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Supplements 2 to Chapter II E. Gekeler
11/10/06

Fully Implicit Runge-Kutta Methods

Hint:

A numerical integration rule has order p if it has degree p − 1; cf. § 2.3(a), i.e. is
exact for all polynomials ψ ∈ Πp−1 (!).

We consider two types of differential systems with sufficiently smooth data, namely the general
nonlinear system and the linear system:

y′(t) = f(t, y(t)) ∈ Rm , (1)
y′(t) = B(t)y(t) + c(t) ∈ Rm , B(t) ∈ Rm

m . (2)

To a r-stage Runge-Kutta method (RKM) with Butcher matrix [A, b, c], there are the inte-
gration rules for the interior equations and exterior equation associated:

∫ γi

0

f(t) dt '
r∑

j=1

aijf(γj) , i = 1 : r , A = [aij]
r
i,j=1 (3)

∫ 1

0

f(t) dt '
r∑

j=1

βjf(γj) . (4)

Let Z(t) be the solution of the implicit system of interior equations,

Z(t) = e× y(t) + τ(A× I)F (t, Z(t)) ,

then
d(t, y, τ) =

y(t + τ)− y(t)

τ
− (b× I)T F (t, Z(t))

is the discretization error where

F (t, Z(t)) = [f(ti, zi(ti))]
r
i=1 ∈ Rr·n , ti = t + γiτ .

Notations: cf. [Dekker]

A(%) ⇐⇒ RKM has order % ⇐⇒ d(t, y, τ) = O(τ %)

B(%) ⇐⇒
r∑

i=1

βiγ
k−1
i =

1

k
, k = 1 : %

C(%) ⇐⇒
r∑

j=1

aijγ
k−1
j =

1

k
γk

i , i = 1 : r , k = 1 : %

D(%) ⇐⇒
r∑

i=1

βiγ
k−1
i aij =

1

k
βj(1− γk

j ) , j = 1 : r , k = 1 : %

E(%, η) ⇐⇒
r∑

i,j=1

βiγ
`−1
i aijγ

k−1
j =

1

k(` + k)
, ` = 1 : % , k = 1 : η

. (5)
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Let

b = [β1, β2, . . . , βr]
T ∈ Rr , c = [γ1, γ2, . . . , γr]

T ∈ Rr , C = diag(c) ,

e = [1, . . . , 1]T ∈ Rr , z% = [1, 1/2, . . . , 1/%]T ∈ R%
. (6)

B(%) says that formula (4) has (at least) order % .
C(%) says that each of the interior formulas (3) has (at least) order % .
By partial integration we obtain the relation

∫ 1

0

xk

∫ x

0

f(t) dtdx =
1

k + 1

∫ 1

0

(1− xk+1)f(x) dx , k ∈ N0 . (7)

On choosing here the interior rules (3) for the interior integral at left and the exterior rule (4)
else, we obtain

r∑
i=1

βiγ
k
i

r∑
j=1

aijf(γj) ' 1

k + 1

q∑
j=1

βj(1− γk+1
j )f(γj) . (8)

Let j fixed and choose for f the polynomials ψ ∈ Πr−1 where ψ(γi) = δi
j (Kronecker symbol),

then r∑
i=1

βiγ
k
i aij ' 1

k + 1
βj(1− γk+1

j ) , j = 1 : r .

D(%) says that this relation is exact for k = 0 : %− 1 .

Using (6), the conventions (5) are equivalent to

A(%) ⇐⇒ RKM has order %

B(%) ⇐⇒ bT Ck−1e =
1

k
, k = 1 : %

C(%) ⇐⇒ ACk−1e =
1

k
Cke , k = 1 : %

D(%) ⇐⇒ bT Ck−1A =
1

k
(bT − bT Ck) , k = 1 : %

E(%, η) ⇐⇒ bT Ck−1AC`−1e =
1

`(k + `)
, k = 1 : % , ` = 1 : η

. (9)

Vandermonde’s matrix:

V% = [γj−1
i ]ri=1

%
j=1 =




1 γ1 γ2
1 . . . γ%−1

1
...

...
...

...
1 γr γ2

r . . . γ%−1
r


 ∈ Rr

%

Matrices of Hilbert type:

H =




1 1
2

. . . 1
r

1
2

1
3

. . . 1
r+1

...
...

...
1
r

1
r+1

. . . 1
2r


 ∈ R

r
r , H̃%,η =




1
2

1
3

. . . 1
η+1

1
4

1
4

. . . 1
η+2

...
...

...
1

%+1
1

%+1
. . . 1

%+η


 ∈ R

%
η
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Using these notations (9) gets the form

B(%) ⇐⇒ V T
% b = z%

C(%) ⇐⇒ AV% = diag(c)V% diag(z%) =: W% ∈ Rr
%

D(%) ⇐⇒ V T
% diag(b)A = (z%e

T −W T
% ) diag(b)

E(%, η) ⇐⇒ V T
% diag(b)AVη = H̃%,ηzη

. (10)

Theorem 1 [Butcher1964] Let a r-stage RKM be given with mutually different nodes γ1, . . . γr.
Then (1◦) A(ξ) =⇒ B(ξ)

(2◦) A(η + ξ) =⇒ E(η, ξ)

(3◦) B(η + ξ) und C(ξ) =⇒ E(η, ξ)

(4◦) B(η + ξ) und D(η) =⇒ E(η, ξ)

(5◦) B(η + r) und E(r, ξ) =⇒ C(ξ) , wenn alle βi 6= 0

(6◦) B(η + r) und E(η, r) =⇒ D(η) .

Proof. Cf. [Crouzeix75], [Dekker].
(1◦) Apply a RKM of order p to the differential equation x′(t) = f(t) ∈ R then exact integration
follows for f(t) = tk−1, k = 1 : ξ hence B(ξ).

In detail. For y′(t) = c(t) ∈ Rm we have

d(t, x, τ) =
1

τ

∫ t+τ

t

c(t) dt−
r∑

j=1

βjc(tj) , tj := t + γjτ . (11)

Taylor expansion at the point t yields

∫ t+τ

t

c(t) dt =

p−1∑

k=0

τ k+1

(k + 1)!
c(k)(t) +O(τ p+1)

r∑
j=1

βjc(tj) =

p−1∑

k=0

r∑
j=1

βj
ck(t)

k!
(γjτ)k +O(τ p)

=

p−1∑

k=0

(
r∑

j=1

βjγ
k
j

)
τ k

k!
c(k)(t) +O(τ p) .

Inserting into (11) yields

d(t, x, τ) =

p−1∑

k=0

(
1

k + 1
−

r∑
j=1

βjγ
k
j

)
τ k

k!
c(k)(t) +O(τ p)

By this way, we obtain as necessary condition for order p of a RKM that

k = 1 : p : bT Ck−1e =
1

k
⇐⇒ B(p) , (12)

which shall always be fulfilled in the sequel.
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(2◦) A RKM of order p = ξ + η yields the exact solution for the system

x′1(t) = `t`−1 , x1(t0) = 0

x′2(t) = (` + k)tk−1x1(t) , x2(t0) = 0 , k = 1 : η , ` = 1 : ξ

which shows immediately the assertion.

(3◦)

bT Ck−1AC`−1e
C(ξ)
= bT Ck−1 1

`
C`e =

1

`
bT Ck+`−1e

B(η + ξ)
=

1

`(k + `)
, k = 1 : η , ` = 1 : ξ .

(4◦)

bT Ck−1AC`−1e
D(η)

=
1

k
(bT − bT Ck)C`−1e =

1

k
(bT C`−1e− bT Ck+`−1e)

B(η + ξ)
=

1

k

(
1

`
− 1

k + `

)
=

1

`(k + `)
, k = 1 : η , ` = 1 : ξ .

(5◦) From B(ξ + r) and E(r, ξ) there follows

0 =
1

`(k + `)
− 1

`(k + `)
= bT Ck−1AC`−1e− 1

`
Ck+`−1e

= bT Ck−1

(
AC`−1e− 1

`
C`e

)
, k = 1 : r , ` = 1 : ξ .

These are r homogeneous linear equations with regular matrix of coefficients, because all γi are
mutually distinct and all weights βi are nonzero by assumption. Therefore all bracketed terms
(being the variables) must disappear. This yields assertion C(ξ) .

(6◦) By E(η, r) we obtain

bT Ck−1AC`−1e = eT C`−1(AT Ck−1b) =
1

`(k + `)
, k = 1 : η , ` = 1 : r

and form B(η + r) by transposition

1

k
(eT C`−1b− eT Ck+`−1b) = eT C`−1 1

k
(b− Ckb) =

1

k

(
1

`
− 1

k + `

)
, k = 1 : η , ` = 1 : r

The difference yields

eT C`−1

(
AT Ck−1b− 1

k
(b− Ckb)

)
= 0 , k = 1 : η , ` = 1 : r

These are again r homogeneous linear equations with regular matrix of coefficients for the
bracketed terms because all γi shall be different which yields the assertion D(η) .¤

Theorem 2 [Butcher1964] Let a r-stage RKM be given where all nodes γ1, . . . γr are mutually
distinct. Then

(1◦) A(% + r) =⇒ B(% + r) and D(r) ,

(2◦) A(% + r) =⇒ C(r) , if all weights βi 6= 0 ,

(3◦) B(% + r) ∧ C(r) =⇒ D(%) ,

(4◦) B(% + r) ∧ D(r) =⇒ C(%) , if all weights βi 6= 0 .
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Proof. Cf. [Crouzeix75], [Dekker].
(1◦) follows from Theorem 1 , (1◦) , (2◦) , (6◦) .

(2◦) follows from Theorem 1 , (1◦) , (2◦) , (5◦) .

(3◦) follows from Theorem 1 , (3◦) , (6◦) .

(4◦) folllows from Theorem 1 , (4◦) , (5◦) .
¤

Theorem 3 [Butcher1964] Let a r-stage RKM be given where all nodes γ1, . . . γr are mutually
distinct and all weights β1, . . . , βr are different from zero. Then

B(%) and C(ξ) and D(η) =⇒ A(p) , p = min{%, ξ + η + 1, 2ξ + 2} .

[Crouzeix75], see also [Crouzeix80], has proved this result by using algebraic/analytic auxiliaries
and not the difficult Butcher technique. Since the indicated original reference is difficult to
get, the proof is given here in full length. To this end there at first necessary and sufficient
conditions for order p of a r-stage RKM in linear systems (2) necessary.

We use the notatins of the book and of (5). By § 2.4(d)(4◦), let Z(t) be the solution of the
implicit system of interior equations,

Z(t) = e× x(t) + τ(A× I)F (t, Z(t)) , (13)

(τ > 0 step length), then

d(t, x, τ) =
x(t + τ)− x(t)

τ
− (b× I)T F (t, Z(t)) (14)

is the discretization error and the RKM has order p if d(t, x, τ) = O(τ)p) .
¤

Assumption 1 Let p ∈ N fixed.

(1◦) Suppose B(p),

bT Ck−1e =
1

k
, k = 1 : % .

(2◦) Suppose

∀ k ∈ N ∀ s, λi ∈ N0 : k + λ0 + λ1 + . . . + λs ≤ p− 1− s =⇒

bT Cλ0ACλ1 · · ·ACλs

(
1

k
Ck − ACk−1

)
e = 0

(15)

Theorem 4 A r-stage RKM has order p for every linear system (2) if and only if Assumption
1 is fulfilled.

Proof. (1◦) For B(t) = 0 we have

d(t, x, τ) =
1

τ

∫ t+τ

t

c(t) dt−
r∑

j=1

βjc(tj) , tj := t + γjτ . (16)
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Taylor expansion at the point t yields

∫ t+τ

t

c(t) dt =

p−1∑

k=0

τ k+1

(k + 1)!
c(k)(t) +O(τ p+1)

r∑
j=1

βjc(tj) =

p−1∑

k=0

r∑
j=1

βj
ck(t)

k!
(γjτ)k +O(τ p)

=

p−1∑

k=0

(
r∑

j=1

βjγ
k
j

)
τ k

k!
c(k)(t) +O(τ p) .

Inserting in (16) yields

d(t, x, τ) =

p−1∑

k=0

(
1

k + 1
−

r∑
j=1

βjγ
k
j

)
τ k

k!
c(k)(t) +O(τ p)

By this way, we obtain the following necessary condition for a RKM to have order p:

k = 0 : (p− 1) : bT Cke =
1

k + 1
⇐⇒ B(p) , (17)

which shall be alway fulfilled in the sequel.

(2◦) B(t) 6= 0. Let

εi = y(ti)− y(t)− τ

r∑
j=1

aijy
′(ti) , ti = t + γiτ ,

η =
y(t + τ)− y(t)

τ
−

r∑
j=1

βjy
′(tj) .

(18)

Inserting in (13) and (14) yields

y(ti)− zi = εi + τ

r∑
j=1

aijB(tj)[y(tj)− zj]

d(t, x, τ) = η +
r∑

j=1

βjB(tj)[y(tj)− zj] .

Using the notations
ε = [ε1, . . . , εr]

T , B = diag(B(t1), . . . , B(tr))

we obtain
d(t, x, τ) = bTB(I − τAB)−1ε + η .

Taylor expansion at the point t yields

εi =

p−1∑

k=1

τ k

(k − 1)!

(
γk

i

k
−

r∑
j=1

aijγ
k−1
J

)
y(k)(t) +O(τ p)

together

ε =

p−1∑

k=1

τ k

(k − 1)!
y(k)(t)

(
1

k
Ck − ACk−1

)
e +O(τ p) (19)
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On the other side, gilt η = O(τ p) does hold by (18), whereby we obtain altogether

d(t, x, τ) =

p−1∑

k=1

τ k

(k − 1)!
y(k)(t)bTB(I − τAB)−1

[
1

k
Ck − ACk−1

]
e +O(τ p)

Setting here successively c(t) = ktk−1y0 − tkB(t)y0 for k = 1 : (p − 1) , then the linear system
(2) has the solution y(t) = tky0 and for a RKM of order p there follows the condition

∀ k = 1 : (p− 1) : bTB(I − τAB)−1

(
1

k
− ACk−1

)
e = O(τ p−k) . (20)

By this way, a RKM has order p for a linear system (2) if and only if the conditions B(p) and
(20) are fulfilled.

(3◦) For sufficiently small τ > 0 we have

(I − τAB)−1 = I + τAB + . . . + τ `(AB)` +O(τ `+1) ,

therefore (20) is equivalent to

∀ k = 1 : (p− 1) :

p−k−1∑

`=0

τ `bTB(AB)`

(
1

k
Ck − ACk−1

)
e = O(τ p−k) , (21)

on the other side

B =
s∑

i=0

τ i

i!
B(i)(t)Ci +O(τ s+1) .

Therefore (21) is equivalent to the condition:

For k = 1 : (p− 1)

p−k−1∑
s=0


τ s

∑

`+i0+...i`=s,`≥0,ij≥0

B(i0)(t) · · ·B(i`)(t)

i0! · · · i`! bT Ci0ACi1 · · ·AC i`

(
1

k
Ck − ACk−1

)
e


 = O(τ p−k)

This result however says: For all k = 1 : (p− 1) and all s = 1 : (p− k − 1) we have

∑

`+i0+...i`=s

B(i0)(t) · · ·B(i`)(t)

i0! · · · i`! bT Ci0ACi1 · · ·AC i`

(
1

k
Ck − ACk−1

)
e = 0 . (22)

These relations must hold for every p-times differentiable matrix B(t), therefore one can choose
arbitrary functions for the derivatives B(i)(t), i = 0 : (p− 1) , e.g. B(i)(t) = i!Bi.
Result: in order that (22) holds for every regular funktion B(t), it is necessary and sufficient
that:

For all B0, B1, . . . Bp−1 ∈ Rm
m and for all k, s ∈ N0 mit k + s ≤ p− 1 :

∑

`+i0+...i`=s

Bi0Bi1 · · ·Bi`b
T Ci0ACi1 · · ·AC i`

(
1

k
Ck − ACk−1

)
e = 0 . (23)

Every real polynomial of several variables of degree ≤ 2m−1 disappearin identically on the ring
of (m,m)-matrizes, is identically zero. (Theorem of Amitsur-Levitzki). Thus, for 2m ≥ p,
(23) is equivalent to:
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For all k ≥ 1, for all ` ≥ 0, for all i0, i1, . . . i` ≥ 0 such that k + ` + i0 + i1 + . . . i` ≤ p− 1, the
following relation does hold

bT Ci0AC i1 · · ·AC i`

(
1

k
Ck − ACk−1

)
e = 0 . (24)

Accordingly, a RKM has order p for arbitrary linar systems (2) if and only if (17) and (24) are
fulfilled.¤

Remark. In order to show that the conditions of Theorem 4 are necessary, it has been supposed
that m ≥ 2p does hold for the dimension of the linear system (2). This condition is certainly
not optimal. For instance, the conditions (15) are no longer all necessary in case m = 1 and
p ≥ 4.

Consider a linear system (2) with constant matrix B,

x′(t) = Bx(t) + c(t) ∈ Rm (25)

Then the following result does hold:

Theorem 5 A r-stage RKM has order p for all sufficient smooth systems (25) if and only if

bT Ak−`C`e =
k∏

i=`

1

i + 1
, k = 0 : (p− 1) , ` = 0 : k . (26)

Proof. The proof of Theorem 4 remains the same up to formula (21), but now B = B I (in fact
B × I, Kronecker product). Then, by (21), for k = 1 : (p− 1)

p−k−1∑

`=0

B`τ `bT A`

(
1

k
Ck − ACk−1

)
e = O(τ p−k) . (27)

This condition is equivalent to: ∀ k ≥ 1 ∀ ` ≥ 0 : k + ` ≤ p− 1 =⇒

bT A`

(
1

k
Ck − ACk−1

)
e = 0 . (28)

Therefore a RKM has order p for every system (25) if and only if (17) and (28) are fulfilled.
These two conditions follow apparently from (26). Conversely, it can be shown easily by rec-
curence that (17) and (28) determine uniquely the values bT Ak−`C`e for all 0 ≤ ` ≤ k ≤ p− 1.
Therefore (26) is in the mentioned case equivalent to (17) and (28).

Condition (26) is also fulfilled in the case m = 1.

We now return to the general nonlinear differential system (1), namely to Theorem 3.

Theorem Let a r-stage RKM be given where all nodes γ1, . . . γr are mutually distinct and all
weights β1, . . . , βr are non-zero. Then

B(%) and C(ξ) and D(η) =⇒ A(p) , p = min{%, ξ + η + 1, 2ξ + 2} .

Proof. Let y be a solution of y′(t) = f(t, y(t)) and let

B(t) = grady f(t, y(t)) , c(t) = f(t, y(t))−B(t)y(t) ,
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then y is also solutin of
y′(t) = B(t)y(t) + c(t) .

We consider the following quantities:

zi := y(t) + τ

r∑
j=1

aijf(tj, zj) , tj = t + γjτ

E :=
y(t + τ)− y(t)

τ
−

r∑
j=1

βjf(tj, zj)

(29)

ζi := y(t) + τ

r∑
j=1

aij[B(tj)ζj + c(tj)]

ε :=
y(t + τ)− y(t)

τ
−

r∑
j=1

βj[B(tj)ζj + c(tj)] .

(30)

Furthermore, because C(ξ) ,
d := ACξe− 1

ξ + 1
Cξ+1e 6= 0

then, by (18) and 19),

y(ti) = y(t) + τ

r∑
j=1

aijf(tj, y(tj))− τ ξ+1

ξ!
diy

(ξ+1)(t) +O(τ ξ+2)

By this way, we obtain

zi − y(ti) = τ

r∑
j=1

aij[f(tj, zj)− f(tj, y(tj))] +
τ ξ+1

ξ!
diy

(ξ+1)(t) +O(τ ξ+2) . (31)

The function f shall be sufficiently smooth therefore it locally Lipschitz-continuous, and we
obtain r∑

i=1

|zi − y(ti)| ≤ rLτ
r

max
i,j=1

|aij|
r∑

i=1

|zi − y(ti)|+O(τ ξ+1) .

Accordingly, r∑
i=1

|zi − y(ti)| = O(τ ξ+1) .

and, after inserting in (31),

zi − y(ti) =
τ ξ+1

ξ!
diy

(ξ+1)(t) +O(τ ξ+2) . (32)

On the other side

f(ti, zi) = f(ti, y(ti)) + B(ti)[zi − y(ti)] +
∂2f

∂y2
(ti, y(ti))[zi − y(ti)]

2 +O(τ 3ξ+3)

and
B(ti)ζi + c(ti) = f(ti, y(ti)) + B(ti)[ζi − y(ti)]

We write briefly

K =
∂2f

∂y2
(t, y(t))[y(ξ+1)(t)]2
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and obtain by using (32)

f(ti, zi)− [B(ti)ζi + c(ti)] = B(ti)[zi − ζi] + d2
i

τ 2ξ+2

(s!)2
K +O(τ 2ξ+3) (33)

which yields, by inserting into (29) and (30),

zi − ζi = τ

r∑
j=1

aijB(tj)(zj − ζj) +O(τ 2ξ+3)

therefore
zi − ζi = O(τ 2ξ+3) .

Inserting in (33) yields

f(ti, zi)− [B(ti)ζi + c(ti)] = d2
i

τ 2ξ+2

(ξ!)2
K +O(τ 2ξ+3) .

However, by (29) and (30),

E = ε−
r∑

i=1

βi[f(ti, zi)−B(ti)ζi − c(ti)] .

Therefore

E = ε−
[

r∑
i=1

βid
2
i

]
τ 2ξ+2

(ξ!)2
K +O(τ 2s+3) . (34)

Thus it is to be shown that
ε = O(τx+η+1) . (35)

Or, by Theorem 4 it is to be shown that

B(%) ∧ C(ξ) ∧ D(η) =⇒ Vor. 3 f”ur p = ξ + η + 1 .

Remember:
B(%) ⇐⇒ bT Ck−1e =

1

k
, k = 1 : %

C(ξ) ⇐⇒ ACk−1e =
1

k
Cke, , k = 1 : ξ

D(η) ⇐⇒ bT Ck−1A =
1

k
(bT − bT Ck) , k = 1 : η

(36)

By assumption B(ξ + η + 1) it is to be shown:

∀ k ∈ N ∀ s, λi ∈ N0 : k + λ0 + λ1 + . . . + λs ≤ ξ + η + 1− 1− s =⇒

bT Cλ0ACλ1 · · ·ACλs

(
1

k
Ck − ACk−1

)
e = 0

(37)

Suppose now B(ξ + η + 1) and C(ξ) then it is to show that

∀ k ∈ N ∀ s, λi ∈ N0 : k + λ0 + λ1 + . . . + λs ≤ η − s =⇒

bT Cλ0ACλ1 · · ·ACλs

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e = 0

(38)
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(1◦) s = 0 Then it is to show that

bT Cλ

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e = 0 , 0 ≤ λ + k ≤ η (39)

From B(ξ + η + 1) we obtain

1

ξ + k
bT Cλ+ξ+ke =

1

(ξ + k)(λ + ξ + k + 1)

From B(ξ + η + 1) and D(η) we obtain

bT CλACξ+k−1e =
1

λ + 1
(bT − bT Cλ+1)Cξ+k+1e =

1

λ + 1

(
1

ξ + k
− 1

λ + ξ + k + 1

)

This relation yields (39).

(2◦) Let the assertion (38) be true for s fixed.

(3◦) It is to show that we obtain by (2◦)

∀ k ∈ N ∀ λ, λi ∈ N0 : k + λ + λ0 + λ1 + . . . + λs ≤ η − (s + 1) =⇒

bT CλACλ0ACλ1 · · ·ACλs

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e = 0

(40)

By D(η) we but have

bT CλA =
1

λ + 1

(
bT − bT Cλ+1

)

Inserting yields

bT CλACλ0ACλ1 · · ·ACλs

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e

=
1

λ + 1

[
bT Cλ0ACλ1 · · ·ACλs

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e
]

− 1

λ + 1

[
bT Cλ+λ0+1ACλ1 · · ·ACλs

(
1

ξ + k
Cξ+k − ACξ+k−1

)
e
]

By induction hypothesis, both factors are zero. ¤

Lemma 1 The following two assumptions are equivalent for fixed p ∈ N :

Assumption 2 Let p ∈ N fixed. Suppose B(p) and

∀ k ∈ N ∀ s, λi ∈ N0 : k + λ0 + λ1 + . . . + λs ≤ p− 1− s =⇒

bT Cλ0ACλ1 · · ·ACλs

(
1

k
Ck − ACk−1

)
e = 0

(41)

and
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Assumption 3 Let p ∈ N fixed. Let

∀ s ∈ N ∀ λk ∈ N0 :
s∑

k=1

λk ≤ p− s =⇒

bT Cλ1ACλ2 · · ·ACλse =
s∏

i=1

[
(s− i + 1) +

s∑

k=i

λk

]−1 . (42)

In particular
s = 1 : bT Cλ1ACλ2 · · ·ACλs = bT Cλ1e
s = 2 : bT Cλ1ACλ2 · · ·ACλs = bT Cλ1ACλ2e .

Assumption 2 is apparently more simple but Assumption 3 is somewhat more advantageous for
the calculation of concrete conditions.

Proof. Assumption 2 is trivially equivalent to B(p) ; Assumption 3 is equivalent to B(p) for
s = 1. It follows by induction that B(p) and Assumption 2 determine uniquely the value

bT Cλ1ACλ2 · · ·ACλse

for all s ∈ N and all λ1, λ2, . . . , λs ∈ N0 such that λ1 + . . . + λs ≤ p − s . Accordingly, for
equivalence it is only to show that Assumption 3 implies Assumption 2 which is left to the
reader.¤

Lemma 2 There exists exactly one r-stage RKM of order 2r. It is determined by B(2r) and
C(r).

Proof. There exists exactly one integration rule of order 2r for the exterior equation

∫ 1

0

f(t) dt ∼
r∑

i=1

βif(γi)

namely the Gauss-Legendre formula with r nodes in interval [0, 1]. Their weights βi , i =
1 : r are all positive. Then, because of Theorem 2 (3◦) we obtain D(r) and thus by Theorem 3
for the order p

p = min{2r, 2r + 1, 2r + 2} = 2r .

Moreover, it follows from (10) that the matrix A = WV −1 in C(r) is determined uniquely. ¤
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