Supplements 1 to Chapter I E. Gekeler
11/10/06

To Section 1.1

Lemma 1 (Lemma 1.4) Letting ||z||* = 27z, the vector z* = ATb satisfies
(1°) Vo e R™: [[Az" — bf| < [|Az — b,
(2°) [[Az* = b|| = |[Az — b|| = ||lz*|| < ||z

Proff. Every unitary matrix @ satisfies ||Qz|| = ||z| where || - || :== || - ||2. Therefore
[Az =0l = [USV"z — bl = [|SV"w — U] = [|Sy — ]
where V71 =y and U¥b = c. Let r be the rank of A, then argmin, ||Sy — ¢|| is given by

yi = cj/o; j=1,...,r
J arbitrary j > 7.

Let u; = Ue; and v; = Ve; be the j-th column resp. row U resp. V. Because x = Vy and
c=UMb ie. ¢; = eJTUHb we then obtain

vo= Y Vel UMb/oy+ 370 vy = VSTUTb 30 vy
= ATb + Zj:r—i—l VY.

Since the vectors v; are orthogonal, z = A™b is the solution with minimum norm.

To Section 1.2
Proof of formulas (1.17) and (1.18)

/(gradgp)TdV = j{ gon:f ©ndO € R?,
1% oV ov

/rotng = 7{ d_xy:—% vxndO e R3.
\% ov ov

and f
/de(gradgo)T:% pdr € R®.
F

Proof. Let a’z = 0 for all @ € R? then z = 0.
(1°) Let a € R? arbitrary constant then diva = 0 and div(ea) = grad(¢) - . The theorem of
GAUSS yields for v = pa

/ (w)-ndO—/diV(sag)dV—/gradso~@dV—[/ gradpdV]-a,
oV 14 14 14

hence

Q’/ wﬂdOzw/(grad@)TdV-
oV 174

Noe the assertion follows because a is arbitrary.
(2°) Recall that

div(v X w) =w -rotv — v -rotw.



and rot a = 0 for constant w = a therefore div(v X a) = a-rotv. With the same argumentation
as in (1°) we now obtain the result by the theorem of GAUSS for w = v x a:

/divde:/div(yxg)dV:/Q-rotde:/ w - ndO
1% 1% 1% v

=/ (QXQ)‘ECZO:—Q'/ (v x ndO.
ov oV

(3°) Recall T
rot(pv) = (grad ¢)” X v+ ¢ rotv

and rot v = 0 for constant v = a hence rot(pa) = (grad )T x a. The theorem of STOKES then
yields for w = pa

/Frot(sﬁg)-ﬂdO = /F((gradsD)Txg)-ﬂdO ZQ'/

F(ﬂX(gradw)T) dO = /Fsog-d_ng-/cpd_x.

Theorem 1 (Theorem 1.4, Potential Criterium) Let Q@ C R™ be a simply connected domain and
v:Q — R" a continuously differentiable vector field. Then there exists a potential ¢ : 2 — R
with v = grad ¢ if and only if gradv(x) is symmetric,

VaoeQ:gradu(z) = [gradv(z)]”;
this condition is equivalent to rotv(z) = 0 forn =2,3.

Proof. The right side is necessary by the theorem of H.A.SCHWARZ. We choose a € G fixed,
x € GG near a and for C' the straight line from a to z:

w(t;z)=a+tz—a), 0<t<1.
Then by the chain rule (£ identity matrix)

grad, v(w(t; z)) = [grad v](w(t; z)) grad, w(t; z)
= [grad v](w(t; 2))tE = t[grad v](w(t; x))

As possible antiderivative we define
1 1
f@)i= [ lwlto) i) dt = [ v+ ta - 0)"(@ - o) d
0 0

Then, by grad(v’u) = v* gradu + u” gradv € R,, we obtain for u(z) = z that

grad f(z) = /0 grad, [v(w(t; 2))" (z — a)] dt = /O W'E + (z — a)" Voo (w(t; z))t] dt

If the right side is true then (z — a)?V,v = (z — a)*[V,v]T and thus

1

mad f@) = [ Gl o)1 = tu(wiin)]
= 1-o(w(l2)" =0 v(w(0;2))" = v(w(l;z)" = v(@)" €R,.



Theorem 2 (Theorem 1.5) Let Q C R? be a star-shaped domain and v : Q — R? continuously
differentiable. Then the vector field v has a vector potential w with v = rotw if and only if
dive =0 in €.

Proof. If v = rot w then divrot w = dive = 0. Conversely, let without loss of generality

1
w(r) = / tw(z+tx—2)) X (r—2))dt
0
and also without loss of generality z = 0. Because
rot(v x u) = (divu)v — (dive)u + (grad v)u — (grad u)v

and divv = 0, we obtain for u(z) = z and dive =3

rot, /01 t(v(tr) x z)dt = /01 trot, (v(tz) x x) dt

1
= / t{v(tz) diva + tgrad v(te) — Ev(tz)] dt (E identity matrix)
0

- /0 [2tv(tx) + tZ%y(tx)) dt = /0 %(t@(m‘)} dt = [t@(tm)]é =u(x).
U

Theorem 3 (Theorem 1.6) Let Q be “regular” and let v : Q — R3 be a divergece-free vector
field then v has a divergence-free vector potential.

Proof. Let there be given a vector potential w, of v by Theorem 1.5 then we write w =
w, + grad ¢ and require that 0 = divw = divw, + Ay, i.e.

Ap = —divw,

in €). This differantial equation has at least one solution ¢. Then w is divergence-free and
v=rotw. J

Theorem 4 (HELMHOLTZ’  Decomposition Theorem) Let Q C R3 be “regular” and let v : Q —
R3 be continuously differentiable then there eists a scalar field ¢ and a vector field w such that

v = grad ¢ + rot w

Proof. If there exists a partition of the announced form then applying divergence yields
divey = Agp,
and thus a differential equation for ¢. Suppose that ¢ is a solution of this equation then
div(v — grad ¢) = 0.
By Theorem 1.6 there exists a vector potential w such that

v — grad ¢ = rot w.



To Section 1.3
Deriving of formula (1.24) for the torsion

_det( i 5)(1)
2() x (0P

7(t)

Proof. Since t parallel to n we have £ x n = 0. Then it follows that

B =b"b=1 = bb+b'b=0 = b L b,
b=txn+txn=txn = b Lt,
therefore l_) must be parallel to n. Write
b b
= = —7n | manchmal auch) = =7n| . (1)
S S
From b'n =0, éT@ +b"n =0, and (1) we obtain
rernopo -t b R XD (2)
§ $ sl X I
But # = 5t + $%sn hence
T = S§t+ 5+ 285kn+ Phn+ k0.
Resolution of this equation w.r.t.  and inserting in (2) yields
L (ixi)T['{EL—'!'S‘I—éi—QSS'KQ—SQRQ]. )

kS |T X Z|
Note that b is parallel to & x &, b L ¢t,b L n, hence also b L t. Therefore
(2 x &)T[5t+§t+288kn+ §°kn) =0.

Now, inserting k = |& x Z|/$® in the denominator, the result for 7 is obtained.

To Section 1.6

Theorem 5 (Straightening Theorem) Let v : Q — R™ be a conservative vector field, let z, € 2,
v(zy) #0, and let e, = [1,0,...,0]7 € R". Then there exists an open set U with x, € U C R™
and a diffeomorphism F : U — U such that

Veel: e =VF(z)u(z). (4)
Proof. For n = 3. Let z, = [z}, 23, z3]T and

v(z) = (v!(z),v*(z),v3(z))". Without loss of generality, let v'(zy) # 0. Further, let xj = 0,
else consider the rotated vector field ATv(Ax) with a suitable rotation matrix A. Besides, let



X =[X1, X2 X3 € R3 arbitrary, X* = [0, X2, X3]T, and let ®(¢, X) be the flux of the vector
field v. We insert t = X! — 2z} and X = X* and consider the mapping

G: X oX'—25,X)=G(X)=2cR’,

then
G(£0) = ¢<O7 [07 xg; x%]T) - [O, SE%,Q}'B]T =X,

because zj = 0 and

8 ) 1 _ 1
8X1G(X) = Q(G(X)) fPur X = Ty -
Then, for X! = z because (0, X*) = [0, X2, X?|T,
vH(G(X)) 0 0
VG(X) = | v*(G(X)) 1 0 (5)
v(G(X)) 01

where G(z,) = z,, and the matrix VG(z,) is regular since v'(z,) # 0 by assumption. Since v
is continuously differentiable, there exists an open neighborhood U, where z, € Uy C €2 such
that VG(X) is regular for all X € Uy. By the inverse mapping theorem there exists an open
neighborhood U where x, € U C Uy such that G is a diffeomorphism in U . By (5) we have

VG(X)e, = v(G(X)).
Choose F = G™! then VF(z) = (VG(X(z)))™" and
VeeGU): VFE(z)u(z) =¢ . (6)
Inserting now z = G(X) in & = v(z) we obtain (= d/dt)
VX el: VEX)X = u(G(X)) = VG(X)e, .

hence

V&EU:X:Q

0
Example 1.10 and 1.11

(a) Find the flux integral of the differential equation 3’ = e¥sinx . For which yy € R does the
solution of the initial value problem
y =esinz, y(0) =1y
“slobally” exist, i.e. on the entire line R?
(b) Find the flux integral of the differential equation
Y =(r—y+3)’

and sketch the general solution (by means of isoklines).
Hint: Use the substitution z = x — y + 3 and consider the subdomains
|z <1, |z| =1, |z > 1.

Solution: (a) Separation of variables yields

Y T
/ e Y dy:/ sinz dx ,
Yo xo



hence

e ¥ —e ™ =cosx — cosrg => P(;20,y0) = — In(cosx + exp(—yo) — cos xp) .

Since the argument of the logarithmus must be positiv there exists a global solution for
e ¥ —cosxg>1<=e % >cosxyg+1.
Because of the monotony of the logarithmus then

—yo > In(coszg+ 1) <= yp < —In(coszy+ 1) = y(0) < —In2.

(b) For z — y +3 = z and z = 1 we obtain the solutions
y=x+2, y=x+4,

resp. ®(z, zo,y0) = Yo+ — 2 — (g — 2) ete..
Solutions cannot intersect because ' is given explicitely. They must therefore remain for |z| # 1
entirely in one of the following domains:
Gl:{(x7y)7 |‘T_y+3|<1}7 G2:{(xvy)7 I_y+3<_1}7 G3:{(x7y)ax_y+3>1}
For z we obtain the differential equation

d=1—y =1—-(z—y+3)?=1-2°.

Separation of variables yields ,

By partial decomposition , ,

Integration yields

1
—Injz—1|+h|lz+1|=224+¢ = Iz—i_l::ce%
Z_
Fallunterscheidung:
z+1 o ce* +1
z—1 ce?r — 1
z+1 o ce® — 1
|z| < 1 =ce”’ = z= :
—(z—1) ce*r +1
—(z+1) o ce®® +1
—(z—1) ce? — 1
Result:
ce® + 1 ce?® —1
y=r+3- (z,y) € G2 UG, y:$+3—mv (z,y) € Gy




For the calculation of the flux integral, we insert x = zy and y = yp and solve w.r.t. the
constant ¢, then the result for c is inserted. For the general initial value problem

y/ = (:L' —y+ 3)27 y(l"o) = Yo,
we obtain in Gy U Gy U G

(:BO — Yo + 4)62‘” + (xo — o+ 2)6210
- 3 B ? ) E G U G 5
’ ! + ('TO — Yo + 4)€2x — (J}O — Yo _I_ 2)62,770 (IO yO) 2 3
('CEO — Yo + 4)€Qx — (1‘0 — Yo + 2)e2x0
N 3 ; Y 9 G G .
’ v (l“o — Yo + 4)62"3 + (xo — o + 2)62900 (mo yo) 1

To Section 1.7

Lemma 2 (Lemma 1.12)
(1°) H C X is a hyperplane if and only if

J0#f: X - Rlinear 3ceR:-H={zxec X, f(x)=c}.

(2°) If 0 ¢ H C X is a hyperplane then there exists uniquely a linear functional f : X — R
with H={x e X, f(z)=1}. B
(3°) If 0 # f: X — R is linear and H = {x € X, f(z) = c} is a hyperplane then H = H

closed if and only if the mapping [ is continuous.

Proof. Proof. Cf. [Luenberger69], p. 129.

(a) A hyperplane H is an affin subspace hence H = v + U where U is a linear subspace and
v € H.

Case 1. v ¢ U then 2v ¢ H otherwise

Horx=2v=zx—v=v€EU.

Hence X = span{v, H} = span{v,U} because H is maximum. Let X > z = av +u, u € U,
and f(z) := «. Then f is linear and

H={reX, flz) =1}.

Case 2. v € U, then choose w ¢ U # X. Then X = span{w, U}, H =U. Let X > = =
aw~+u, u €U and f(x) = . Then f is linear and

H={zxe X, f(x)=0}

(b) Let 0 # f : X — R be linear and U = {z € X, f(x) = 0}. Then U is a subspace. Let
v € X with f(v) =1 which exists because we obtain f = 0 from f(z) =0 for all z € X. Then
v ¢ U and it follows that

VaeX: flr—fap) = f@) - f2)f(v) = f(z) — f() =0,

By this way it follows that x — f(z)v € U hence X = span{v,U}. Because v ¢ U we find that
U C X and U # X hence U must be a hyperplane.
For arbitrary ¢ € R let w € X with f(w) = ¢. Then w ¢ U and

{reX, fle)y=c}={reX, flx—w)=0}
={reX,z—welU}=w+U



is a hyperplane.
(2°) The existence follows from (1°). Let f,g: X — R be linear with

H={ze X, f(zx)=1}={z e X, g(x) =1}

then H C W:= {z € X, f(x) — g(x) = 0}. Choose z € H then —z ¢ H because else 0 € H.
But —z € W hence

W =span{z, H} = X.
By this way we obtain f(x) = g(x) for all x € X hence f = g.
(3°) Cf. [Luenberger 69], p. 130.00
If H is a hyperplane then either H is closed, i.e., H = H or H is dense in X, i.e. H = X; cf.

[Taylor] p. 139. For example, C[0,1] is dense in £2[0,1] hence a hyperplane; cf. [Plaumann-
Unger|, p. 187.




