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To Section 2.1

Theorem 1 (Theorem 2.2, CAUCHY s Error Representation) Let the function f be

(n+1)-times differentiable in [a,b] an let [u,v, ..., w] be the smallest interval T C R containing
allu,v,...,w L. ThenV z € [a, b] T, € [xg,...,Tn, 2|
fU (&)

f(@) = palz; f) = w(z), w(x)=(z—x0) - (z—zn). (1)

(n+1)!
Proof. Let c(x) = [f(x) — pu(z, f)]/w(zx), x # z;, x be fixed (!), and let
F(t) = f(t) = pa(t, f) — c(@)w(t), welln.
F' has at least n + 2 roots xq, ..., x,,r. By ROLLE’s Theorem
F'(t) at leastn+2—1=n+1  roots,

FOrO() atleastn +2— (n+1) =1 roots & in [zg, ..., 2n, 2],

therefore FoD gy = fOrg) — [(n+ Dle(x) = 0

c(x) =[O/ (n+ 1)L
0

B-Splines Let II,, be the set of all polynomials of degree Grad < n. Let  := {z;}icz, ©; € R,
be a weakly monotonically increasing node sequence. ) defines a partition A,, of the interval
la,b] C R, if zg = a and x,, = b,

oa=zrp<n<..<z,=b<....

In the present context, {2 is called non-confluent if all z; are mutually distinct and confluent
else.

Definition 1 Two sufficiently smooth functions f and g coincide on the subset ® C ) if
f(]_l)(l‘) = g(]_l)(x)a .] = 17 R k:a

for all x which appear in ® exactly k-times.

Let po.._m(x; f) € 1L, be the interpolating polynomial which coincides with f on {xg,..., 2},
po,..m(z; ) = f(zo) + Z(iE — o)+ (x — xi-1)[20, ..., Wil f (2)
i=1
((x —x_1) = 1). Then the error satisfies
f([E) = Po,..., m(x7f) + (:L‘ _xO) e (l’ _mm>[l’0a ce 7xmax]fa (3)
because the polynomial on the right side has the value f(z) in every point z for fixed z. The
highest term
[0, .oy T f (4)
is called (generalized) divided difference of order m and [z;, ..., x| f is defined correspondingly

such that we can confine ourselves to (4) in the sequel.



Lemma 1 FEs gilt

(a) [xo,...,xn]f is independent of the succession of the nodes x;.
(b) [xo, ..., Tm)f is linear in f.
(C) £ (E)
[0y, xmf = T € € lxo, ..., xm],
wn particular, this relation holds with &€ = x if xg = ... =2, = x.
(d) LEIBNIZ rule for f : x +— g(x) - h(x),
[0,y xm]f =) ([0, -, 2k]g) [Tk, - - .,z ]R).

k=0

() o, ] f = [0y« o X1, g1y e o T f = [0y oo o1y Tty - oy T f

Ts — Xy

if xg # x,.

Proof. (a) and (b) follow from the existence and uniqueness theorem for polynomial interpola-
tion.
(c) follows from (3) and the error representation after CAUCHY

(m+1)
f(x) = po,..m(w; )+J2m—+§§!)(:v—a:o)---(x—xm).
(d) (Cf. [DeBoor], p. 5.) We consider the function

m

F(‘CE) = Z(-r - xO) cee (-T - l’r_l)[xg, R ,:B,,]g

X Z(x —Zgr1) (=) [Ts, - oy TRy

s=0

((x — Zyy1) = 1) which coincides with f at the points zo, ..., x,, since, by (2), the first factor
coincides with ¢ and the second with A at these points. Expansion yields

F(m):i...zz...—i—z....

r,5=0 r<s r>8
But the sum ) _ ... disappears at the points o, . .., ,, because each term contains all factors
(x =), 1=0,...,m. Accordingly, >, ... must coincide with f at the points z, ...,z as

well. The . <s -+ 18 now a polynomial of degree m with highest term

> (w0, 2 ]g) ([, - w]B),

which, by uniqueness, must coincide with the highest term [z, ..., x,,]f of the interpolating
polynomial of degree m at the points zq, ..., z,, .

(e) See Hollig: Numerische Mathematik §3.1.

Definition 2 A function s : [a,b] — R is a polynomial spline or briefly spline of degree n
w.r.t. the partition A, if

(a) s € C" 'a, ],

(b) s €ll, in[z;xi41), i=0,...,m—1.



The set of these splines is denoted by S, (A,,).
For k € Ny let

pr(x) =¥,

q(t,z) = (t — )% := Max{(t — z)*,0} (FOPPL symbol).

qx(t, ) has k — 1 continuous derivatives w.r.t. both arguments and the k-th derivative makes a
jump of height k! resp. (—1)k!.

Theorem 2 The set S,(Ay,) is a linear space of dimension m +n. The elements

bo, - - 7pn7Qn(' 71:1)’ cee 7Qn( : 7xm—l)
form a basis of S, (A,).
Proof. See [Hammerlin|, p. 246.

Definition 3
Blyn(x) = <$i+n+1 - xl)[mlv s >$i+n+1]qn< : ax)

is the i-th normalized B-spline (B like “b”asis) of degree n w.r.t. the node sequence ).

Properties:

partition of unity ) .., Bi,(x) =1, z € R,

positivity B n(x) 2 0,
lokal support Bin(x) =0, v & [, Titnt1),
continuity B;n(x) (n — 1)-times continuously differentiable.

Proof [Hémmerlin], §6.3.

Lemma 2 (Recurrence Formula for B-splines)

Bin(x) = win(z)Bipn-1(x) + (1 — wis10(2))Biy1mn1(2),
u7 Titn 7£ X,
wzn(x) = Litn — T

arbitrary.  else,

17 Z; S T < T4,
Bio() :{ 0 else. o

Proof. Cf. [DeBoor], p. 130. By definition, we have
[z:](+ =) = (2 — ),

[ Tia](- — @) =1,
[zi, ikl (- —2) =0, k> 1,
qn(t, x) = (t — z)gn—1(t, x).
By application of these relations we obtain the LEIBNIZ rule
(@i B ]G ( -, 2) = [T, T ] (0 — 2) g (- @)
itn+1
= Z ([zi, - @i (- = @) ([@ihrs - -+, Tina ]G (-, @)

= (xz - I)[%, <. 7xi+n+1]Qn—1(' 7$) +1- [$i+1, - 7Ii+n+1]Qn—1( : ,13)



and by Lemma 1(e)

Ti—x
(v = @)@, - iy f = ————— ([Ti1, - Tigna [ f = 26, Tign] f) -
Litnt+1 — Ty

Together we obtain

[Tis o Tignga|qn (- )
Ti—T Ty — %
= —————[Ti1, - Tigngr|Gaa (5 0) — ————— (25, Tign] G (-, )
Litn+1 — L4 Litn+1 — T4
+w[mi+la .- -xi—i-n—&-l]QTL—l( : 7I>
Litn4+1 — L4
xr— x; Z; -
= —l[wia cee >xi+n]anl( : 7'7;) + L[xlﬁrh s 7xi+n+1]qn*1( ’ ,iL‘).
Titn+1l — Ty Titn+l — L4

After multiplication by (21441 — x;) we obtain by this way the desired recurrence formula

r — T €T: —x
Blan(x) - ‘—JBi,n—l(I) + %Biﬁ-l,n—l(l’)‘
Litn T Titnt1 Tit1

Theorem 3 (Representation Theorem) The B-splines
B—n,na S 7Bm—1,n
form a basis of the space of splines S, (A,,) .

By this result every spline s € S, (A,,) has the representation

m—1

s(z) =Y 4;Bin(). ()

=—n

Choosing a; € R? or g, € R? there results the corresponding spline curve in the plane resp. in
the space. The polygon with corners a; is called control polygon or DEBOOR polygon.

The following algorithm of DEBOOR is used for the calculation of a spline s € S,,(4A,,) at the
point = € [z, 2141) C [xo, T -

a® = aFd" T+ (1 —aky)db ), of = &, ie{l—d,... 1},
Titny1—k — T4
i =g, a" = s(@).
Proof. Cf. [DeBoor]|, p. 146 ff. By the recurrence formula

o) = TP
= Z aQ—— zn 1 —I— Z thn _ ' z+1,n—1(x)~

xl—i—n_ 7 . mz-i—n — I

We write ¢ = j — 1 in the xecond sum and combine both sums then



where (x — mi)ai + (xi+n_1 - ZE)az‘—l

K (x) B Litn—1 — T4

Repeting this step for k = 2,...,n yields

s(2) = 3 a*i(w) Bioi ()

h _
here a*s(x) = (z — zi)a" (@) + (Tirn-k — 2)a"i1 (@) R
Lign—j — T4 ’
DEBOOR scheme 0
a%)fn 1
aé—n—l-l all—n+1(37) ,
Wpyo Upya(T) QL ypya(T)
a? aj coooaf(x) = s(x)

So one needs the node sequence {a_
point = € [zg, Zpy,) -

ny - -G 1} to calculate the spline s(x) at an arbitrary

To Section 2.2 Main theorem on orthogonal polynomials.

Theorem 4 (Ezistence and Construction) (1°) Adopting Assumption 2.1

VieNy A pelli:i#k = (pi,pr) =0.

(2°) The orthogonal polynomials are uniquely determined by the three-term recurrence relation
(with xp : x — xp(z))

p-1(z) =0, po(z) =1, pisi(z) = (x = dipr)pi(x) — 7 apia(x), i >0,

. 0 1=20 (6)
dip1 = (xpi, pi)/ (Pi, i), 1 20, 7 :{ 7 ' 7
+1 = (@pi, pi) [ (Pis i), @ > Vit1 (pi, pi)/ (Pi-1,Pi-1), > 1.

Proof. By GRAM-SCHMIDT orthogonalization of the monoms x — z*. The assertion is clear

for po(xz) = 1. Let the assertion be true for all polynomials of degree j < i. Then it is to be
shown that a p;41 € II;41 exists such that (pi+1,p;) = 0, j <, and that p;1; has the above
properties. By the fundamental theorem of algebra or by direct verification using the norm it
is shown that the polynomials p;, j = 0 : 4, are linear independent. Therefore for p;;; € [T
uniquely
pit1(x) = (x = diy)pi(2) + cimapi—1(z) + ... + copo(@)-

Because (pj,px) =0, V j, k <i, j #k, (pit1,p;) = 0 for all j <4 if and only if the following
bothe equations are fulfilled:

(pi+1,pi) = (xpupi)—&;ﬂ(pmpi) = 0, j=1, (7)
(piv1,0j—1) = (xpj-1,pi) +¢j—1(pj—1,pj—1) = 0, Vj<i.

By Assumption 2.1 we have (pg, pr) # 0, k < i, therefore the assertion follows for d;1 by (7).
By inductin hypothesis

pi(x) = (v —0)pj-1(x) —vipj—2(z), j<i,
= (pj,pi) = (wpj1,p:) = 0;(Lj—1, ) — V; Pj—2, i), J <1,
= (p,pi) = (¥pj-1, 1), j<i,

= C¢j1 _ . _ip) :{ e = .
! (pj-1,Pj-1) 0, J <t



Theorem 5 For d,e € {0, 1}, there exists a unique integration rule
1
| F@ydo 560 70) + 5T F@) + £ B (1) (®)
0

of mazimum degree N=2n+86+e—1.

Proof. Let e € R be the vector consisting of units only.

(1°) For all b € R™ with b’ e = 1 there exist uniquely weights 8y, 3.41 such that (8) has order
N*>§+e—-1:

For § = ¢ = 0 we have b’ (ye) =7 hence N* >0 > —1.

For (0,¢) = (1,0) or (6,¢) = (0,1) and f(z) = 1, it follows that 1 = 68y f(0) + b e +eB,11 f(1),
which yields Gy resp. 8,41, and N* > 0.

For § = ¢ =1 we have

O _l_ Z_)Ti + ﬁn—i—l — ﬁn—‘,—l
= [ —H_?TQ‘FﬂnH = [,

flx) = 2 =
flz) = 1 =

[l NN

and therefore N* = 1.
(2°) Choose GAUSS weights and GAUSS nodes b, x by Theorem 2.3.2 w.r.t. the weight function

w(t) = t°(1 —¢)% in [0, 1] and insert
b= [Bi/w*(x;)],. For By, Bni1 by (1°), the integration rule (8) then has order N = 2n—1+4d+-¢:
Division by w*(t) yields for p € Il

p(t) = m(t) + wi(t) - pa(t) =pilt) +q(t)
order: N 0+e—1 0+e + 2n—1

p1(t) is integrated exactly by (1°), and ¢(t) € Il is integrated exactly because

/0 q(t)dt = /0 w*(t)p2(t) dt = Z gﬂh(%)
- Z w*f;l)w(%)pz(%) = Z Biq(x;) =0+ 0" Q(z) +0.

Accordingly, p is integrated exactly by linearity.
(3°) For § =& =0, N is maximum by Theorem 2.3.2, otherwise choose

n

p(x) = x(s(l —x)° H(x - xi)2 € Mapys1e1

=1

In all cases (4,¢) = (1,0), (0,1), (1,1) the exact integral is positive whereas the integration
rule has the value zero hence the error is non-zero. O



