Linear-Quadratic Programming

$$f(x) = \frac{1}{2}x^{T}Ax - a^{T}x = \min!$$

$$h(x) = Bx + b = 0$$
(1)

$$\begin{bmatrix} H & [B^{\mathcal{A}}]^T \\ B^{\mathcal{A}} & 0 \end{bmatrix} \begin{bmatrix} d \\ y^{\mathcal{A}} \end{bmatrix} = \begin{bmatrix} \nabla f(x)^T \\ 0 \end{bmatrix}.$$
(2)

Lemma 1 The direction d in (2) is non-zero after inactivation of an active constraint hence actually $f(x - \sigma d) < f(x)$.

More generally formulated:

Theorem 1 After a step of incativation the nes search direction d with $\mathcal{A}(x) \setminus \{i\}$ instead $\mathcal{A}(x)$ satisfies

(°)

(2°)
$$\nabla f(x)d \ge \alpha \|d\|^2, \quad (A \ge \alpha I)$$

$$b^{i}d < 0, (b^{i}x - \beta^{i} > 0, b^{i}(x - \sigma d) - \beta^{i} > 0).$$

Proof. (a) Without loss of generality, let $|\mathcal{A}(x)| = r + 1, r \in \mathbb{N}_0$ and i = r + 1 as well as d = 0and $c = b^i$ (row). Then

$$\begin{bmatrix} A & [B^{\mathcal{A}}]^T & c^T \\ B^{\mathcal{A}} & O & O \\ c & 0 & 0 \end{bmatrix} \begin{bmatrix} d \\ w \\ \zeta \end{bmatrix} = \begin{bmatrix} \nabla f(x)^T \\ 0 \\ 0 \end{bmatrix}$$
(3)

where $d = 0, \zeta < 0$. After inactivation of row $g^i(x) = 0$ we have

$$\begin{bmatrix} A & [B^{\mathcal{A}}]^T \\ B^{\mathcal{A}} & O \end{bmatrix} \begin{bmatrix} \widetilde{d} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \nabla f(x)^T \\ 0 \end{bmatrix}$$
(4)

(a) Let d = 0 and $\tilde{d} = 0$ then

$$\nabla f(x) \in \text{Range}[[B^{\mathcal{A}}]^T, c^t]] \text{ und } \nabla f(x) \in \text{Range}[B^{\mathcal{A}}]^T.$$

This is a contradiction since $[B^{\mathcal{A}}, c]$ rank-maximal and $\zeta \neq 0$. (1) $\langle A \rangle$ 1 . .

(b) From (4) we obtain

$$\alpha \widetilde{d}^T \widetilde{d} \leq \widetilde{d}^T A \widetilde{d} + \widetilde{d}^T B^A \widetilde{w} = \widetilde{d}^T \nabla f(x)^T$$
By (4) we have $\widetilde{d}^T B^A \widetilde{w} = 0$ hence $\nabla f(x) \widetilde{d} \geq \alpha |\widetilde{d}|^2$. From (3) we obtain, because $d = 0$

$$[B^A]^T w + c^T \zeta = \nabla f(x)^T$$

$$\widetilde{d}^T [B^A]^T w + \widetilde{d}^T c^T \zeta = \widetilde{d}^T \nabla f(x)^T > 0$$
by the above equation therefore $\widetilde{d}^T c^T = b^i \widetilde{d} < 0$.

(f1) In In Algorithm § 3.5 (e) the penalty parameters become unnecessarily large near the solution with bad effect on numerical stability. Therefore the following modification of (2°) is proposed for computation of these weights where however the initial vector x_0 is involved:

Additional initial parameters $0 < \eta \ll 1$, c = 1. The numerator c is always enhanced by one if the penalties are lowered. (2.1°) Set $\gamma = \tilde{y} + \varepsilon \in \mathbb{R}^m$, $\delta = |\tilde{z}| + \varepsilon \in \mathbb{R}^p$, set flag = 0 if $\gamma \ge y$ and $\delta \ge z$, flag = 1 else. (2.2°) If flag = 1 and $P(x_0, \gamma, \delta) - P(x, \gamma, \delta) \ge c\eta$, then set c := c + 1, $y = \gamma$, $z = \delta$ otherwise replace y_i , z_i for all i by $y_i := \tilde{y}_i + 2\varepsilon$ if $\tilde{y}_i + \varepsilon \ge y_i$ $z_i := |\tilde{z}_i| + 2\varepsilon$ if $|\tilde{z}_i| + \varepsilon \ge z_i$

By this way the penalties y and z may be reduced again and altogether they are adapted more properly to geometric constellation of the individual step of iteration.