## Linear-Quadratic Programming

$$
\begin{align*}
& f(x)=\frac{1}{2} x^{T} A x-a^{T} x=\min !  \tag{1}\\
& h(x)=B x+b=0 \\
& {\left[\begin{array}{cc}
H & {\left[B^{\mathcal{A}}\right]^{T}} \\
B^{\mathcal{A}} & 0
\end{array}\right]\left[\begin{array}{c}
d \\
y^{\mathcal{A}}
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)^{T} \\
0
\end{array}\right] .} \tag{2}
\end{align*}
$$

Lemma 1 The direction d in (2) is non-zero after inactivation of an active constraint hence actually $f(x-\sigma d)<f(x)$.

More generally formulated:
Theorem 1 After a step of incativation the nes search direction $d$ with $\mathcal{A}(x) \backslash\{i\}$ instead $\mathcal{A}(x)$ satisfies

$$
\begin{gather*}
\nabla f(x) d \geq \alpha\|d\|^{2}, \quad(A \geq \alpha I) \\
b^{i} d<0,\left(b^{i} x-\beta^{i}>0, b^{i}(x-\sigma d)-\beta^{i}>0\right)
\end{gather*}
$$

Proof. (a) Without loss of generality, let $|\mathcal{A}(x)|=r+1, r \in \mathbb{N}_{0}$ and $i=r+1$ as well as $d=0$ and $c=b^{i}$ (row). Then

$$
\left[\begin{array}{ccc}
A & {\left[B^{\mathcal{A}}\right]^{T}} & c^{T}  \tag{3}\\
B^{\mathcal{A}} & O & O \\
c & 0 & 0
\end{array}\right]\left[\begin{array}{c}
d \\
w \\
\zeta
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)^{T} \\
0 \\
0
\end{array}\right]
$$

where $d=0, \zeta<0$. After inactivation of row $g^{i}(x)=0$ we have

$$
\left[\begin{array}{cc}
A & {\left[B^{\mathcal{A}}\right]^{T}}  \tag{4}\\
B^{\mathcal{A}} & O
\end{array}\right]\left[\begin{array}{c}
\widetilde{d} \\
\widetilde{w}
\end{array}\right]=\left[\begin{array}{c}
\nabla f(x)^{T} \\
0
\end{array}\right]
$$

(a) Let $d=0$ and $\widetilde{d}=0$ then

$$
\left.\nabla f(x) \in \operatorname{Range}\left[\left[B^{\mathcal{A}}\right]^{T}, c^{t}\right]\right] \text { und } \nabla f(x) \in \operatorname{Range}\left[B^{\mathcal{A}}\right]^{T}
$$

This is a contradiction since $\left[B^{\mathcal{A}}, c\right]$ rank-maximal and $\zeta \neq 0$.
(b) From (4) we obtain

$$
\alpha \widetilde{d}^{T} \widetilde{d} \leq \widetilde{d}^{T} A \widetilde{d}+\widetilde{d}^{T} B^{\mathcal{A}} \widetilde{w}=\widetilde{d}^{T} \nabla f(x)^{T}
$$

By (4) we have $\widetilde{d}^{T} B^{\mathcal{A}} \widetilde{w}=0$ hence $\nabla f(x) \widetilde{d} \geq \alpha|\widetilde{d}|^{2}$. From (3) we obtain, because $d=0$,

$$
\begin{gathered}
{\left[B^{\mathcal{A}}\right]^{T} w+c^{T} \zeta=\nabla f(x)^{T}} \\
\widetilde{d}^{T}\left[B^{\mathcal{A}}\right]^{T} w+\widetilde{d}^{T} c^{T} \zeta=\widetilde{d}^{T} \nabla f(x)^{T}>0
\end{gathered}
$$

by the above equation therefore $\widetilde{d^{T}} c^{T}=b^{i} \widetilde{d}<0$.
(f1) In In Algorithm § 3.5 (e) the penalty parameters become unnecessarily large near the solution with bad effect on numerical stability. Therefore the following modification of $\left(2^{\circ}\right)$ is proposed for computation of these weights where however the initial vector $x_{0}$ is involved:

Additional initial parameters $0<\eta \ll 1, c=1$. The numerator $c$ is always enhanced by one if the penalties are lowered.
$\left(2.1^{\circ}\right)$ Set $\gamma=\widetilde{y}+\varepsilon \in \mathbb{R}^{m}, \delta=|\bar{z}|+\varepsilon \in \mathbb{R}^{p}$, set flag $=0$ if $\gamma \geq y$ and $\delta \geq z$, flag $=1$ else.
$\left(2.2^{\circ}\right)$ If flag $=1$ and $P\left(x_{0}, \gamma, \delta\right)-P(x, \gamma, \delta) \geq c \eta$, then set $c:=c+1, y=\gamma, z=\delta$ otherwise replace $y_{i}, z_{i}$ for all $i$ by

$$
\begin{array}{llll}
y_{i}:=\widetilde{y}_{i}+2 \varepsilon & \text { if } & \widetilde{y}_{i}+\varepsilon \geq y_{i} \\
z_{i} & :=\left|\widetilde{z}_{i}\right|+2 \varepsilon & \text { if } & \left|\widetilde{z}_{i}\right|+\varepsilon \geq z_{i}
\end{array}
$$

By this way the penalties $y$ and $z$ may be reduced again and altogether they are adapted more properly to geometric constellation of the individual step of iteration.

