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To Section 3.2
{f(x) ; g(x) ≤ 0 , h(x) = 0} = min! (1)

Theorem 1 (MR sufficient in convex problems) Let the minimum problem (1) be convex (hence
h affine linear) and differentiable, then every Kuhn-Tucker point is a global minimum point
of f in S and thus a solution of the minimum problem.

Proof We carry the proof out separately for equalities h and inequalities g altough both parts
are rather similar. Of Course both results may be combined with each other.
(1◦) Since f convex and h affine linear, by Lemma 1.28

f(x) ≥ f(x∗) +∇f(x∗)(x− x∗) ,

h(x) = h(x∗) +∇h(x∗)(x− x∗) .

Accordingly, for all x satisfying h(x) = 0 and all z∗

f(x) = f(x) + z∗h(x)

≥ f(x∗) +∇f(x∗)(x− x∗) + z∗h(x∗) + z∗∇h(x∗)(x− x∗)

= f(x∗) + [∇f(x∗) + z∗∇h(x∗)](x− x∗) MR
= f(x∗).

Only in the last equation, z∗ must be specified by the MR.
(2◦) Since f and g convex, for all x satisfying g(x) ≤ 0 and for y∗ ≥ 0 by Lemma 1.28

f(x) ≥ f(x) + y∗g(x)

≥ f(x∗) +∇f(x∗)(x− x∗) + y∗g(x∗) + y∗∇g(x∗)(x− x∗)

= f(x∗) + [∇f(x∗) + y∗∇g(x∗)](x− x∗) MR
= f(x∗).

¤

To Section 3.3
Detailed treatment in KAPITEL03\LOP.

min{a x ; Bx ≤ c} , a ∈ Rn , c ∈ Rm (2)

A∗(x) := {k ∈ {1, . . . , m} , bkx = γk} ,

A(x) := {k ∈ A∗(x) , bk linearly independent},
N (x) := {1, . . . ,m}\A(x) .

A∗(x) denotes the (index-)set of active side conditions in x. The set N (x) contains the indices
of all inactive side conditions in x if and only if A(x) coincides with A∗(x) . In the other case,
neither A(x) nor N (x) are determined uniquely.

Lemma 1 x ∈ S is extreme point if and only if |A(x)| = n .
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Proof. (a) Let |A(x)| = n then the system of equations

bjx = γj, j ∈ A(x),

has a unique solution x. Let x + α v ∈ Ω, i.e. B(x + α v) ≤ c then α bjv ≤ 0 must be fulfilled
for all j ∈ A(x) therefore α ≥ 0 or α ≤ 0 must be valid but then x cannot be a genuine convex
combination hence x is a corner point.

(b) Let |A(x)| < n and, without loss of generality, let bn =
∑n−1

i=1 sjb
j. There exists a 0 6= v ∈ Rn

such that bjv = 0, j = 1, . . . , n− 1, hence

bj(x + τv) = γj, j = 1, . . . , n− 1, τ ∈ R,

bn(x + τv) = (
∑n−1

j=1 sjb
j)(x + τv) =

∑n−1
j=1 sjb

jx = bnx = γn.

Therefore x + τv ∈ Ω for all sufficiently small τ ∈ R (because of the inactive restrictions),
therefore x cannot be corner point. ¤

Theorem 2 (Existence) Let the feasible domain S be non-empty and let the objective function
x 7→ ax be bounded on S. Then the problem (2) has a solution being extreme point of S .

Proof. The problem has a solution in S by assumption. We show: If u ∈ S, there exists a
corner v ∈ S mit av ≥ au. Without loss of generality let

bju = γj, j = 1, . . . , k,
bju < γj, j = k + 1, . . . ,m,
bj linear unabh”angig, j = 1, . . . , k.

The other active side conditions may be omitted entirely in this consideration. Let k = n then
v = u is corner point by Lemma 3.1. If k < n, there exists a search direction s such that

bjs = 0, j = 1, . . . , k,

(s arbitrary if k = 0). Let without loss of generality as ≥ 0 else replace s by −s. Then

a(u + σs) ≥ au ∀ σ > 0 (3)

(for all σ ∈ R if as = 0). Choose σ maximal such that

bj(u + σs) ≤ γj, j = k + 1, . . . , m,

then v = u + σs is feasible and

σbjs ≤ γj − bju (> 0), j = k + 1, . . . , m, (4)

since u has been feasible.

Case 1. There exists a j ∈ {k + 1, . . . , m} such that bjs > 0. Then

ν = Arg Min{f(j) :=
γj − bju

bjs
, bjs > 0, j = k + 1, . . . ,m}

σ := f(ν) > 0.

Without loss of generality, let ν = k + 1, then

bk+1(u + f(ν)s) = bk+1u +
γk+1 − bk+1u

bk+1s
bk+1s

= bk+1u + γk+1 − bk+1u = γk+1.
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Furthermore,
bj(u + f(ν)s) < γj, j = k + 2, . . . ,m,
bj(u + f(ν)s) = γj, j = 1, . . . , k.

Thus k + 1 conditions are now active in v = u + σs ∈ Ω and av ≥ au. Besides, bk+1 is linearly
independent of b1, . . . , bk because

bk+1s > 0, bjs = 0, j = 1, . . . , k,

hence bk+1 is not contained in the hyperplane sT x = 0, but bj, j = 1, . . . , k do so.

Case 2. Let bjs ≤ 0 for all j = k + 1, . . . , m.
By assumption we have bjs = 0, j = 1, . . . , k < n. Hence there exists a j ∈ {k + 1, . . . , m}
such that bjs < 0. Else bjs = 0, j = 1, . . . , m ≥ n, i.e. all bj are contained in the hyperplane
sT x = 0 in contradiction to the assumption Rang(B) = n. This second case appears only if the
set Ω is unbounded. Then

bj(u + σs) = γj, ∀ σ > 0, j = 1, . . . , k,
bj(u + σs) ≤ γj, ∀ σ > 0, j = k + 1, . . . , m.

Therefore u+σs ∈ S for all σ > 0 and a(u+σs) ≥ au because as ≥ 0. By Assumption ax < ∞
for all x ∈ S thus as = 0, i.e. the search direction stands perpendicular on the gradient of the
objective function. Choose

ν := arg min{f(j) :=
γj − bju

−bjs
, bjs < 0, j = k + 1, . . . , m}

σ := f(ν) > 0.

Without loss of generality, let ν = k + 1. Then as above

bk+1(u− σs) = bk+1u− γk+1 − bk+1u

−bk+1s
bk+1s = γk+1

bj(u− σs) < γj, j = k + 2, . . . , m,
bj(u− σs) = γj, j = 1, . . . , k, weil bjs = 0.

Therefore v = u − σs ∈ S and a(u − σs) = au because as = 0. Accordingly k + 1 conditions
are active in v = u − σs ∈ S and av = au. Also in this case bk+1 is linearly independent of
bj, j = 1, . . . , k, because

bk+1s < 0 and bjs = 0, j = 1, . . . , k.

Continuation of this process yields finally a x ∈ S with n active side conditions of which the
gradients are linearly independent hence a corner point. Since Ω has only a finite number of
such points, we obtain the assertion by this way.


