To Section 2.1

Theorem 1 (Theorem 2.2, CAUCHY's Error Representation) Let the function f be (n+1)-times differentiable in [a,b] an let $[u,v,\ldots,w]$ be the smallest interval $\mathcal{I} \subset \mathbb{R}$ containing all $u, v, \ldots, w \in \mathcal{I}$. Then $\forall x \in [a, b] \exists \xi_x \in [x_0, \ldots, x_n, x]$:

$$f(x) - p_n(x; f) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \,\omega(x) \,, \ \omega(x) = (x - x_0) \cdots (x - x_n) \,. \tag{1}$$

Proof. Let $c(x) = [f(x) - p_n(x, f)]/\omega(x), x \neq x_i, x$ be fixed (!), and let

$$F(t) = f(t) - p_n(t, f) - c(x)\omega(t), \ \omega \in \Pi_{n+1}.$$

F has at least n+2 roots x_0, \ldots, x_n, x . By ROLLE's Theorem

$$F'(t) \quad \text{at least } n+2-1 = n+1 \quad \text{roots,}$$

...
$$F^{(n+1)}(t) \quad \text{at least } n+2-(n+1) = 1 \quad \text{roots } \xi_x \text{ in } [x_0, \dots, x_n, x],$$

therefore

$$F^{(n+1)}(\xi_x) = f^{(n+1)}(\xi_x) - [(n+1)!]c(x) = 0$$

$$c(x) = f^{(n+1)}(\xi_x)/(n+1)!.$$

B-Splines Let Π_n be the set of all polynomials of degree Grad $\leq n$. Let $\Omega := \{x_i\}_{i \in \mathbb{Z}}, x_i \in \mathbb{R}$, be a weakly monotonically increasing *node sequence*. Ω defines a *partition* Δ_m of the interval $[a, b] \subset \mathbb{R}$, if $x_0 = a$ and $x_m = b$,

 $\ldots \leq a = x_0 \leq x_1 \leq \ldots \leq x_m = b \leq \ldots$

In the present context, Ω is called *non-confluent* if all x_i are mutually distinct and confluent else.

Definition 1 Two sufficiently smooth functions f and g coincide on the subset $\Phi \subset \Omega$ if

$$f^{(j-1)}(x) = g^{(j-1)}(x), \ j = 1, \dots, k,$$

for all x which appear in Φ exactly k-times.

Let $p_{0,\dots,m}(x; f) \in \Pi_m$ be the interpolating polynomial which coincides with f on $\{x_0, \dots, x_m\}$,

$$p_{0,\dots,m}(x;f) = f(x_0) + \sum_{i=1}^{m} (x - x_0) \cdots (x - x_{i-1})[x_0,\dots,x_i]f$$
(2)

 $((x - x_{-1}) = 1)$. Then the error satisfies

$$f(x) = p_{0,\dots,m}(x;f) + (x - x_0) \cdots (x - x_m)[x_0,\dots,x_m,x]f,$$
(3)

because the polynomial on the right side has the value f(x) in every point x for fixed x. The highest term

$$[x_0, \dots, x_m]f \tag{4}$$

is called (generalized) divided difference of order m and $[x_i, \ldots, x_k]f$ is defined correspondingly such that we can confine ourselves to (4) in the sequel.

Lemma 1 Es gilt

(a) [x₀,...,x_m]f is independent of the succession of the nodes x_i.
(b) [x₀,...,x_m]f is linear in f.
(c)

$$[x_0, \dots, x_m]f = \frac{f^{(m)}(\xi)}{m!}, \ \xi \in [x_0, \dots, x_m],$$

in particular, this relation holds with $\xi = x$ if $x_0 = \ldots = x_m = x$. (d) LEIBNIZ' rule for $f : x \mapsto g(x) \cdot h(x)$,

$$[x_0, \dots, x_m]f = \sum_{k=0}^m ([x_0, \dots, x_k]g)([x_k, \dots, x_m]h).$$

$$[x_0, \dots, x_m]f = \frac{[x_0, \dots, x_{r-1}, x_{r+1}, \dots, x_m]f - [x_0, \dots, x_{s-1}, x_{s+1}, \dots, x_m]f}{x_s - x_r}$$

if $x_s \neq x_r$.

Proof. (a) and (b) follow from the existence and uniqueness theorem for polynomial interpolation.

(c) follows from (3) and the error representation after CAUCHY

$$f(x) = p_{0,\dots,m}(x;f) + \frac{f^{(m+1)}(\xi)}{(m+1)!}(x-x_0)\cdots(x-x_m)$$

(d) (Cf. [DeBoor], p. 5.) We consider the function

$$F(x) = \sum_{\substack{r=0 \ m}}^{m} (x - x_0) \dots (x - x_{r-1})[x_0, \dots, x_r]g$$

$$\times \sum_{s=0}^{m} (x - x_{s+1}) \dots (x - x_m)[x_s, \dots, x_m]h$$

 $((x - x_{m+1}) = 1)$ which coincides with f at the points x_0, \ldots, x_m since, by (2), the first factor coincides with g and the second with h at these points. Expansion yields

$$F(x) = \sum_{r,s=0}^{m} \ldots = \sum_{r \le s} \ldots + \sum_{r > s} \ldots$$

But the sum $\sum_{r>s} \dots$ disappears at the points x_0, \dots, x_m because each term contains all factors $(x - x_i), i = 0, \dots, m$. Accordingly, $\sum_{r \le s} \dots$ must coincide with f at the points x_0, \dots, x_m as well. The $\sum_{r \le s} \dots$ is now a polynomial of degree m with highest term

$$\sum_{r=s} ([x_0,\ldots,x_r]g)([x_s,\ldots,x_m]h),$$

which, by uniqueness, must coincide with the highest term $[x_0, \ldots, x_m]f$ of the interpolating polynomial of degree m at the points x_0, \ldots, x_m . (e) See Höllig: Numerische Mathematik §3.1.

Definition 2 A function $s : [a, b] \to \mathbb{R}$ is a polynomial spline or briefly spline of degree nw.r.t. the partition Δ_m if $(a) \ s \in C^{n-1}[a, b],$ $(b) \ s \in \Pi_n \text{ in } [x_i, x_{i+1}), \ i = 0, \dots, m-1.$ The set of these splines is denoted by $S_n(\Delta_m)$. For $k \in \mathbb{N}_0$ let

$$p_k(x) := x^k,$$

 $q_k(t,x) := (t-x)^k_+ := Max\{(t-x)^k, 0\}$ (FÖPPL symbol).

 $q_k(t, x)$ has k - 1 continuous derivatives w.r.t. both arguments and the k-th derivative makes a jump of height k! resp. $(-1)^k k!$.

Theorem 2 The set $S_n(\Delta_m)$ is a linear space of dimension m + n. The elements

 $p_0,\ldots,p_n,q_n(\cdot,x_1),\ldots,q_n(\cdot,x_{m-1})$

form a basis of $S_n(\Delta_m)$.

Proof. See [Hämmerlin], p. 246.

Definition 3

$$B_{i,n}(x) := (x_{i+n+1} - x_i)[x_i, \dots, x_{i+n+1}]q_n(\cdot, x)$$

is the i-th normalized B-spline (B like "b" asis) of degree n w.r.t. the node sequence Ω .

Properties:

partition of unity	$\sum_{i \in \mathbb{Z}} B_{i,n}(x) = 1, \ x \in \mathbb{R},$
positivity	$B_{i,n}(x) \ge 0,$
lokal support	$B_{i,n}(x) = 0, \ x \notin [x_i, x_{i+n+1}],$
continuity	$B_{i,n}(x)$ $(n-1)$ -times continuously differentiable.

Proof [Hämmerlin], §6.3.

Lemma 2 (Recurrence Formula for B-splines)

$$\begin{split} B_{i,n}(x) &= w_{i,n}(x)B_{i,n-1}(x) + (1 - w_{i+1,n}(x))B_{i+1,n-1}(x), \\ w_{i,n}(x) &= \begin{cases} \frac{x - x_i}{x_{i+n} - x_i}, & x_{i+n} \neq x_i, \\ arbitrary. & else, \\ B_{i,0}(x) &= \begin{cases} 1, & x_i \leq x < x_{i+1}, \\ 0 & else. \end{cases} \end{split}$$

Proof. Cf. [DeBoor], p. 130. By definition, we have

$$[x_i](\cdot - x) = (x_i - x),$$

$$[x_i, x_{i+1}](\cdot - x) = 1,$$

$$[x_i, \dots, x_{i+k}]q_1(\cdot - x) = 0, \ k > 1,$$

$$q_n(t, x) = (t - x)q_{n-1}(t, x).$$

By application of these relations we obtain the LEIBNIZ rule

$$[x_{i}, \dots, x_{i+n+1}]q_{n}(\cdot, x) = [x_{i}, \dots, x_{i+n+1}]((\cdot - x)q_{n-1}(\cdot, x))$$

= $\sum_{r=i}^{i+n+1} ([x_{i}, \dots, x_{i+r}](\cdot - x))([x_{i+r}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x))$
= $(x_{i} - x)[x_{i}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x) + 1 \cdot [x_{i+1}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x)$

and by Lemma 1(e)

$$(x_i - x)[x_i, \dots, x_{i+n+1}]f = \frac{x_i - x}{x_{i+n+1} - x_i} \left([x_{i+1}, \dots, x_{i+n+1}]f - [x_i, \dots, x_{i+n}]f \right).$$

Together we obtain

$$\begin{split} & [x_i, \dots, x_{i+n+1}]q_n(\cdot, x) \\ &= \frac{x_i - x}{x_{i+n+1} - x_i} [x_{i+1}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x) - \frac{x_i - x}{x_{i+n+1} - x_i} [x_i, \dots, x_{i+n}]q_{n-1}(\cdot, x) \\ &+ \frac{x_{i+n+1} - x_i}{x_{i+n+1} - x_i} [x_{i+1}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x) \\ &= \frac{x - x_i}{x_{i+n+1} - x_i} [x_i, \dots, x_{i+n}]q_{n-1}(\cdot, x) + \frac{x_{i+n+1} - x_i}{x_{i+n+1} - x_i} [x_{i+1}, \dots, x_{i+n+1}]q_{n-1}(\cdot, x). \end{split}$$

After multiplication by $(x_{i+d+1} - x_i)$ we obtain by this way the desired recurrence formula

$$B_{i,n}(x) = \frac{x - x_i}{x_{i+n} - x_i} B_{i,n-1}(x) + \frac{x_{i+n+1} - x}{x_{i+n+1} - x_{i+1}} B_{i+1,n-1}(x).$$

Theorem 3 (Representation Theorem) The B-splines

$$B_{-n,n},\ldots,B_{m-1,n}$$

form a basis of the space of splines $S_n(\Delta_m)$.

By this result every spline $s \in S_n(\Delta_m)$ has the representation

$$s(x) = \sum_{i=-n}^{m-1} \underline{a}_i B_{i,n}(x).$$
 (5)

Choosing $\underline{a}_i \in \mathbb{R}^2$ or $\underline{a}_i \in \mathbb{R}^3$ there results the corresponding spline curve in the plane resp. in the space. The polygon with corners \underline{a}_i is called *control polygon* or DEBOOR polygon. The following *algorithm of* DEBOOR is used for the calculation of a spline $s \in S_n(\Delta_m)$ at the point $x \in [x_l, x_{l+1}) \subset [x_0, x_m]$.

$$\underline{a}^{k}{}_{i} = \alpha^{k}{}_{i}\underline{a}^{k-1}{}_{i} + (1 - \alpha^{k}{}_{i})\underline{a}^{k-1}{}_{i-1}, \ \alpha^{k}{}_{i} = \frac{x - x_{i}}{x_{i+n+1-k} - x_{i}}, \ i \in \{l - d, \dots, l\},$$

$$\underline{a}^{0}{}_{i} = \underline{a}{}_{i}, \ \underline{a}^{n}{}_{l} = s(x).$$

Proof. Cf. [DeBoor], p. 146 ff. By the recurrence formula

$$s(x) = \sum_{i} a_{i} B_{i,n}(x)$$

= $\sum_{i} a_{i} \frac{x - x_{i}}{x_{i+n} - x_{i}} B_{i,n-1}(x) + \sum_{i} a_{i} \frac{x_{i+n} - x}{x_{i+n} - x_{i}} B_{i+1,n-1}(x)$

We write i = j - 1 in the xecond sum and combine both sums then

$$s(x) = \sum_{i} a_{i}^{1}(x) B_{i,n-1}(x)$$

where

$$a_i^1(x) = \frac{(x-x_i)a_i + (x_{i+n-1} - x)a_{i-1}}{x_{i+n-1} - x_i}$$

Repeting this step for $k = 2, \ldots, n$ yields

0

$$s(x) = \sum_{i} a^{k}{}_{i}(x)B_{i,n-k}(x)$$

where

$$a^{k}{}_{i}(x) = \frac{(x - x_{i})a^{k-1}{}_{i}(x) + (x_{i+n-k} - x)a^{k}{}_{i-1}(x)}{x_{i+n-j} - x_{i}}, \ k > 0.$$

DEBOOR scheme

So one needs the node sequence $\{\underline{a}_{-n}, \ldots, \underline{a}_{m-1}\}$ to calculate the spline s(x) at an arbitrary point $x \in [x_0, x_m]$.

To Section 2.2 Main theorem on orthogonal polynomials.

Theorem 4 (Existence and Construction) (1°) Adopting Assumption 2.1 $\forall i \in \mathbb{N}_0 \exists ! p_i \in \overline{\Pi}_i : i \neq k \implies (p_i, p_k) = 0.$ (2°) The orthogonal polynomials are uniquely determined by the three-term recurrence relation (with $xp : x \mapsto xp(x)$)

$$p_{-1}(x) = 0, \quad p_0(x) = 1, \quad p_{i+1}(x) = (x - \delta_{i+1})p_i(x) - \gamma_{i+1}^2 p_{i-1}(x), \quad i \ge 0,$$

$$\delta_{i+1} = (xp_i, p_i)/(p_i, p_i), \quad i \ge 0, \quad \gamma_{i+1}^2 = \begin{cases} 0, & i = 0, \\ (p_i, p_i)/(p_{i-1}, p_{i-1}), & i \ge 1. \end{cases}$$
(6)

Proof. By GRAM-SCHMIDT orthogonalization of the monoms $x \mapsto x^k$. The assertion is clear for $p_0(x) \equiv 1$. Let the assertion be true for all polynomials of degree $j \leq i$. Then it is to be shown that a $p_{i+1} \in \overline{\Pi}_{i+1}$ exists such that $(p_{i+1}, p_j) = 0$, $j \leq i$, and that p_{i+1} has the above properties. By the fundamental theorem of algebra or by direct verification using the norm it is shown that the polynomials p_j , j = 0 : i, are linear independent. Therefore for $p_{i+1} \in \overline{\Pi}_{i+1}$ uniquely

$$p_{i+1}(x) = (x - \delta_{i+1})p_i(x) + c_{i-1}p_{i-1}(x) + \ldots + c_0p_0(x).$$

Because $(p_j, p_k) = 0$, $\forall j, k \leq i, j \neq k$, $(p_{i+1}, p_j) = 0$ for all $j \leq i$ if and only if the following both equations are fulfilled:

By Assumption 2.1 we have $(p_k, p_k) \neq 0$, $k \leq i$, therefore the assertion follows for δ_{i+1} by (7). By inductin hypothesis

$$p_{j}(x) = (x - \delta_{j})p_{j-1}(x) - \gamma_{j}^{2}p_{j-2}(x), \qquad j \leq i,$$

$$\implies (p_{j}, p_{i}) = (xp_{j-1}, p_{i}) - \delta_{j}(p_{j-1}, p_{i}) - \gamma_{j}^{2}(p_{j-2}, p_{i}), \quad j \leq i,$$

$$\implies (p_{j}, p_{i}) = (xp_{j-1}, p_{i}), \qquad j \leq i,$$

$$\implies c_{j-1} = -\frac{(p_{j}, p_{i})}{(p_{j-1}, p_{j-1})} = \begin{cases} -\gamma_{i+1}^{2}, \quad j = i \\ 0, \qquad j < i \end{cases}.$$

Theorem 5 For $\delta, \varepsilon \in \{0, 1\}$, there exists a unique integration rule

$$\int_0^1 f(x) \, dx \approx \delta\beta_0 \, f(0) + \underline{b}^T F(\underline{x}) + \varepsilon \, \beta_{n+1} f(1) \tag{8}$$

of maximum degree $\widetilde{N} = 2n + \delta + \varepsilon - 1$.

Proof. Let $\underline{e} \in \mathbb{R}^n$ be the vector consisting of units only.

(1°) For all $\underline{b} \in \mathbb{R}^n$ with $\underline{b}^T \underline{e} = 1$ there exist uniquely weights β_0 , β_{n+1} such that (8) has order $N^* \geq \delta + \varepsilon - 1$:

For $\delta = \varepsilon = 0$ we have $\underline{b}^T(\gamma \underline{e}) = \gamma$ hence $N^* \ge 0 > -1$. For $(\delta, \varepsilon) = (1, 0)$ or $(\delta, \varepsilon) = (0, 1)$ and $f(x) \equiv 1$, it follows that $1 = \delta\beta_0 f(0) + \underline{b}^T \underline{e} + \varepsilon\beta_{n+1} f(1)$, which yields β_0 resp. β_{n+1} , and $N^* \ge 0$. For $\delta = \varepsilon = 1$ we have

For $\delta = \varepsilon = 1$ we have

$$\begin{aligned} f(x) &= x \implies \frac{1}{2} &= 0 + \underline{b}^T \underline{x} + \beta_{n+1} \implies \beta_{n+1} \\ f(x) &= 1 \implies 1 &= \beta_0 + \underline{b}^T \underline{e} + \beta_{n+1} \implies \beta_0 \,, \end{aligned}$$

and therefore $N^* = 1$.

(2°) Choose GAUSS weights and GAUSS nodes $\underline{\tilde{b}}, \underline{x}$ by Theorem 2.3.2 w.r.t. the weight function $\omega^*(t) = t^{\delta}(1-t)^{\varepsilon}$ in [0, 1] and insert

 $\underline{b} = [\widetilde{\beta}_i/\omega^*(x_i)]_{i=1}^n$. For β_0 , β_{n+1} by (1°), the integration rule (8) then has order $\widetilde{N} = 2n - 1 + \delta + \varepsilon$: Division by $\omega^*(t)$ yields for $p \in \prod_{\widetilde{N}}$

$$p(t) = p_1(t) + \omega^*(t) \cdot p_2(t) := p_1(t) + q(t)$$

order: $\widetilde{N} = \delta + \varepsilon - 1 = \delta + \varepsilon + 2n - 1$

 $p_1(t)$ is integrated exactly by (1°) , and $q(t) \in \Pi_{\widetilde{N}}$ is integrated exactly because

$$\int_{0}^{1} q(t) dt = \int_{0}^{1} \omega^{*}(t) p_{2}(t) dt = \sum_{i=1}^{n} \widetilde{\beta}_{i} p_{2}(x_{i})$$
$$= \sum_{i=1}^{n} \frac{\widetilde{\beta}_{i}}{\omega^{*}(x_{i})} \omega^{*}(x_{i}) p_{2}(x_{i}) = \sum_{i=1}^{n} \beta_{i} q(x_{i}) = 0 + \underline{b}^{T} Q(\underline{x}) + 0.$$

Accordingly, p is integrated exactly by linearity. (3°) For $\delta = c = 0$. \widetilde{N} is maximum by Theorem 2.3.2, other

(3°) For $\delta = \varepsilon = 0$, \tilde{N} is maximum by Theorem 2.3.2, otherwise choose

$$p(x) = x^{\delta} (1-x)^{\varepsilon} \prod_{i=1}^{n} (x-x_i)^2 \in \Pi_{2n+\delta+\varepsilon 1}$$

In all cases $(\delta, \varepsilon) = (1, 0), (0, 1), (1, 1)$ the exact integral is positive whereas the integration rule has the value zero hence the error is non-zero.