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Duality in Linear Optimization

Let C ∈ Rm
n denote a matrix with m rows and n columns, let Rn := Rn

1, Rn := R1
n, and let

a ∈ Rn, B ∈ Rp
n, c ∈ Rp, d ∈ Rm. We consider the pair of linear problems

(P ) Max{ax, Bx = c, Cx ≤ d},
(D) Min{yc + zd, yB + zC = a, z ≥ 0}

and compare the tableaus of both problems without using slack variables; cf. e.g. [BeRi].

An application of the Lemma of Farkas, cf. [Spe], [BeRi], yields the following characterization
of a solution of (P) and (D):

Theorem 1 (Satz 3.7) (a) x∗ ∈ Rn is a solution of (P) iff there exists a tripel (x∗, y∗, z∗) ∈
Rn × Rp × Rm) satisfying

(i) Bx∗ = c, Cx∗ ≤ d primal feasibility,
(ii) y∗B + z∗C = a, z∗ ≥ 0 dual feasibility,
(iii) z∗(Cx∗ − d) = 0 complementary slackness.

(b) (y∗, z∗) ∈ Rp × Rm is a solution of (D) iff there exists a quadrupel (y∗, z∗, u∗, v∗) ∈ Rp ×
Rm × Rn × Rm satisfying

(i) z∗C + y∗B = a, y∗ ≥ 0 primal feasibility,
(ii) Bu∗ + c = 0, Cu∗ + d = v∗ ≥ 0 dual feasibility,
(iii) z∗v∗ = 0 complementary slackness.

In the Problem (P), y∗ and z∗ are called the Lagrange multipliers of the solution x∗, and
in the problem (D), u∗ and v∗ are called the Lagrange multipliers of the solution (y∗, z∗).
Writing

x∗ = −u∗, d−Bx∗ = v∗, (1)

we see that the conditions in (a) and in (b) do coincide and, moreover,

ax∗ = y∗Bx∗ + z∗Bx∗ = y∗c + z∗d. (2)

Therefore we have the following inference to Theorem 1:

Theorem 2 The problem (P) has a solution x∗ iff the problem (D) has a solution (y∗, z∗) and
then (2) holds.

In the sequel we suppose that the rank condition is fulfilled:

rank(B) = p and rank

[
B
C

]
= n.

Instead of (P) we now consider the problem

Max{ax, Cx
[p]

≤ d} (3)
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where “
[p]

≤ ” indicates that in Cx ≤ d always the first p inequalities are active, i.e., hold as
equations. Using the Matlab-convention we write CA := C(A, :) and CA := C(:,A) with any
suitable index set A. Let then x be an extreme point of (P), let A(x) be the index set of a
basis of x, A(x) = {1, . . . , p, %1, . . . , %n−p}, N (x) = {1, . . . , m}\A(x),

and let

CA =




c%1

...
c%n−p


 ,

[
B
CA

]−1

=: A = [AB, AC ] = [[a1, . . . , ap], [ap+1, . . . , an]], (4)

where row vectors are denoted with upper indices and column vectors with lower indices. The
columns of A are the edges of the feasible set in the extreme point x with direction pointing
to x. Supposing that the problem (P) is solvable and omitting Bland’s rule we choose with
d = [δ1, . . . , δm]T

j := Min Arg Min{ϕ(k) := aak, k = p, . . . , n},
i := Min Arg Min{ψ(k) :=

ckx− δk

ckaj

, ckaj < 0, k ∈ N (x)}.

Then a better — at least not worse — extreme point x̃ is found from x by x̃ = x−ψ(i)aj which
means the row vector c%j is removed from and ci is taken into the row basis of x yielding the
basis of x̃. The tableau of the primal problem (P) has thus the following form in the extreme
point x:

P(x) = [pk
l] :=




A x
CNA r
w ζ


 =




AB AC x
CNAB CNAC r
y zA ζ


 ,




x = Ac
r = BNx− cN

y = aAB

zA = aAC

ζ = aAc




. (5)

The tableau Q(x̃) = [qk
l] of the extreme point x̃ is obtained from P(x) by the well-known

Gauss-Jordan step

qi
j = 1/pi

j (pivot element) , qk
j = pk

j/p
i
j , k 6= i (pivot column) ,

qi
l = −pi

l/p
i
j , l 6= j (pivot row) , qk

l = pk
l − pk

j p
i
l/p

i
j (others).

Let us now turn to the dual problem (D) which is is written in row form here for convenience.
This problem has m + p variables and m + n side conditions which can be written in the form

[y, z]

[
B 0
C −Im

]
≤ [a, 0] ∈ Rm+n (6)

where the first n conditions are always active. The matrix of these side conditions has the
full rank m + p. A row vector (y, z) is extreme point iff besides the n active restrictions
yB + zC = a ∈ Rn at least further m − n + p conditions yi ≤ 0 are active, i.e., the equality
sign holds there. The gradients of these conditions are independent by (6). Let (y, z) be an
extreme point of (D) and let — by historical reasons —

N (z) = {i ∈ {1, . . . , m}, zi = 0}, |N (z)| = m− n + p,
A(z) = {1, . . . ,m}\N (z), |A(z)| = n− p,
zA := z(A(y)), zN := z(N (z)).
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In the present “row problem” the gradients of active side conditions are column vectors and
the matrix C̃N of the gradients of the active conditions — corresponding to the matrix CA in
the problem (P) — has the following form after a suitable row permutation Q

QC̃N =




B 0
CA 0
CN −Im−n+p


 , QB̃A =




0
−In−p

0


 .

We write again briefly
[

B
CA

]−1

=: A = [AB, AC ], AB ∈ Rn
p, AC ∈ Rn

n−p.

Then the matrix Ã of the edges in the extreme point (y, z) has here the form

Ã ≡




ã1

...
ãm+p


 := [C̃N ]−1 =

[
A 0

CNA −Im−n+p

]
QT .

The first n rows of Ã cannot be chosen for descent directions because they leave the feasible
set. In the present minimum problem, the optimality condition thus has the form

v%k := −ãn+k

[
c
d

]
≥ 0, k = 1, . . . , m− n + p, (7)

i.e. −v%k ≤ 0, k = 1, . . . , m− n + p, where

ãn+k = [c%kA, −[δk
l]

m−n+p
l=1 ]QT ∈ Rm+p. (8)

(δk
l Kronecker symbol). Writing

Q

[
c
d

]
=




c
dA

dN


 ,

[
c
d

]
= QT




c
dA

dN




we obtain from (7)
vN := dN − CNACdA − CNABc ≥ 0 ∈ Rm−n+p. (9)

If (y, z) is not optimal then (9) is violated and

a column er of




0
0

−Im−n+p


 and a column es of




0
−In−p

0


 are to be exchanged.

In the matrix QC̃N this corresponds to an exchange of row of CN with a row of CA. We choose
er, r = N (z)j with

j = Max Argk Max{ϕ(k) := ãn+k

[
c
d

]
, k ∈ {1, . . . , m− n + p}}, (10)

i.e. j = Max Argk Max{−v%k , k ∈ {1, . . . , m − n + p}}. The search direction ãn+j yields for
(ỹ, z̃) = (y, z)− τ ãn+j and τ > 0

[(y, z)− τ ãn+j]

[
c
d

]
< yc + zd.
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For the computation of the optimum step length τ we have to substitute (ỹ, z̃) into the inactive
conditions being simple sign conditions in here,

zσk
≥ 0 ⇐⇒ −(y, z) ep+σk

≤ 0, k = 1, . . . , n− p, (11)

recalling that A(z) = {σ1, . . . , σn−p}. Substitution of (ỹ, z̃) = (y, z) − τ ãn+j into (11) yields
with (8) the condition for feasibility

−zσk
+ τ [c%jA]p+k ≤ 0, k = 1, . . . , n− p.

Supposing that the problem is solvable and omitting Bland’s rule we choose

i = Min Arg Min{ψ(k) :=
zσk

[c%jA]p+k

, [c%jA]p+k > 0, k ∈ {1, . . . , n− p}}. (12)

Then τ ∗ := ψ(i) ≥ 0 is the optimum step length.

For the tableau of the present row problem Max{x̃ã, x̃C̃ ≤ d̃} we have in complete analogy to
(5)

P̃ :=

[
Ã ÃC̃A w̃

x̃ r̃ ζ̃

]
(13)

where x̃ is now the actual extreme point and w̃ contains the relevant parts of the multipliers:

x̃ = [y, zA, zN ] ∈ Rm+p, w̃ = −
[

u
vN

]
∈ Rm+p, ζ̃ = zd + yc ∈ R.

Moreover, we have

r̃ = x̃C̃A − d̃A = x̃




0
−In−p

0


 = −zA

and

ÃC̃A =

[
AB AC 0

CNAB CNAC −Im−n+p

]


0
−In−p

0


 =

[ −AC

−CNAC

]
.

Therefore we obtain for the tableau of the dual problem

P̃(y, z) =




AB AC 0 −AC −u
CNAB CNAC −Im−n+p −CNAC −vN

y zA zN −zA ζ̃


 .

In this tableau the second block column appears in the fourth block column again with negative
sign therefore the fourth block column can be cancelled. The third block row can be cancelled,
too, because the index set A(z) has always to be updated and zN equals zero by definition of
the index set N (z). Hence recalling (1) we obtain the desired result namely

P(x∗) = P̃red(y
∗, z∗)

if x∗ is a unique and nondegenerate solution of the problem (P). (Then (y∗, z∗) is a unique and
nondegenerate solution of the problem (D).) In particular, the matrix A has the same dimension

in both problems. Usually the last column of P̃(y, z) is multiplied by −1 in most presentations
but a sign change of a not–pivot column does not affect the global Gauss-Jordan step.

If x is a non–optimum extreme point of (P) then (y, z) in the tableau P(x) is not feasible for
(D) and, vice versa, if (y, z) is a non–optimum extreme point of (D) then the point x associated
to this problem by (1) is not feasible for (P). Therefore, if e.g. a primal problem is solved by
the dual method, i.e. the method for solving (D), then the solution is approximated from the
unfeasible domain and hence an approximation is an unfeasible point.
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