To Section 2.1

Theorem 1 (Theorem 2.2, Cauchy's Error Representation) Let the function f be ($n+1$)-times differentiable in $[a, b]$ an let $[u, v, \ldots, w]$ be the smallest interval $\mathcal{I} \subset \mathbb{R}$ containing all $u, v, \ldots, w \in \mathcal{I}$. Then $\forall x \in[a, b] \exists \xi_{x} \in\left[x_{0}, \ldots, x_{n}, x\right]$:

$$
\begin{equation*}
f(x)-p_{n}(x ; f)=\frac{f^{(n+1)}\left(\xi_{x}\right)}{(n+1)!} \omega(x), \omega(x)=\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) . \tag{1}
\end{equation*}
$$

Proof. Let $c(x)=\left[f(x)-p_{n}(x, f)\right] / \omega(x), x \neq x_{i}, x$ be fixed (!), and let

$$
F(t)=f(t)-p_{n}(t, f)-c(x) \omega(t), \quad \omega \in \Pi_{n+1} .
$$

F has at least $n+2$ roots x_{0}, \ldots, x_{n}, x. By Rolle's Theorem

$$
\begin{array}{lll}
F^{\prime}(t) & \text { at least } n+2-1=n+1 & \text { roots, } \\
\cdots & \cdots & \\
F^{(n+1)}(t) & \text { at least } n+2-(n+1)=1 & \text { roots } \xi_{x} \text { in }\left[x_{0}, \ldots, x_{n}, x\right],
\end{array}
$$

therefore

$$
\begin{array}{ll}
F^{(n+1)}\left(\xi_{x}\right) & =f^{(n+1)}\left(\xi_{x}\right)-[(n+1)!] c(x)=0 \\
c(x) & =f^{(n+1)}\left(\xi_{x}\right) /(n+1)!
\end{array}
$$

B-Splines Let Π_{n} be the set of all polynomials of degree $\operatorname{Grad} \leq n$. Let $\Omega:=\left\{x_{i}\right\}_{i \in \mathbb{Z}}, x_{i} \in \mathbb{R}$, be a weakly monotonically increasing node sequence. Ω defines a partition Δ_{m} of the interval $[a, b] \subset \mathbb{R}$, if $x_{0}=a$ and $x_{m}=b$,

$$
\ldots \leq a=x_{0} \leq x_{1} \leq \ldots \leq x_{m}=b \leq \ldots
$$

In the present context, Ω is called non-confluent if all x_{i} are mutually distinct and confluent else.

Definition 1 Two sufficiently smooth functions f and g coincide on the subset $\Phi \subset \Omega$ if

$$
f^{(j-1)}(x)=g^{(j-1)}(x), \quad j=1, \ldots, k
$$

for all x which appear in Φ exactly k-times.
Let $p_{0, \ldots, m}(x ; f) \in \Pi_{m}$ be the interpolating polynomial which coincides with f on $\left\{x_{0}, \ldots, x_{m}\right\}$,

$$
\begin{equation*}
p_{0, \ldots, m}(x ; f)=f\left(x_{0}\right)+\sum_{i=1}^{m}\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right)\left[x_{0}, \ldots, x_{i}\right] f \tag{2}
\end{equation*}
$$

$\left(\left(x-x_{-1}\right)=1\right)$. Then the error satisfies

$$
\begin{equation*}
f(x)=p_{0, \ldots, m}(x ; f)+\left(x-x_{0}\right) \cdots\left(x-x_{m}\right)\left[x_{0}, \ldots, x_{m}, x\right] f \tag{3}
\end{equation*}
$$

because the polynomial on the right side has the value $f(x)$ in every point x for fixed x. The highest term

$$
\begin{equation*}
\left[x_{0}, \ldots, x_{m}\right] f \tag{4}
\end{equation*}
$$

is called (generalized) divided difference of order m and $\left[x_{i}, \ldots, x_{k}\right] f$ is defined correspondingly such that we can confine ourselves to (4) in the sequel.

Lemma 1 Es gilt
(a) $\left[x_{0}, \ldots, x_{m}\right] f$ is independent of the succession of the nodes x_{i}.
(b) $\left[x_{0}, \ldots, x_{m}\right] f$ is linear in f.
(c)

$$
\left[x_{0}, \ldots, x_{m}\right] f=\frac{f^{(m)}(\xi)}{m!}, \xi \in\left[x_{0}, \ldots, x_{m}\right]
$$

in particular, this relation holds with $\xi=x$ if $x_{0}=\ldots=x_{m}=x$.
(d) Leibniz' rule for $f: x \mapsto g(x) \cdot h(x)$,

$$
\left[x_{0}, \ldots, x_{m}\right] f=\sum_{k=0}^{m}\left(\left[x_{0}, \ldots, x_{k}\right] g\right)\left(\left[x_{k}, \ldots, x_{m}\right] h\right)
$$

(e)

$$
\left[x_{0}, \ldots, x_{m}\right] f=\frac{\left[x_{0}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{m}\right] f-\left[x_{0}, \ldots, x_{s-1}, x_{s+1}, \ldots, x_{m}\right] f}{x_{s}-x_{r}}
$$

if $x_{s} \neq x_{r}$.
Proof. (a) and (b) follow from the existence and uniqueness theorem for polynomial interpolation.
(c) follows from (3) and the error representation after CAUCHY

$$
f(x)=p_{0, \ldots, m}(x ; f)+\frac{f^{(m+1)}(\xi)}{(m+1)!}\left(x-x_{0}\right) \cdots\left(x-x_{m}\right)
$$

(d) (Cf. [DeBoor], p. 5.) We consider the function

$$
\begin{aligned}
F(x) & =\sum_{r=0}^{m}\left(x-x_{0}\right) \cdots\left(x-x_{r-1}\right)\left[x_{0}, \ldots, x_{r}\right] g \\
& \times \sum_{s=0}^{m}\left(x-x_{s+1}\right) \cdots\left(x-x_{m}\right)\left[x_{s}, \ldots, x_{m}\right] h
\end{aligned}
$$

$\left(\left(x-x_{m+1}\right)=1\right)$ which coincides with f at the points x_{0}, \ldots, x_{m} since, by (2), the first factor coincides with g and the second with h at these points. Expansion yields

$$
F(x)=\sum_{r, s=0}^{m} \ldots=\sum_{r \leq s} \ldots+\sum_{r>s} \ldots
$$

But the sum $\sum_{r>s} \ldots$ disappears at the points x_{0}, \ldots, x_{m} because each term contains all factors $\left(x-x_{i}\right), i=0, \ldots, m$. Accordingly, $\sum_{r \leq s} \ldots$ must coincide with f at the points x_{0}, \ldots, x_{m} as well. The $\sum_{r \leq s} \ldots$ is now a polynomial of degree m with highest term

$$
\sum_{r=s}\left(\left[x_{0}, \ldots, x_{r}\right] g\right)\left(\left[x_{s}, \ldots, x_{m}\right] h\right)
$$

which, by uniqueness, must coincide with the highest term $\left[x_{0}, \ldots, x_{m}\right] f$ of the interpolating polynomial of degree m at the points x_{0}, \ldots, x_{m}.
(e) See Höllig: Numerische Mathematik §3.1.

Definition $2 A$ function $s:[a, b] \rightarrow \mathbb{R}$ is a polynomial spline or briefly spline of degree n w.r.t. the partition Δ_{m} if
(a) $s \in C^{n-1}[a, b]$,
(b) $s \in \Pi_{n}$ in $\left[x_{i}, x_{i+1}\right), i=0, \ldots, m-1$.

The set of these splines is denoted by $S_{n}\left(\Delta_{m}\right)$.
For $k \in \mathbb{N}_{0}$ let

$$
\begin{array}{ll}
p_{k}(x) & :=x^{k} \\
q_{k}(t, x) & :=(t-x)_{+}^{k}:=\operatorname{Max}\left\{(t-x)^{k}, 0\right\} \quad \text { (FöPpl symbol). }
\end{array}
$$

$q_{k}(t, x)$ has $k-1$ continuous derivatives w.r.t. both arguments and the k-th derivative makes a jump of height k ! resp. $(-1)^{k} k$!.

Theorem 2 The set $S_{n}\left(\Delta_{m}\right)$ is a linear space of dimension $m+n$. The elements

$$
p_{0}, \ldots, p_{n}, q_{n}\left(\cdot, x_{1}\right), \ldots, q_{n}\left(\cdot, x_{m-1}\right)
$$

form a basis of $S_{n}\left(\Delta_{m}\right)$.
Proof. See [Hämmerlin], p. 246.

Definition 3

$$
B_{i, n}(x):=\left(x_{i+n+1}-x_{i}\right)\left[x_{i}, \ldots, x_{i+n+1}\right] q_{n}(\cdot, x)
$$

is the i -th normalized B-spline (B like " b "asis) of degree n w.r.t. the node sequence Ω.
Properties:

$$
\begin{array}{ll}
\text { partition of unity } & \sum_{i \in \mathbb{Z}} B_{i, n}(x)=1, x \in \mathbb{R}, \\
\text { positivity } & B_{i, n}(x) \geq 0, \\
\text { lokal support } & B_{i, n}(x)=0, x \notin\left[x_{i}, x_{i+n+1}\right], \\
\text { continuity } & B_{i, n}(x)(n-1) \text {-times continuously differentiable. }
\end{array}
$$

Proof [Hämmerlin], §6.3.
Lemma 2 (Recurrence Formula for B-splines)

$$
\begin{aligned}
B_{i, n}(x) & =w_{i, n}(x) B_{i, n-1}(x)+\left(1-w_{i+1, n}(x)\right) B_{i+1, n-1}(x), \\
w_{i, n}(x) & = \begin{cases}\frac{x-x_{i}}{x_{i+n}-x_{i}}, \quad x_{i+n} \neq x_{i}, \\
\text { arbitrary } & \text { else },\end{cases} \\
B_{i, 0}(x) & = \begin{cases}1, & x_{i} \leq x<x_{i+1}, \\
0 & \text { else. } .\end{cases}
\end{aligned}
$$

Proof. Cf. [DeBoor], p. 130. By definition, we have

$$
\begin{array}{ll}
{\left[x_{i}\right](\cdot-x)} & =\left(x_{i}-x\right), \\
{\left[x_{i}, x_{i+1}\right](\cdot-x)} & =1, \\
{\left[x_{i}, \ldots, x_{i+k}\right] q_{1}(\cdot-x)} & =0, k>1, \\
q_{n}(t, x) & =(t-x) q_{n-1}(t, x) .
\end{array}
$$

By application of these relations we obtain the Leibniz rule

$$
\begin{aligned}
& {\left[x_{i}, \ldots, x_{i+n+1}\right] q_{n}(\cdot, x)=\left[x_{i}, \ldots, x_{i+n+1}\right]\left((\cdot-x) q_{n-1}(\cdot, x)\right)} \\
& =\sum_{r=i}^{i+n+1}\left(\left[x_{i}, \ldots, x_{i+r}\right](\cdot-x)\right)\left(\left[x_{i+r}, \ldots, x_{i+n+1}\right] q_{n-1}(\cdot, x)\right. \\
& =\left(x_{i}-x\right)\left[x_{i}, \ldots, x_{i+n+1}\right] q_{n-1}(\cdot, x)+1 \cdot\left[x_{i+1}, \ldots, x_{i+n+1}\right] q_{n-1}(\cdot, x)
\end{aligned}
$$

and by Lemma 1(e)

$$
\left(x_{i}-x\right)\left[x_{i}, \ldots, x_{i+n+1}\right] f=\frac{x_{i}-x}{x_{i+n+1}-x_{i}}\left(\left[x_{i+1}, \ldots, x_{i+n+1}\right] f-\left[x_{i}, \ldots, x_{i+n}\right] f\right) .
$$

Together we obtain

$$
\begin{aligned}
& {\left[x_{i}, \ldots, x_{i+n+1}\right] q_{n}(\cdot, x)} \\
& =\frac{x_{i}-x}{x_{i+n+1}-x_{i}}\left[x_{i+1}, \ldots, x_{i+n+1}\right] q_{n-1}(\cdot, x)-\frac{x_{i}-x}{x_{i+n+1}-x_{i}}\left[x_{i}, \ldots, x_{i+n}\right] q_{n-1}(\cdot, x) \\
& +\frac{x_{i+n+1}-x_{i}}{x_{i+n+1}-x_{i}}\left[x_{i+1}, \ldots x_{i+n+1}\right] q_{n-1}(\cdot, x) \\
& =\frac{x-x_{i}}{x_{i+n+1}-x_{i}}\left[x_{i}, \ldots, x_{i+n}\right] q_{n-1}(\cdot, x)+\frac{x_{i+n+1}-x}{x_{i+n+1}-x_{i}}\left[x_{i+1}, \ldots, x_{i+n+1}\right] q_{n-1}(\cdot, x) .
\end{aligned}
$$

After multiplication by $\left(x_{i+d+1}-x_{i}\right)$ we obtain by this way the desired recurrence formula

$$
B_{i, n}(x)=\frac{x-x_{i}}{x_{i+n}-x_{i}} B_{i, n-1}(x)+\frac{x_{i+n+1}-x}{x_{i+n+1}-x_{i+1}} B_{i+1, n-1}(x) .
$$

Theorem 3 (Representation Theorem) The B-splines

$$
B_{-n, n}, \ldots, B_{m-1, n}
$$

form a basis of the space of splines $S_{n}\left(\Delta_{m}\right)$.
By this result every spline $s \in S_{n}\left(\Delta_{m}\right)$ has the representation

$$
\begin{equation*}
s(x)=\sum_{i=-n}^{m-1} \underline{a}_{i} B_{i, n}(x) \tag{5}
\end{equation*}
$$

Choosing $\underline{a}_{i} \in \mathbb{R}^{2}$ or $\underline{a}_{i} \in \mathbb{R}^{3}$ there results the corresponding spline curve in the plane resp. in the space. The polygon with corners \underline{a}_{i} is called control polygon or DeBoor polygon.
The following algorithm of DEBOOR is used for the calculation of a spline $s \in S_{n}\left(\Delta_{m}\right)$ at the point $x \in\left[x_{l}, x_{l+1}\right) \subset\left[x_{0}, x_{m}\right]$.

$$
\begin{array}{rl}
\underline{a}^{k} & i
\end{array}=\alpha^{k}{ }_{i} \underline{a}^{k-1}{ }_{i}+\left(1-\alpha^{k}{ }_{i}\right) \underline{a}^{k-1}{ }_{i-1}, \alpha^{k}{ }_{i}=\frac{x-x_{i}}{x_{i+n+1-k}-x_{i}}, i \in\{l-d, \ldots, l\},
$$

Proof. Cf. [DeBoor], p. 146 ff. By the recurrence formula

$$
\begin{aligned}
& s(x)=\sum_{i} a_{i} B_{i, n}(x) \\
& =\sum_{i} a_{i} \frac{x-x_{i}}{x_{i+n}-x_{i}} B_{i, n-1}(x)+\sum_{i} a_{i} \frac{x_{i+n}-x}{x_{i+n}-x_{i}} B_{i+1, n-1}(x) .
\end{aligned}
$$

We write $i=j-1$ in the xecond sum and combine both sums then

$$
s(x)=\sum_{i} a_{i}^{1}(x) B_{i, n-1}(x)
$$

where

$$
a_{i}^{1}(x)=\frac{\left(x-x_{i}\right) a_{i}+\left(x_{i+n-1}-x\right) a_{i-1}}{x_{i+n-1}-x_{i}}
$$

Repeting this step for $k=2, \ldots, n$ yields

$$
s(x)=\sum_{i} a^{k}{ }_{i}(x) B_{i, n-k}(x)
$$

where

$$
a_{i}^{k}(x)=\frac{\left(x-x_{i}\right) a^{k-1}{ }_{i}(x)+\left(x_{i+n-k}-x\right) a^{k}{ }_{i-1}(x)}{x_{i+n-j}-x_{i}}, k>0 .
$$

DeBoor scheme

$$
\begin{array}{llll}
a_{l-n}^{0} & & & \\
a_{l-n+1}^{0} & a_{l-n+1}^{1}(x) & & \\
a_{l-n+2}^{0} & a_{l-n+2}^{1}(x) & a_{l-n+2}^{2}(x) & \\
\ldots & \ldots & \ldots & \\
a_{l}^{0} & a_{l}^{1} & \ldots & \ldots \\
a_{l}^{n}(x)=s(x)
\end{array}
$$

So one needs the node sequence $\left\{\underline{a}_{-n}, \ldots, \underline{a}_{m-1}\right\}$ to calculate the spline $s(x)$ at an arbitrary point $x \in\left[x_{0}, x_{m}\right]$.

To Section 2.2 Main theorem on orthogonal polynomials.
Theorem 4 (Existence and Construction) (1°) Adopting Assumption 2.1 $\forall i \in \mathbb{N}_{0} \exists!p_{i} \in \bar{\Pi}_{i}: i \neq k \Longrightarrow\left(p_{i}, p_{k}\right)=0$.
(2 ${ }^{\circ}$) The orthogonal polynomials are uniquely determined by the three-term recurrence relation (with $x p: x \mapsto x p(x)$)

$$
\begin{align*}
& p_{-1}(x)=0, \quad p_{0}(x)=1, \quad p_{i+1}(x)=\left(x-\delta_{i+1}\right) p_{i}(x)-\gamma_{i+1}^{2} p_{i-1}(x), i \geq 0, \\
& \delta_{i+1}=\left(x p_{i}, p_{i}\right) /\left(p_{i}, p_{i}\right), i \geq 0, \quad \gamma_{i+1}^{2}= \begin{cases}0, & i=0, \\
\left(p_{i}, p_{i}\right) /\left(p_{i-1}, p_{i-1}\right), & i \geq 1\end{cases} \tag{6}
\end{align*}
$$

Proof. By Gram-Schmidt orthogonalization of the monoms $x \mapsto x^{k}$. The assertion is clear for $p_{0}(x) \equiv 1$. Let the assertion be true for all polynomials of degree $j \leq i$. Then it is to be shown that a $p_{i+1} \in \bar{\Pi}_{i+1}$ exists such that $\left(p_{i+1}, p_{j}\right)=0, j \leq i$, and that p_{i+1} has the above properties. By the fundamental theorem of algebra or by direct verification using the norm it is shown that the polynomials $p_{j}, j=0: i$, are linear independent. Therefore for $p_{i+1} \in \bar{\Pi}_{i+1}$ uniquely

$$
p_{i+1}(x)=\left(x-\delta_{i+1}\right) p_{i}(x)+c_{i-1} p_{i-1}(x)+\ldots+c_{0} p_{0}(x) .
$$

Because $\left(p_{j}, p_{k}\right)=0, \forall j, k \leq i, j \neq k,\left(p_{i+1}, p_{j}\right)=0$ for all $j \leq i$ if and only if the following bothe equations are fulfilled:

$$
\begin{array}{ll}
\left(p_{i+1}, p_{i}\right) & =\left(x p_{i}, p_{i}\right)-\delta_{i+1}\left(p_{i}, p_{i}\right) \tag{7}\\
\left(p_{i+1}, p_{j-1}\right) & =\left(x p_{j-1}, p_{i}\right)+c_{j-1}\left(p_{j-1}, p_{j-1}\right)
\end{array}=0, \quad j=i, \quad \forall j \leq i . .
$$

By Assumption 2.1 we have $\left(p_{k}, p_{k}\right) \neq 0, k \leq i$, therefore the assertion follows for δ_{i+1} by (7). By inductin hypothesis

$$
\begin{array}{rlrl}
p_{j}(x) & =\left(x-\delta_{j}\right) p_{j-1}(x)-\gamma_{j}^{2} p_{j-2}(x), & j \leq i, \\
\Longrightarrow\left(p_{j}, p_{i}\right) & =\left(x p_{j-1}, p_{i}\right)-\delta_{j}\left(p_{j-1}, p_{i}\right)-\gamma_{j}^{2}\left(p_{j-2}, p_{i}\right), & j \leq i, \\
\Longrightarrow\left(p_{j}, p_{i}\right) & =\left(x p_{j-1}, p_{i}\right), & j \leq i, \\
\Longrightarrow c_{j-1} & =-\frac{\left(p_{j}, p_{i}\right)}{\left(p_{j-1}, p_{j-1}\right)}= \begin{cases}-\gamma_{i+1}^{2}, & j=i \\
0, & j<i\end{cases}
\end{array}
$$

Theorem 5 For $\delta, \varepsilon \in\{0,1\}$, there exists a unique integration rule

$$
\begin{equation*}
\int_{0}^{1} f(x) d x \approx \delta \beta_{0} f(0)+\underline{b}^{T} F(\underline{x})+\varepsilon \beta_{n+1} f(1) \tag{8}
\end{equation*}
$$

of maximum degree $\widetilde{N}=2 n+\delta+\varepsilon-1$.
Proof. Let $\underline{e} \in \mathbb{R}^{n}$ be the vector consisting of units only.
(1 ${ }^{\circ}$) For all $\underline{b} \in \mathbb{R}^{n}$ with $\underline{b}^{T} \underline{e}=1$ there exist uniquely weights β_{0}, β_{n+1} such that (8) has order $N^{*} \geq \delta+\varepsilon-1$:
For $\delta=\varepsilon=0$ we have $\underline{b}^{T}(\gamma \underline{e})=\gamma$ hence $N^{*} \geq 0>-1$.
For $(\delta, \varepsilon)=(1,0)$ or $(\delta, \varepsilon)=(0,1)$ and $f(x) \equiv 1$, it follows that $1=\delta \beta_{0} f(0)+\underline{b}^{T} \underline{e}+\varepsilon \beta_{n+1} f(1)$, which yields β_{0} resp. β_{n+1}, and $N^{*} \geq 0$.
For $\delta=\varepsilon=1$ we have

$$
\begin{aligned}
& f(x)=x \Longrightarrow \frac{1}{2}=0+\underline{b}^{T} \underline{x}+\beta_{n+1} \Longrightarrow \beta_{n+1} \\
& f(x)=1 \Longrightarrow 1=\beta_{0}+\underline{b}^{T} \underline{e}+\beta_{n+1} \Longrightarrow \beta_{0}
\end{aligned}
$$

and therefore $N^{*}=1$.
$\left(2^{\circ}\right)$ Choose Gauss weights and Gauss nodes $\underline{\widetilde{b}}, \underline{x}$ by Theorem 2.3.2 w.r.t. the weight function $\omega^{*}(t)=t^{\delta}(1-t)^{\varepsilon}$ in $[0,1]$ and insert
$\underline{b}=\left[\widetilde{\beta}_{i} / \omega^{*}\left(x_{i}\right)\right]_{i=1}^{n}$. For β_{0}, β_{n+1} by (1°), the integration rule (8) then has order $\widetilde{N}=2 n-1+\delta+\varepsilon$: Division by $\omega^{*}(t)$ yields for $p \in \Pi_{\tilde{N}}$

$$
\begin{aligned}
& p(t)=p_{1}(t) \\
& \text { order: } \widetilde{N} \\
& \delta+\varepsilon-1
\end{aligned} \begin{aligned}
& \omega^{*}(t) \\
& \delta+\varepsilon+p_{2}(t):=p_{1}(t)+q(t) \\
& \delta+2 n-1
\end{aligned}
$$

$p_{1}(t)$ is integrated exactly by $\left(1^{\circ}\right)$, and $q(t) \in \Pi_{\tilde{N}}$ is integrated exactly because

$$
\begin{aligned}
\int_{0}^{1} q(t) d t & =\int_{0}^{1} \omega^{*}(t) p_{2}(t) d t=\sum_{i=1}^{n} \widetilde{\beta}_{i} p_{2}\left(x_{i}\right) \\
& =\sum_{i=1}^{n} \frac{\widetilde{\beta}_{i}}{\omega^{*}\left(x_{i}\right)} \omega^{*}\left(x_{i}\right) p_{2}\left(x_{i}\right)=\sum_{i=1}^{n} \beta_{i} q\left(x_{i}\right)=0+\underline{b}^{T} Q(\underline{x})+0 .
\end{aligned}
$$

Accordingly, p is integrated exactly by linearity.
(3°) For $\delta=\varepsilon=0, \widetilde{N}$ is maximum by Theorem 2.3.2, otherwise choose

$$
p(x)=x^{\delta}(1-x)^{\varepsilon} \prod_{i=1}^{n}\left(x-x_{i}\right)^{2} \in \Pi_{2 n+\delta+\varepsilon 1}
$$

In all cases $(\delta, \varepsilon)=(1,0),(0,1),(1,1)$ the exact integral is positive whereas the integration rule has the value zero hence the error is non-zero.

