To Section 3.2

$$\{f(x)\,;\,g(x) \le 0\,,\,h(x) = 0\} = \min! \tag{1}$$

Theorem 1 (MR sufficient in convex problems) Let the minimum problem (1) be convex (hence h affine linear) and differentiable, then every KUHN-TUCKER point is a global minimum point of f in S and thus a solution of the minimum problem.

Proof We carry the proof out separately for equalities h and inequalities g altough both parts are rather similar. Of Course both results may be combined with each other. (1°) Since f convex and h affine linear, by Lemma 1.28

$$\begin{array}{rcl} f(x) & \geq & f(x^*) + \nabla f(x^*)(x-x^*) \,, \\ h(x) & = & h(x^*) + \nabla h(x^*)(x-x^*) \,. \end{array}$$

Accordingly, for all x satisfying h(x) = 0 and all z^*

$$f(x) = f(x) + z^*h(x)$$

$$\geq f(x^*) + \nabla f(x^*)(x - x^*) + z^*h(x^*) + z^*\nabla h(x^*)(x - x^*)$$

$$= f(x^*) + [\nabla f(x^*) + z^*\nabla h(x^*)](x - x^*) \stackrel{\text{MR}}{=} f(x^*).$$

Only in the last equation, z^* must be specified by the MR.

(2°) Since f and g convex, for all x satisfying $g(x) \leq 0$ and for $y^* \geq 0$ by Lemma 1.28

$$\begin{aligned} f(x) &\geq f(x) + y^* g(x) \\ &\geq f(x^*) + \nabla f(x^*)(x - x^*) + y^* g(x^*) + y^* \nabla g(x^*)(x - x^*) \\ &= f(x^*) + [\nabla f(x^*) + y^* \nabla g(x^*)](x - x^*) \stackrel{\text{MR}}{=} f(x^*). \end{aligned}$$

To Section 3.3

Detailed treatment in KAPITELO3\LOP.

$$\min\{a\,x\,;\,Bx\leq c\}\,,\ a\in\mathbb{R}_n\,,\ c\in\mathbb{R}^m$$
(2)

$$\begin{aligned} \mathcal{A}^*(x) &:= \{k \in \{1, \dots, m\}, \ b^k x = \gamma^k\}, \\ \mathcal{A}(x) &:= \{k \in \mathcal{A}^*(x), \ b^k \text{ linearly independent}\}, \\ \mathcal{N}(x) &:= \{1, \dots, m\} \backslash \mathcal{A}(x). \end{aligned}$$

 $\mathcal{A}^*(x)$ denotes the *(index-)set of active side conditions* in x. The set $\mathcal{N}(x)$ contains the indices of all inactive side conditions in x if and only if $\mathcal{A}(x)$ coincides with $\mathcal{A}^*(x)$. In the other case, neither $\mathcal{A}(x)$ nor $\mathcal{N}(x)$ are determined uniquely.

Lemma 1 $x \in S$ is extreme point if and only if $|\mathcal{A}(x)| = n$.

Proof. (a) Let $|\mathcal{A}(x)| = n$ then the system of equations

$$b^j x = \gamma^j, \ j \in \mathcal{A}(x),$$

has a unique solution x. Let $x + \alpha v \in \Omega$, i.e. $B(x + \alpha v) \leq c$ then $\alpha b^j v \leq 0$ must be fulfilled for all $j \in \mathcal{A}(x)$ therefore $\alpha \geq 0$ or $\alpha \leq 0$ must be valid but then x cannot be a genuine convex combination hence x is a corner point.

(b) Let $|\mathcal{A}(x)| < n$ and, without loss of generality, let $b^n = \sum_{i=1}^{n-1} s_j b^j$. There exists a $0 \neq v \in \mathbb{R}^n$ such that $b^j v = 0, \ j = 1, \dots, n-1$, hence

$$\begin{aligned} b^{j}(x+\tau v) &= \gamma^{j}, \quad j = 1, \dots, n-1, \quad \tau \in \mathbb{R}, \\ b^{n}(x+\tau v) &= (\sum_{j=1}^{n-1} s_{j} b^{j})(x+\tau v) = \sum_{j=1}^{n-1} s_{j} b^{j} x = b^{n} x = \gamma^{n}. \end{aligned}$$

Therefore $x + \tau v \in \Omega$ for all sufficiently small $\tau \in \mathbb{R}$ (because of the inactive restrictions), therefore x cannot be corner point. \Box

Theorem 2 (Existence) Let the feasible domain S be non-empty and let the objective function $x \mapsto ax$ be bounded on S. Then the problem (2) has a solution being extreme point of S.

Proof. The problem has a solution in S by assumption. We show: If $u \in S$, there exists a corner $v \in S$ mit $av \ge au$. Without loss of generality let

$$b^{j}u = \gamma^{j}, \quad j = 1, \dots, k,$$

$$b^{j}u < \gamma^{j}, \quad j = k + 1, \dots, m,$$

$$b^{j} \text{ linear unabh" angig, } \quad j = 1, \dots, k.$$

The other active side conditions may be omitted entirely in this consideration. Let k = n then v = u is corner point by Lemma 3.1. If k < n, there exists a search direction s such that

$$b^j s = 0, \quad j = 1, \dots, k,$$

(s arbitrary if k = 0). Let without loss of generality $as \ge 0$ else replace s by -s. Then

$$a(u + \sigma s) \ge au \quad \forall \, \sigma > 0 \tag{3}$$

(for all $\sigma \in \mathbb{R}$ if as = 0). Choose σ maximal such that

$$b^{j}(u+\sigma s) \leq \gamma^{j}, \quad j=k+1,\ldots,m,$$

then $v = u + \sigma s$ is feasible and

$$\sigma b^j s \le \gamma^j - b^j u \ (>0), \quad j = k+1, \dots, m, \tag{4}$$

since u has been feasible.

Case 1. There exists a $j \in \{k + 1, ..., m\}$ such that $b^j s > 0$. Then

$$\nu = \operatorname{Arg} \operatorname{Min} \{ f(j) := \frac{\gamma^j - b^j u}{b^j s}, \ b^j s > 0, \ j = k + 1, \dots, m \}$$

$$\sigma := f(\nu) > 0.$$

Without loss of generality, let $\nu = k + 1$, then

$$b^{k+1}(u+f(\nu)s) = b^{k+1}u + \frac{\gamma^{k+1} - b^{k+1}u}{b^{k+1}s}b^{k+1}s$$
$$= b^{k+1}u + \gamma^{k+1} - b^{k+1}u = \gamma^{k+1}.$$

$$b^{j}(u+f(\nu)s) < \gamma^{j}, \quad j = k+2,...,m,$$

 $b^{j}(u+f(\nu)s) = \gamma^{j}, \quad j = 1,...,k.$

Thus k + 1 conditions are now active in $v = u + \sigma s \in \Omega$ and $av \ge au$. Besides, b^{k+1} is linearly independent of b^1, \ldots, b^k because

$$b^{k+1}s > 0, \quad b^j s = 0, \ j = 1, \dots, k,$$

hence b^{k+1} is not contained in the hyperplane $s^T x = 0$, but b^j , j = 1, ..., k do so.

Case 2. Let $b^j s \leq 0$ for all $j = k + 1, \ldots, m$.

By assumption we have $b^j s = 0$, j = 1, ..., k < n. Hence there exists a $j \in \{k + 1, ..., m\}$ such that $b^j s < 0$. Else $b^j s = 0$, $j = 1, ..., m \ge n$, i.e. all b^j are contained in the hyperplane $s^T x = 0$ in contradiction to the assumption $\operatorname{Rang}(B) = n$. This second case appears only if the set Ω is unbounded. Then

$$\begin{aligned} b^{j}(u+\sigma s) &= \gamma^{j}, \quad \forall \, \sigma > 0, \ j = 1, \dots, k, \\ b^{j}(u+\sigma s) &\leq \gamma^{j}, \quad \forall \, \sigma > 0, \ j = k+1, \dots, m \end{aligned}$$

Therefore $u + \sigma s \in S$ for all $\sigma > 0$ and $a(u + \sigma s) \ge au$ because $as \ge 0$. By Assumption $ax < \infty$ for all $x \in S$ thus as = 0, i.e. the search direction stands perpendicular on the gradient of the objective function. Choose

$$\nu := \arg\min\{f(j) := \frac{\gamma^j - b^j u}{-b^j s}, \ b^j s < 0, \ j = k+1, \dots, m\}$$

$$\sigma := f(\nu) > 0.$$

Without loss of generality, let $\nu = k + 1$. Then as above

$$b^{k+1}(u - \sigma s) = b^{k+1}u - \frac{\gamma^{k+1} - b^{k+1}u}{-b^{k+1}s}b^{k+1}s = \gamma^{k+1}$$

$$b^{j}(u - \sigma s) < \gamma^{j}, \quad j = k+2, \dots, m,$$

$$b^{j}(u - \sigma s) = \gamma^{j}, \quad j = 1, \dots, k, \text{ weil } b^{j}s = 0.$$

Therefore $v = u - \sigma s \in S$ and $a(u - \sigma s) = au$ because as = 0. Accordingly k + 1 conditions are active in $v = u - \sigma s \in S$ and av = au. Also in this case b^{k+1} is linearly independent of b^{j} , $j = 1, \ldots, k$, because

$$b^{k+1}s < 0$$
 and $b^{j}s = 0, \ j = 1, \dots, k.$

Continuation of this process yields finally a $x \in S$ with n active side conditions of which the gradients are linearly independent hence a corner point. Since Ω has only a finite number of such points, we obtain the assertion by this way.