
1

Supplements 2 to Chapter I E. Gekeler
11/10/06

To Section 1.9 Let E ,F be Banach spaces and K ∈ {R,C}.

Theorem 1 (Theorem 1.19, Bordering Lemma) Let the linear operator E : E ×Kr → F ×Kr

be of the form

E =

[
A B
C D

]

with

A : E → F , B : Kr → F
C : E → Kr, D : Kr → Kr.

(B1) If A is bijective then E is bijective iff D − CA−1B is bijective.
(B2) If A is not bijective and dim Ker(A) = codim Range(A) = r ≥ 1 then E is bijective iff

(B21) dim Range(B) = r, (B22) Range(B) ∩ Range(A) = {0},
(B23) dim Range(C) = r, (B24) Ker(A) ∩Ker(C) = {0}.

(B3) If A is not bijective and dim Ker(A) > r then E is not bijective.

Proof. See [Decker], pp. 428–430. We consider the linear system

Ax + Bv = y
Cx + Dv = w

, (1)

where (x, y) ∈ E ×F and (v, w) ∈ Kr×Kr. Then E is bijective iff ∀ (y, w) ∈ F ×Kr ∃ (x, v) ∈
E × Kr such that (1) holds and if (x, v) = (0, 0) is the only solution of this system with right
side (y, w) = (0, 0).

Case (B1). Suppose that A is bijective then A−1 exists and (1) is formally equivalent to the
linear system

x = A−1(y −Bv)
(D − CA−1B)v = w − CA−1y.

(2)

Considering these equations, we can see that E is injective iff D − CA−1B : Kr → Kr is
injective. From Linear Algebra we also know that D−CA−1B is injective iff it is bijective, and
bijectivity of this matrix implies bijectivity of E. This proves the first part of the theorem. In
fact, we have in case (B1) the explicit formula

E−1 =

[
A−1[I + B(D − CA−1B)−1CA−1] −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
.

Case (B2). Suppose that

dim Ker(A) = codim Range(A) = r ≥ 1 (3)

– then A is not bijective – and let first (B21) – (B24) be fulfilled. We show again that E is
bijective. From (3), r = dim Range(B), and Range(A) ∩ Range(B) = {0} we see that

F = Range(A)⊕ Range(B), (4)
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and that B is injective. Also, from Range(C) = Kr, dimKer(A) = r, and Ker(A) ∩Ker(C) =
{0} we see that

E = Ker(A)⊕Ker(C) (5)

hence

C
∣∣
Ker(A)

bijective and A
∣∣
Ker(C)

injective.

Now, by (5),

∀ x ∈ E ∃! (xA, xC) ∈ Ker(A)×Ker(C) : x = xA + xC .

Inserting this direct decomposition of x into (1) we obtain

y = AxC + Bv
w = CxA + Dv

, (6)

hence, by (4), ∀ y ∈ F ∃! (xc(y), v(y)) ∈ Ker(C) × Kr solving (6)(i). Furthermore, (6)(ii) is
equivalent to

xA = [C
∣∣
Ker(A)

]−1(w −Dv)

such that xA ≡ xA(y, w) hence E is surjective.

If we insert y = 0 into (6)(i) then we get xC = 0 and v = 0 by (4). If then in addition w = 0,
the second equation in (6) implies that xA = 0 since v = 0 and C

∣∣
Ker(A)

is bijective. Therefore

E is injective. So E is bijective and (B2.1) – (B2.4) is a sufficient condition.

To show necessitiy, let E be bijective while (3) holds. Now (1) implies that

∀ y ∈ F ∃ (x, v) ∈ E × Kr : y −Bv = Ax ∈ Range(A)

hence the direct decomposition

F = Range(A)⊕ V ,

where dimV = codim(Range(A)) = r, shows that V ⊂ Range(B). Therefore we have

r = dim Range(V) ≤ dim Range(B) ≤ dimKr = r

hence B is injective and V = Range(B), i.e., (B21) and (B22) are fulfilled.

Let Ker(A) = span{x1, . . . , xr} ⊂ E and note that

E

[
xj

0

]
=

[
A B
C D

][
xj

0

]
=

[
0
wj

]
, wj := Cxj, j = 1, . . . , r.

As the linear operator E is bijective, the elements w1, . . . , wr must be linear independent and
hence the linear operator C : E → Kr is surjective, resp. (B23) holds.

If (B24) fails to hold, i.e., Ker(A) ∩ Ker(C) 6= {0}, then we have Ax0 = 0 = Cx0 for some
0 6= x0 ∈ E . Thus (x, v) = (x0, 0) is a nontrivial solution of E(x, v) = (0, 0) in contradiction to
the assumption that E is injective hence finally (B24) holds, too.
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Case (B3). If dim Ker(A) > r then we can choose x1, . . . , xr+1 linear independent such that
Axi = 0. Since Range(C) ⊂ Kr, the elements Cx1, . . . , Cxr+1 must be linear independent. So
there exists a (r+1)–tuple {α1, . . . , αr+1} with not all components disappearing such that

0 6= x :=
r+1∑
j=1

αjxj

satisfies Ax = 0 ∈ F and Cx = 0 ∈ Kr hence E(x, 0) = (0, 0) and E is not bijective.

Remarks. (i) If A is bounded then E is bounded and if E−1 exists then it is also bounded.
(ii) If r = 1 and Ker(A) = [Range(A∗)]⊥ then the regularity condition (ii) simply reduces to

B /∈ Range(A), C /∈ Range(A∗), (7)

which is equivalent to

u∗B 6= 0, C∗v 6= 0,

for A∗u∗ = 0, Av = 0, u∗(v) 6= 0.
(iii) In this volume we need only the first part (B1) of the Bordering Lemma. Fundamental
tools in Nonlinear Analysis are the following theorem of Banach and the Implicit Function
Theorem.

Theorem 2 (Contraction Mapping Theorem) Let U ⊂ E be a closed subset and f : U → U a
contraction on U . Then:
(i) There exists a unique y∗ ∈ U such that y∗ = f(y∗).
(ii) Let y0 ∈ U be arbitrary and

yn+1 = f(yn), n = 0, 1, 2, . . . ,

then y∗ = limn→∞ yn.
(iii)

‖y∗ − yn‖ ≤ αn

1− α
‖y1 − y0‖

(a-posteriori error bound).

Proof. See e.g. [Chow], chap. II.

Definition 1 Let U ⊂ E , V ⊂ F be open then f : U → V is a Cr-diffeomorphism (r ≥ 1) if f
is bijective and f, f−1 are both r-times continuously differentiable.

Theorem 3 (Theorem 1.21, Inverse Mapping Theorem) Let U ⊂ E and V ⊂ F be open and
let a ∈ U be fixed. Let F ∈ Cr(U ,V), r ≥ 1, and let F ′(a) ∈ GL(E ,F) (Fréchet-derivative).
Then there exist open subsets a ∈ U ′ ⊂ U and nonempty V ′ ⊂ V such that the restriction of F
onto U ′ is a Cr-diffeomorphism.

Proof. (i) It suffices to consider the case E = F and the mapping

f : E 3 x 7→ F ′(a)−1[F (a + x)− F (a)]
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with f(0) = 0 and f ′(0) = id (identity).
(ii) The function

g : x 7→ x− f(x)

then has the properties g(0) = 0 and g′(0) = 0. Therefore, there exists a δ > 0 such that
Kδ := {x ∈ E , ‖x‖ < δ} ⊂ U and ∀ x ∈ Kδ ‖g′(x)‖ ≤ 1/2, hence

∀ x ∈ Kδ ‖
∫ 1

0

g′(tx)xdt‖ ≤ 1

2
‖x‖.

Let now y ∈ Kδ/2 be fixed and consider the mapping

G(·, y) : x 7→ y + g(x) = y + x− f(x).

Then x is a fixed point of G iff y = f(x) and G maps Kδ into Kδ. For ‖y‖ ≤ δ/2, G is a
contraction on Kδ:

‖G(x, y)−G(x̃, y)‖ = ‖g(x)− g(x̃)‖
= ‖ ∫ 1

0
g′(x̃ + t(x− x̃))(x− x̃)dt ≤ ‖x− x̃‖/2.

Therefore the Contraction Mapping Theorem can be applied to G:

∀ y ∈ Kδ/2 ∃! x∗ ∈ Kδ x∗ = G(x∗).

This proves that f is invertible on Kδ/2 with

f−1 : Kδ/2 3 y 7→ x∗(y) ∈ Kδ.

(iii) We choose the open sets V ′ = Kδ/2 and U ′ = f−1(V ′) then the restriction of f to U ′ is
bijective and we have to prove the regularity of the restriction ϕ of f−1 to V ′. At first we show
that ϕ is Lipschitz-continuous. But

x1 = y1 + g(x1) ⇐⇒ y1 = f(x1),
x2 = y2 + g(x2) ⇐⇒ y2 = f(x2),

hence

‖x1 − x2‖ ≤ ‖y1 − y2‖+ ‖g(x1)− g(x2)‖
≤ ‖y1 − y2‖+ 1

2
‖x1 − x2‖

for (xi, yi) ∈ U ′ × V ′, or

1

2
‖x1 − x2‖ ≤ ‖y1 − y2‖

or

‖ϕ(y1)− ϕ(y2)‖ ≤ 2‖y1 − y2‖.

(iv) We have f ′(0) = id ∈ GL(E , E) hence there exists a δ1 > 0 such that

∀ x ∈ Kδ1 f ′(x) ∈ GL(E , E) and ‖f ′(x)−1‖ ≤ M.
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We then obtain

‖ϕ(y1)− ϕ(y2)− f ′(x2)
−1(y1 − y2)‖

= ‖f ′(x2)
−1[f ′(x2)(x1 − x2) + f(x2)− f(x1)]‖ ≤ M‖r(x1, x2)‖

Because f is differentiable, we have

r(x1, x2) := f(x1)− f(x2)− f ′(x2)(x1 − x2) = o(‖x1 − x2‖)
thus we obtain

‖ϕ(y1]− ϕ(y2)− f ′(x2)
−1(y1 − y2)‖

‖y1 − y2‖

≤ M‖r(x1, x2)‖
‖y1 − y2‖ ≤ 2M‖r(x1, x2)‖

‖x1 − x2‖ −→ 0

for ‖x1 − x2‖ → 0.
This proves that ϕ is differentiable with ϕ′(y) = f ′(x)−1.
(v) The proof of continuity of ϕ′ and possible higher smoothness is left to the reader.

ϕ inherits the smoothness of f also if f ∈ C∞ or if f is analytic.

The Implicit Function Theorem is a simple inference of the Inverse Mapping Theorem:

Corollary 1 (Corollary 1.6, Implicit Function Theorem) Let E ,F ,G be Banach spaces and let
f ∈ Cr(E × F ;G), r ≥ 1, c = f(a, b), D2f(a, b) ∈ GL(F ,G). Then there exist open U ,W with
a ∈ U ⊂ E , c ∈ W ⊂ G and a uniquely determined function ϕ ∈ Cr(U ×W ,F) such that

b = ϕ(a, c), ∀x ∈ U , ∀ z ∈ W z = f(x, ϕ(x, z))

and ϕ is as smooth as f .

Proof: Let

F (x, y) := E × F 3 (x, y) 7→ (x, f(x, y)) ∈ E × G
and F (a, b) = (a, c). We have only to show that F is local invertible. But

F ′(a, b) =

[
Id 0
D1f(a, b) D2f(a, b)

]

is invertible and continuous hence

F ′(a, b) ∈ GL(E × F , E × G)

by the Inverse Operator Theorem.

For z = 0 we obtain the following second form of the Implicit Function Theorem:

Corollary 2 (Corollary 1.7, Implicit Function Theorem) Let E ,F ,G be Banach spaces and let
f ∈ Cr(E × F ;G), r ≥ 1, f(a, b) = 0, D2f(a, b) ∈ GL(F ,G). Then there exist open U with
a ∈ U ⊂ E , and a uniquely determined function ϕ ∈ Cr(U ,F) such that

ϕ(a) = b, ∀x ∈ U f(x, ϕ(x)) = 0

and ϕ is as smooth as f .
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For an other proof see also [Wloka], Th. 20.4.

To Section 1.10

Lemma 1 (Lemma 1.26) Let X , Y be normed vector spaces, C ⊂ X convex, K ⊂ Y positive
cone, and f : C → Y F-differentiable in D ⊃ C open.
(1◦) f is K-convex if and only if

∀ x, y ∈ C : f(y)− f(x)−∇f(x)(y − x) ≥ 0 i.e. ∈ K . (8)

(2◦) Let X = Rn and f two-times F-differentiable and K-convex then

∀ y ∈ X : ∇∇f(x)[yy] ≥ 0 i.e. ∈ K . (9)

(3◦) Let X = Rn , Y = R, and f two-times F-differentiable and let (9) hold then f is K-convex.

Proof. (1◦) Let f be K-convex then, by the definition, for 0 < λ < 1 directly

f(y)− f(x)− 1

λ

[
f(x + λ(y − x))− f(x)

] ∈ K . (10)

This yields (8) for λ → 0 if the cone K is closed. Otherwise let 0 < η < λ < 1 and z = y − x
then

η
[
− η−1

[
f(x + ηz)− f(x)

]
+ λ−1

[
f(x + λz)− f(x)

]]

= −f
(η

λ
(x + λz) + (1− η

λ
)x

)
+

η

λ
f(x + λz) + (1− η

λ
)f(x) ∈ K

So we obtain for η → 0

−∇f(x)z + λ−1
[
f(x + λz)− f(x)

] ∈ K
=⇒ λ−1

[
f(x + λz)− f(x)

] ∈ K +∇f(x)z .
(11)

Then, by (10) and (11)

f(y)− f(x) ∈ K + λ−1[f(x + λz)− f(x)] ∈ K +K +∇f(x)z

and thus (8) because K +K ⊂ K .

Conversely, let (8) hold then choose u, v ∈ X , 0 < λ < 1, set x = λu + (1− λ)v and

y = u : f(u) ≥ f(x) +∇f(x)(u− x) | · λ,
y = v : f(v) ≥ f(x) +∇f(x)(v − x) | · (1− λ) .

By addition we obtain

λf(u) + (1− λ)f(v) ≥ (λ + 1− λ)f(x) +∇f(x)(λ(u− x) + (1− λ)(v − x))
= f(x)

and thus convexity of f by definition of x.

(2◦) Let f be two-times F-differentiable then, by addition of

f(y)− f(x) ∈ K +∇f(x)(y − x) and f(x)− f(y) ∈ K +∇f(y)(x− y) ,
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we obtain the inequality

0 ∈ K +K − [∇f(y)−∇f(x)](y − x) ⊂ K −∇2f(x)[y − x, y − x] + o(‖y − x‖2) ,

which implies (9).
(3◦) Conversely, let (9) hold and let 0 < λ < 1 as well as

z(λ) = x + λ(y − x) , ϕ(λ) = f(z(λ))−∇f(y)(z(λ)− x) .

Then there exist a δ ∈ (0, 1) by the mean value theorem such that, by (9),

f(y)− f(x)−∇f(x)(y − x) = ϕ(1)− ϕ(0) = ϕ′(δ)(1− 0)

= [∇f(z(δ))−∇f(x)](y − x) =

∫ δ

0

∇2f(z(σ))[y − x, y − x] dσ ∈ K

This equation verifies (8) therefore f is K-konvex by (1◦) .

To Section 1.11

Lemma 2 (Lemma 1.32) (1◦) (Contraction, Continuity) Under the assumption of Projecti0n
Theorem 1.26 ∀ v, w ∈ H : ‖Pv − Pw‖ ≤ ‖v − w‖ .

(2◦) (Linearity) The projection operator P is a linear mapping P : H → U if and only if U is
a linear subspace.

Proof (1◦)

‖v − w‖2 = ‖v − P v + P v − P w + P w − w‖2

= ‖v − P v + P w − w‖2 + ‖P v − P w‖2

−2 (v − P v , P w − P v)− 2 (w − P w , P v − P w) .

Because y = Pw ∈ U, z = Pv ∈ U and the charakterization theorem it follows that

‖v − w‖2 ≥ ‖v − P v + P w − w‖2 + ‖P v − P w‖2 ≥ ‖P v − P w‖2 .

(2.1◦) Let U be a subspace then by the characterization theorem

∀ v ∈ U ∀ w ∈ H : (w − P w , v) = 0 .

For instance ∀ v ∈ U : ((y + z)− P (y + z) , v) = 0 ,
∀ v ∈ U : ((y + z)− (P y + P z) , v) = 0 ,

implies that ∀ v ∈ U : (P (y + z)− (P y + P z) , v) = 0 .

Inserting here v = P (y + z)− (Py + Pz) ∈ U we obtain the assertion for the addition.
(2.2◦) Conversely, let P be linear

P (α u + β v) = αPu + βPv,

then, because y = Pu ∈ U and z = Pv ∈ U , we find that α y + β z ∈ U and thus U is linear.


