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To Section 2.1

Theorem 1 (Theorem 2.2, Cauchy’s Error Representation) Let the function f be
(n+1)-times differentiable in [a, b] an let [u, v, . . . , w] be the smallest interval I ⊂ R containing
all u, v, . . . , w ∈ I . Then ∀ x ∈ [a, b] ∃ ξx ∈ [x0, . . . , xn, x]:

f(x)− pn(x; f) =
f (n+1)(ξx)

(n + 1)!
ω(x) , ω(x) = (x− x0) · · · (x− xn) . (1)

Proof. Let c(x) = [f(x)− pn(x, f)]/ω(x), x 6= xi, x be fixed (!), and let

F (t) = f(t)− pn(t, f)− c(x)ω(t), ω ∈ Πn+1 .

F has at least n + 2 roots x0, . . . , xn, x. By Rolle’s Theorem

F ′(t) at least n + 2− 1 = n + 1 roots,
· · · · · ·
F (n+1)(t) at least n + 2− (n + 1) = 1 roots ξx in [x0, . . . , xn, x] ,

therefore
F (n+1)(ξx) = f (n+1)(ξx)− [(n + 1)!]c(x) = 0

c(x) = f (n+1)(ξx)/(n + 1)! .

¤

B-Splines Let Πn be the set of all polynomials of degree Grad ≤ n. Let Ω := {xi}i∈Z, xi ∈ R,
be a weakly monotonically increasing node sequence. Ω defines a partition ∆m of the interval
[a, b] ⊂ R, if x0 = a and xm = b,

. . . ≤ a = x0 ≤ x1 ≤ . . . ≤ xm = b ≤ . . . .

In the present context, Ω is called non-confluent if all xi are mutually distinct and confluent
else.

Definition 1 Two sufficiently smooth functions f and g coincide on the subset Φ ⊂ Ω if

f (j−1)(x) = g(j−1)(x), j = 1, . . . , k,

for all x which appear in Φ exactly k-times.

Let p0,...,m(x; f) ∈ Πm be the interpolating polynomial which coincides with f on {x0, . . . , xm} ,

p0,...,m(x; f) = f(x0) +
m∑

i=1

(x− x0) · · · (x− xi−1)[x0, . . . , xi]f (2)

((x− x−1) = 1). Then the error satisfies

f(x) = p0,...,m(x; f) + (x− x0) · · · (x− xm)[x0, . . . , xm, x]f, (3)

because the polynomial on the right side has the value f(x) in every point x for fixed x . The
highest term

[x0, . . . , xm]f (4)

is called (generalized) divided difference of order m and [xi, . . . , xk]f is defined correspondingly
such that we can confine ourselves to (4) in the sequel.
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Lemma 1 Es gilt
(a) [x0, . . . , xm]f is independent of the succession of the nodes xi.
(b) [x0, . . . , xm]f is linear in f .
(c)

[x0, . . . , xm]f =
f (m)(ξ)

m!
, ξ ∈ [x0, . . . , xm],

in particular, this relation holds with ξ = x if x0 = . . . = xm = x.
(d) Leibniz’ rule for f : x 7→ g(x) · h(x),

[x0, . . . , xm]f =
m∑

k=0

([x0, . . . , xk]g)([xk, . . . , xm]h).

(e)

[x0, . . . , xm]f =
[x0, . . . , xr−1, xr+1, . . . , xm]f − [x0, . . . , xs−1, xs+1, . . . , xm]f

xs − xr

if xs 6= xr.

Proof. (a) and (b) follow from the existence and uniqueness theorem for polynomial interpola-
tion.
(c) follows from (3) and the error representation after Cauchy

f(x) = p0,...,m(x; f) +
f (m+1)(ξ)

(m + 1)!
(x− x0) · · · (x− xm).

(d) (Cf. [DeBoor], p. 5.) We consider the function

F (x) =
m∑

r=0

(x− x0) . . . (x− xr−1)[x0, . . . , xr]g

×
m∑

s=0

(x− xs+1) · · · (x− xm)[xs, . . . , xm]h,

((x− xm+1) = 1) which coincides with f at the points x0, . . . , xm since, by (2), the first factor
coincides with g and the second with h at these points. Expansion yields

F (x) =
m∑

r,s=0

. . . =
∑
r≤s

. . . +
∑
r>s

. . . .

But the sum
∑

r>s . . . disappears at the points x0, . . . , xm because each term contains all factors
(x− xi), i = 0, . . . , m . Accordingly,

∑
r≤s . . . must coincide with f at the points x0, . . . , xm as

well. The
∑

r≤s . . . is now a polynomial of degree m with highest term

∑
r=s

([x0, . . . , xr]g)([xs, . . . , xm]h),

which, by uniqueness, must coincide with the highest term [x0, . . . , xm]f of the interpolating
polynomial of degree m at the points x0, . . . , xm .
(e) See Höllig: Numerische Mathematik §3.1.

Definition 2 A function s : [a, b] → R is a polynomial spline or briefly spline of degree n
w.r.t. the partition ∆m if
(a) s ∈ Cn−1[a, b],
(b) s ∈ Πn in [xi, xi+1), i = 0, . . . , m− 1.
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The set of these splines is denoted by Sn(∆m) .

For k ∈ N0 let

pk(x) := xk,
qk(t, x) := (t− x)k

+ := Max{(t− x)k, 0} (Föppl symbol).

qk(t, x) has k− 1 continuous derivatives w.r.t. both arguments and the k-th derivative makes a
jump of height k! resp. (−1)kk! .

Theorem 2 The set Sn(∆m) is a linear space of dimension m + n. The elements

p0, . . . , pn, qn( · , x1), . . . , qn( · , xm−1)

form a basis of Sn(∆m).

Proof. See [Hämmerlin], p. 246.

Definition 3
Bi,n(x) := (xi+n+1 − xi)[xi, . . . , xi+n+1]qn( · , x)

is the i-th normalized B-spline (B like “b”asis) of degree n w.r.t. the node sequence Ω.

Properties:

partition of unity
∑

i∈ZBi,n(x) = 1, x ∈ R,
positivity Bi,n(x) ≥ 0,
lokal support Bi,n(x) = 0, x /∈ [xi, xi+n+1],
continuity Bi,n(x) (n− 1)-times continuously differentiable.

Proof [Hämmerlin], §6.3.

Lemma 2 (Recurrence Formula for B-splines)

Bi,n(x) = wi,n(x)Bi,n−1(x) + (1− wi+1,n(x))Bi+1,n−1(x),

wi,n(x) =





x− xi

xi+n − xi

, xi+n 6= xi,

arbitrary. else,

Bi,0(x) =

{
1, xi ≤ x < xi+1,
0 else.

Proof. Cf. [DeBoor], p. 130. By definition, we have

[xi]( · − x) = (xi − x),

[xi, xi+1]( · − x) = 1,

[xi, . . . , xi+k]q1( · − x) = 0, k > 1,

qn(t, x) = (t− x)qn−1(t, x).

By application of these relations we obtain the Leibniz rule

[xi, . . . , xi+n+1]qn( · , x) = [xi, . . . , xi+n+1](( · − x)qn−1( · , x))

=
i+n+1∑

r=i

([xi, . . . , xi+r]( · − x))([xi+r, . . . , xi+n+1]qn−1( · , x)

= (xi − x)[xi, . . . , xi+n+1]qn−1( · , x) + 1 · [xi+1, . . . , xi+n+1]qn−1( · , x)
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and by Lemma 1(e)

(xi − x)[xi, . . . , xi+n+1]f =
xi − x

xi+n+1 − xi

([xi+1, . . . , xi+n+1]f − [xi, . . . , xi+n]f) .

Together we obtain

[xi, . . . , xi+n+1]qn( · , x)

=
xi − x

xi+n+1 − xi

[xi+1, . . . , xi+n+1]qn−1( · , x)− xi − x

xi+n+1 − xi

[xi, . . . , xi+n]qn−1( · , x)

+
xi+n+1 − xi

xi+n+1 − xi

[xi+1, . . . xi+n+1]qn−1( · , x)

=
x− xi

xi+n+1 − xi

[xi, . . . , xi+n]qn−1( · , x) +
xi+n+1 − x

xi+n+1 − xi

[xi+1, . . . , xi+n+1]qn−1( · , x).

After multiplication by (xi+d+1 − xi) we obtain by this way the desired recurrence formula

Bi,n(x) =
x− xi

xi+n − xi

Bi,n−1(x) +
xi+n+1 − x

xi+n+1 − xi+1

Bi+1,n−1(x).

Theorem 3 (Representation Theorem) The B-splines

B−n,n, . . . , Bm−1,n

form a basis of the space of splines Sn(∆m) .

By this result every spline s ∈ Sn(∆m) has the representation

s(x) =
m−1∑
i=−n

aiBi,n(x). (5)

Choosing ai ∈ R2 or ai ∈ R3 there results the corresponding spline curve in the plane resp. in
the space. The polygon with corners ai is called control polygon or DeBoor polygon.

The following algorithm of DeBoor is used for the calculation of a spline s ∈ Sn(∆m) at the
point x ∈ [xl, xl+1) ⊂ [x0, xm] .

ak
i = αk

ia
k−1

i + (1− αk
i)a

k−1
i−1, αk

i =
x− xi

xi+n+1−k − xi

, i ∈ {l − d, . . . , l},
a0

i = ai, an
l = s(x).

Proof. Cf. [DeBoor], p. 146 ff. By the recurrence formula

s(x) =
∑

i aiBi,n(x)

=
∑

i

ai
x− xi

xi+n − xi

Bi,n−1(x) +
∑

i

ai
xi+n − x

xi+n − xi

Bi+1,n−1(x).

We write i = j − 1 in the xecond sum and combine both sums then

s(x) =
∑

i

a1
i (x)Bi,n−1(x)
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where
a1

i (x) =
(x− xi)ai + (xi+n−1 − x)ai−1

xi+n−1 − xi

.

Repeting this step for k = 2, . . . , n yields

s(x) =
∑

i

ak
i(x)Bi,n−k(x)

where
ak

i(x) =
(x− xi)a

k−1
i(x) + (xi+n−k − x)ak

i−1(x)

xi+n−j − xi

, k > 0.

DeBoor scheme a0
l−n

a0
l−n+1 a1

l−n+1(x)
a0

l−n+2 a1
l−n+2(x) a2

l−n+2(x)
. . . . . . . . .
a0

l a1
l . . . . . . an

l (x) = s(x)

So one needs the node sequence {a−n, . . . , am−1} to calculate the spline s(x) at an arbitrary
point x ∈ [x0, xm] .

To Section 2.2 Main theorem on orthogonal polynomials.

Theorem 4 (Existence and Construction) (1◦) Adopting Assumption 2.1
∀ i ∈ N0 ∃! pi ∈ Πi : i 6= k =⇒ (pi, pk) = 0 .

(2◦) The orthogonal polynomials are uniquely determined by the three-term recurrence relation
(with xp : x 7→ xp(x))

p−1(x) = 0 , p0(x) = 1 , pi+1(x) = (x− δi+1)pi(x)− γ2
i+1pi−1(x) , i ≥ 0,

δi+1 = (xpi, pi)/(pi, pi), i ≥ 0 , γ2
i+1 =

{
0, i = 0,
(pi, pi)/(pi−1, pi−1), i ≥ 1.

(6)

Proof. By Gram-Schmidt orthogonalization of the monoms x 7→ xk. The assertion is clear
for p0(x) ≡ 1. Let the assertion be true for all polynomials of degree j ≤ i. Then it is to be
shown that a pi+1 ∈ Πi+1 exists such that (pi+1, pj) = 0 , j ≤ i , and that pi+1 has the above
properties. By the fundamental theorem of algebra or by direct verification using the norm it
is shown that the polynomials pj, j = 0 : i, are linear independent. Therefore for pi+1 ∈ Πi+1

uniquely
pi+1(x) = (x− δi+1)pi(x) + ci−1pi−1(x) + . . . + c0p0(x).

Because (pj, pk) = 0, ∀ j, k ≤ i, j 6= k, (pi+1, pj) = 0 for all j ≤ i if and only if the following
bothe equations are fulfilled:

(pi+1, pi) = (xpi, pi)− δi+1(pi, pi) = 0, j = i,
(pi+1, pj−1) = (xpj−1, pi) + cj−1(pj−1, pj−1) = 0, ∀ j ≤ i.

(7)

By Assumption 2.1 we have (pk, pk) 6= 0, k ≤ i, therefore the assertion follows for δi+1 by (7).
By inductin hypothesis

pj(x) = (x− δj)pj−1(x)− γ2
j pj−2(x), j ≤ i,

=⇒ (pj, pi) = (xpj−1, pi)− δj(pj−1, pi)− γ2
j (pj−2, pi), j ≤ i,

=⇒ (pj, pi) = (xpj−1, pi), j ≤ i,

=⇒ cj−1 = − (pj, pi)

(pj−1, pj−1)
=

{ −γ2
i+1, j = i

0, j < i
.
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¤

Theorem 5 For δ, ε ∈ {0, 1} , there exists a unique integration rule

∫ 1

0

f(x) dx ≈ δβ0 f(0) + bT F (x) + ε βn+1f(1) (8)

of maximum degree Ñ = 2n + δ + ε− 1 .

Proof. Let e ∈ Rn be the vector consisting of units only.
(1◦) For all b ∈ Rn with bT e = 1 there exist uniquely weights β0, βn+1 such that (8) has order
N∗ ≥ δ + ε− 1 :
For δ = ε = 0 we have bT (γ e) = γ hence N∗ ≥ 0 > −1 .
For (δ, ε) = (1, 0) or (δ, ε) = (0, 1) and f(x) ≡ 1 , it follows that 1 = δβ0f(0)+ bT e+εβn+1f(1) ,
which yields β0 resp. βn+1 , and N∗ ≥ 0 .
For δ = ε = 1 we have

f(x) = x =⇒ 1

2
= 0 + bT x + βn+1 =⇒ βn+1

f(x) = 1 =⇒ 1 = β0 + bT e + βn+1 =⇒ β0 ,

and therefore N∗ = 1 .

(2◦) Choose Gauß weights and Gauß nodes b̃, x by Theorem 2.3.2 w.r.t. the weight function
ω∗(t) = tδ(1− t)ε in [0, 1] and insert

b = [β̃i/ω
∗(xi)]

n
i=1. For β0, βn+1 by (1◦), the integration rule (8) then has order Ñ = 2n−1+δ+ε:

Division by ω∗(t) yields for p ∈ Π eN

p(t) = p1(t) + ω∗(t) · p2(t) := p1(t) + q(t)

order: Ñ δ + ε− 1 δ + ε + 2n− 1

p1(t) is integrated exactly by (1◦), and q(t) ∈ Π eN is integrated exactly because

∫ 1

0

q(t) dt =

∫ 1

0

ω∗(t)p2(t) dt =
n∑

i=1

β̃ip2(xi)

=
n∑

i=1

β̃i

ω∗(xi)
ω∗(xi)p2(xi) =

n∑
i=1

βiq(xi) = 0 + bT Q(x) + 0 .

Accordingly, p is integrated exactly by linearity.
(3◦) For δ = ε = 0, Ñ is maximum by Theorem 2.3.2, otherwise choose

p(x) = xδ(1− x)ε

n∏
i=1

(x− xi)
2 ∈ Π2n+δ+ε1

In all cases (δ, ε) = (1, 0) , (0, 1) , (1, 1) the exact integral is positive whereas the integration
rule has the value zero hence the error is non-zero. ut


