem 8 ((SPP) necessary in convex problems) Adopt the assumptions of Theorem 7. Then
there exists a pair (0, 0) 6= (y∗, z∗) ∈ Kd × Zd such that

∀ (x, y, z) ∈ C ×Kd × Zd : L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗)

and y∗ ◦ g(x∗) = 0.

Because of Theorem 7, only the left inequality has to be verified. But it is equivalent to
y ◦ g(x∗) ≤ y∗ ◦ g(x∗) = 0 and is thus true because y ≥ 0 and g(x∗) ≤ 0. ¤
Consider now the augmented minimum problem

{f(x), x ∈ X , g(x) ≤ 0, h(x) = 0, r(x) = 0} = min .
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Theorem 9 Suppose that
(i) X ,Z are Banach spaces, Y is normed with order cone K ⊂ Y ,
(ii) f : X → R is convex, g : X → Y is K-convex,
(iii) h : X → Rm is affine linear,
(iv) r : X → Z is affine linear and continuous,
(v) int(K) 6= ∅,
(vi) ∃ x ∈ X : g(x) < 0, h(x) = 0, r(x) = 0,
(vii) r(X ) closed,
(viii)

ω := inf{f(x), x ∈ X , g(x) ≤ 0, h(x) = 0, r(x) = 0} (25)

exists finitely.
Then there exists a triple (y∗, z∗, w∗) ∈ Kd × Rm ×Zd with y∗ 6= 0 such that

ω = inf{f(x) + y∗ ◦ g(x) + z∗ ◦ h(x) + w∗ ◦ r(x), x ∈ X} (26)

If moreover x∗ is a solution of (25) then x∗ also minimizes (26) and y∗ ◦ g(x∗) = 0.

Proof. Let now C̃ = {x ∈ X , r(x) = 0} then we obtain by Theorem 7

ω = inf{f(x) + y∗ ◦ g(x) + w∗ ◦ h(x), x ∈ C̃}

The assertion then follows by Corollary 4 for F = f + y∗ ◦ g + w∗h instead of f . The last part
follows in the same way as part (c) in Theorem 6. ¤

Theorem 10 ((SPP) necessary in convex problems) Adopt the assumptions of Theorem 9 and
let h = 0 Then there exists a pair (0, 0) 6= (y∗, z∗) ∈ Kd ×Zd such that

∀ (x, y, z) ∈ C × Kd ×Zd : L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗)

and y∗ ◦ g(x∗) = 0.

Proof. The assertion follows from Theorem 9 by setting h = 0. The left inequality is proved as
in Theorem 8.

The results concerning affine linear and mixed constraints are due to [Kosmol].


