To Section 1.1

Lemma 1 (Lemma 1.4) Letting $\|\underline{x}\|^2 = \underline{x}^T \underline{x}$, the vector $\underline{x}^* = A^+ \underline{b}$ satisfies (1°) $\forall \underline{x} \in \mathbb{R}^n : \|A\underline{x}^* - \underline{b}\| \le \|A\underline{x} - \underline{b}\|$, (2°) $\|A\underline{x}^* - \underline{b}\| = \|A\underline{x} - \underline{b}\| \implies \|\underline{x}^*\| \le \|\underline{x}\|$.

Proff. Every unitary matrix Q satisfies ||Qx|| = ||x|| where $||\cdot|| := ||\cdot||_2$. Therefore

$$||Ax - b|| = ||USV^{H}x - b|| = ||SV^{H}x - U^{H}b|| = ||Sy - c|$$

where $V^H x = y$ and $U^H b = c$. Let r be the rank of A, then $\arg \min_y ||Sy - c||$ is given by

$$y_j = \begin{cases} c_j / \sigma_j & j = 1, \dots, r \\ \text{arbitrary} & j > r. \end{cases}$$

Let $u_j = Ue_j$ and $v_j = Ve_j$ be the *j*-th column resp. row *U* resp. *V*. Because x = Vy and $c = U^H b$, i.e. $c_j = e_j^T U^H b$ we then obtain

$$x = \sum_{j=1}^{r} V e_j e_j^T U^H b / \sigma_j + \sum_{j=r+1}^{n} v_j y_j = V S^+ U^H b + \sum_{j=r+1}^{n} v_j y_j$$

= $A^+ b + \sum_{j=r+1}^{n} v_j y_j.$

Since the vectors v_j are orthogonal, $x = A^+ b$ is the solution with minimum norm.

To Section 1.2 Proof of formulas (1.17) and (1.18)

$$\int_{V} (\operatorname{grad} \varphi)^{T} dV = \oint_{\partial V} \varphi \, d\underline{O} = \oint_{\partial V} \varphi \, \underline{n} dO \in \mathbb{R}^{3} \,,$$
$$\int_{V} \operatorname{rot} \underline{v} \, dV = \oint_{\partial V} d\underline{O} \times \underline{v} = -\oint_{\partial V} \underline{v} \times \underline{n} \, dO \in \mathbb{R}^{3}$$

and

$$\int_{F} d\underline{O} \times (\operatorname{grad} \varphi)^{T} = \oint_{\partial F} \varphi \, d\underline{x} \in \mathbb{R}^{3}$$

Proof. Let $\underline{a}^T \underline{x} = 0$ for all $\underline{a} \in \mathbb{R}^3$ then $\underline{x} = \underline{0}$.

(1°) Let $\underline{a} \in \mathbb{R}^3$ arbitrary constant then $\operatorname{div} \underline{a} = 0$ and $\operatorname{div}(\varphi \underline{a}) = \operatorname{grad}(\varphi) \cdot \underline{a}$. The theorem of GAUSS yields for $\underline{v} = \varphi \underline{a}$

$$\int_{\partial V} (\varphi \underline{a}) \cdot \underline{n} \, dO = \int_{V} \operatorname{div}(\varphi \underline{a}) \, dV = \int_{V} \operatorname{grad} \varphi \cdot \underline{a} \, dV = \left[\int_{V} \operatorname{grad} \varphi \, dV \right] \cdot \underline{a} \,,$$

hence

$$\underline{a} \cdot \int_{\partial V} \varphi \, \underline{n} \, dO = \underline{a} \cdot \int_{V} (\operatorname{grad} \varphi)^T \, dV$$

Noe the assertion follows because \underline{a} is arbitrary.

 (2°) Recall that

$$\operatorname{div}(\underline{v} \times \underline{w}) = \underline{w} \cdot \operatorname{rot} \underline{v} - \underline{v} \cdot \operatorname{rot} \underline{w}.$$

$$\int_{V} \operatorname{div} \underline{w} \, dV = \int_{V} \operatorname{div}(\underline{v} \times \underline{a}) \, dV = \int_{V} \underline{a} \cdot \operatorname{rot} \underline{v} \, dV = \int_{\partial V} \underline{w} \cdot \underline{n} \, dO$$
$$= \int_{\partial V} (\underline{v} \times \underline{a}) \cdot \underline{n} \, dO = -\underline{a} \cdot \int_{\partial V} (\underline{v} \times \underline{n} \, dO \, .$$

 (3°) Recall

$$\operatorname{rot}(\varphi \,\underline{v}) = (\operatorname{grad} \varphi)^T \times \underline{v} + \varphi \, \operatorname{rot} \underline{v}$$

and $\operatorname{rot} \underline{v} = \underline{0}$ for constant $\underline{v} = \underline{a}$ hence $\operatorname{rot}(\varphi \underline{a}) = (\operatorname{grad} \varphi)^T \times \underline{a}$. The theorem of STOKES then yields for $\underline{w} = \varphi \underline{a}$

$$\int_{F} \operatorname{rot}(\varphi \underline{a}) \cdot \underline{n} \, dO = \int_{F} ((\operatorname{grad} \varphi)^{T} \times \underline{a}) \cdot \underline{n} \, dO = \underline{a} \cdot \int_{F} (\underline{n} \times (\operatorname{grad} \varphi)^{T}) \, dO = \int_{\partial F} \varphi \, \underline{a} \cdot \underline{dx} = \underline{a} \cdot \int \varphi \, \underline{dx} \, dA = \underline{a} \cdot \int \varphi \, \underline{dx} \,$$

Theorem 1 (Theorem 1.4, Potential Criterium) Let $\Omega \subset \mathbb{R}^n$ be a simply connected domain and $\underline{v}: \Omega \to \mathbb{R}^n$ a continuously differentiable vector field. Then there exists a potential $\varphi: \Omega \to \mathbb{R}$ with $\underline{v} = \operatorname{grad} \varphi$ if and only if $\operatorname{grad} \underline{v}(\underline{x})$ is symmetric,

$$\forall \underline{x} \in \Omega : \operatorname{grad} \underline{v}(\underline{x}) = [\operatorname{grad} \underline{v}(\underline{x})]^T;$$

this condition is equivalent to $\operatorname{rot} \underline{v}(\underline{x}) = 0$ for n = 2, 3.

Proof. The right side is necessary by the theorem of H.A.SCHWARZ. We choose $\underline{a} \in G$ fixed, $\underline{x} \in G$ near \underline{a} and for C the straight line from \underline{a} to \underline{x} :

$$\underline{w}(t;x) = \underline{a} + t(\underline{x} - \underline{a}), \quad 0 \le t \le 1.$$

Then by the chain rule (E identity matrix)

$$\begin{aligned} \operatorname{grad}_x \underline{v}(\underline{w}(t;\underline{x})) &= [\operatorname{grad} \underline{v}](\underline{w}(t;\underline{x})) \operatorname{grad}_x \underline{w}(t;\underline{x}) \\ &= [\operatorname{grad} \underline{v}](\underline{w}(t;\underline{x})) tE = t[\operatorname{grad} \underline{v}](\underline{w}(t;\underline{x})) \end{aligned}$$

As possible antiderivative we define

$$f(\underline{x}) := \int_0^1 \underline{v}(\underline{w}(t,\underline{x}))^T \underline{\dot{w}}(t;x) \, dt = \int_0^1 \underline{v}(\underline{a} + t(\underline{x} - \underline{a}))^T (\underline{x} - \underline{a}) \, dt$$

Then, by $\operatorname{grad}(\underline{v}^T \underline{u}) = \underline{v}^T \operatorname{grad} \underline{u} + \underline{u}^T \operatorname{grad} \underline{v} \in \mathbb{R}_n$ we obtain for $\underline{u}(\underline{x}) = \underline{x}$ that

$$\operatorname{grad} f(\underline{x}) = \int_0^1 \operatorname{grad}_x[\underline{v}(\underline{w}(t;\underline{x}))^T(\underline{x}-\underline{a})] dt = \int_0^1 [\underline{v}^T E + (\underline{x}-\underline{a})^T \nabla_x \underline{v}(\underline{w}(t;\underline{x}))t] dt$$

If the right side is true then $(\underline{x} - \underline{a})^T \nabla_x \underline{v} = (\underline{x} - \underline{a})^T [\nabla_x \underline{v}]^T$ and thus

grad
$$f(\underline{x}) = \int_0^1 \frac{d}{dt} [t\underline{v}(\underline{w}(t;\underline{x}))^T] dt = t\underline{v}(\underline{w}(t;\underline{x}))^T \Big|_0^1$$

= $1 \cdot \underline{v}(\underline{w}(1;\underline{x}))^T - 0 \cdot \underline{v}(\underline{w}(0;\underline{x}))^T = \underline{v}(\underline{w}(1;\underline{x}))^T = \underline{v}(\underline{x})^T \in \mathbb{R}_n.$

Theorem 2 (Theorem 1.5) Let $\Omega \subset \mathbb{R}^3$ be a star-shaped domain and $\underline{v} : \Omega \to \mathbb{R}^3$ continuously differentiable. Then the vector field \underline{v} has a vector potential \underline{w} with $\underline{v} = \operatorname{rot} \underline{w}$ if and only if $\operatorname{div} \underline{v} = 0$ in Ω .

Proof. If $\underline{v} = \operatorname{rot} \underline{w}$ then div $\operatorname{rot} \underline{w} = \operatorname{div} \underline{v} = 0$. Conversely, let without loss of generality

$$\underline{w}(x) = \int_0^1 t(\underline{v}(z+t(x-z)) \times (x-z)) dt$$

and also without loss of generality z = 0. Because

$$\operatorname{rot}(\underline{v} \times \underline{u}) = (\operatorname{div} \underline{u})\underline{v} - (\operatorname{div} \underline{v})\underline{u} + (\operatorname{grad} \underline{v})\underline{u} - (\operatorname{grad} \underline{u})\underline{v}$$

and div $\underline{v} = 0$, we obtain for $\underline{u}(x) = x$ and div x = 3

$$\operatorname{rot}_{x} \int_{0}^{1} t(\underline{v}(tx) \times x) dt = \int_{0}^{1} t \operatorname{rot}_{x} \left(\underline{v}(tx) \times x\right) dt$$
$$= \int_{0}^{1} t[\underline{v}(tx) \operatorname{div} x + t \operatorname{grad} \underline{v}(tx) - E \underline{v}(tx)] dt \quad (E \text{ identity matrix})$$
$$= \int_{0}^{1} \left[2t\underline{v}(tx) + t^{2}\frac{d}{dt}\underline{v}(tx)\right) dt = \int_{0}^{1} \frac{d}{dt} \left(t^{2}\underline{v}(tx)\right] dt = \left[t^{2}\underline{v}(tx)\right]_{0}^{1} = \underline{v}(x) \,.$$

Theorem 3 (Theorem 1.6) Let Ω be "regular" and let $\underline{v} : \Omega \to \mathbb{R}^3$ be a divergece-free vector field then \underline{v} has a divergence-free vector potential.

Proof. Let there be given a vector potential \underline{w}_0 of \underline{v} by Theorem 1.5 then we write $\underline{w} = \underline{w}_0 + \operatorname{grad} \varphi$ and require that $0 = \operatorname{div} \underline{w} = \operatorname{div} \underline{w}_0 + \Delta \varphi$, i.e.

$$\Delta \varphi = -\operatorname{div} \underline{w}_0$$

in Ω . This differential equation has at least one solution φ . Then \underline{w} is divergence-free and $\underline{v} = \operatorname{rot} \underline{w}$. \Box

Theorem 4 (HELMHOLTZ' Decomposition Theorem) Let $\Omega \subset \mathbb{R}^3$ be "regular" and let $\underline{v} : \Omega \to \mathbb{R}^3$ be continuously differentiable then there exists a scalar field φ and a vector field \underline{w} such that

$$\underline{v} = \operatorname{grad} \varphi + \operatorname{rot} \underline{w}$$

Proof. If there exists a partition of the announced form then applying divergence yields

$$\operatorname{div} \underline{v} = \Delta \varphi,$$

and thus a differential equation for φ . Suppose that φ is a solution of this equation then

$$\operatorname{div}(\underline{v} - \operatorname{grad} \varphi) = 0.$$

By Theorem 1.6 there exists a vector potential \underline{w} such that

$$\underline{v} - \operatorname{grad} \varphi = \operatorname{rot} \underline{w}$$

To Section 1.3 Deriving of formula (1.24) for the torsion

$$\tau(t) = \frac{\det(\underline{\dot{x}}, \underline{\ddot{x}}, \underline{\ddot{x}})(t)}{|\underline{\dot{x}}(t) \times \underline{\ddot{x}}(t)|^2}$$

Proof. Since $\underline{\dot{t}}$ parallel to \underline{n} we have $\underline{\dot{t}} \times \underline{n} = 0$. Then it follows that

$$\begin{aligned} |\underline{b}|^2 &= \underline{b}^T \underline{b} = 1 \implies \underline{\dot{b}}^T \underline{b} + \underline{b}^T \underline{\dot{b}} = 0 \implies \underline{\dot{b}} \perp \underline{b} \\ \\ \underline{\dot{b}} &= \underline{\dot{t}} \times \underline{n} + \underline{t} \times \underline{\dot{n}} = \underline{t} \times \underline{\dot{n}} \implies \underline{\dot{b}} \perp \underline{t}, \end{aligned}$$

therefore \underline{b} must be parallel to \underline{n} . Write

$$\frac{\dot{\underline{b}}}{\dot{\underline{s}}} = -\tau \,\underline{\underline{n}} \,\left(\text{manchmal auch} \right) \frac{\dot{\underline{b}}}{\dot{\underline{s}}} = \tau \,\underline{\underline{n}} \right) \,. \tag{1}$$

From $\underline{b}^T \underline{n} = 0$, $\underline{\dot{b}}^T \underline{n} + \underline{b}^T \underline{\dot{n}} = 0$, and (1) we obtain

$$\tau \equiv \tau \,\underline{\underline{n}} \cdot \underline{\underline{n}} = -\frac{\underline{\dot{b}} \cdot \underline{\underline{n}}}{\underline{\dot{s}}} = \frac{\underline{\dot{n}} \cdot \underline{\dot{b}}}{\underline{\dot{s}}} = \frac{\underline{\dot{n}} \cdot (\underline{\dot{x}} \times \underline{\ddot{x}})}{\underline{\dot{s}} |\underline{\dot{x}} \times \underline{\ddot{x}}|}.$$
(2)

But $\underline{\ddot{x}} = \underline{\ddot{s}} \underline{t} + \underline{\dot{s}}^2 \kappa \underline{n}$ hence

$$\underline{\ddot{x}} = \ddot{s}\underline{t} + \ddot{s}\underline{\dot{t}} + 2\dot{s}\ddot{s}\kappa\underline{n} + \dot{s}^2\dot{\kappa}\underline{n} + \dot{s}^2\kappa\underline{\dot{n}} + \dot{s$$

Resolution of this equation w.r.t. $\underline{\dot{n}}$ and inserting in (2) yields

$$\tau = \frac{(\underline{\dot{x}} \times \underline{\ddot{x}})^T [\underline{\ddot{x}} - \underline{\ddot{s}} \underline{\dot{t}} - \underline{\ddot{s}} \underline{\dot{t}} - 2\dot{s} \underline{\ddot{s}} \kappa \underline{n} - \dot{s}^2 \kappa \underline{n}]}{\dot{s}^2 \kappa \dot{s} |\underline{\dot{x}} \times \underline{\ddot{x}}|}.$$
(3)

Note that <u>b</u> is parallel to $\underline{\dot{x}} \times \underline{\ddot{x}}, \underline{b} \perp \underline{t}, \underline{b} \perp \underline{n}$, hence also $\underline{b} \perp \underline{\dot{t}}$. Therefore

$$(\underline{\dot{x}} \times \underline{\ddot{x}})^T [\ddot{s} \, \underline{t} + \ddot{s} \, \underline{\dot{t}} + 2\dot{s}\ddot{s}\kappa \, \underline{n} + \dot{s}^2\kappa \, \underline{n}] = 0 \,.$$

Now, inserting $\kappa = |\underline{\dot{x}} \times \underline{\ddot{x}}| / \dot{s}^3$ in the denominator, the result for τ is obtained.

To Section 1.6

Theorem 5 (Straightening Theorem) Let $\underline{v}: \Omega \to \mathbb{R}^n$ be a conservative vector field, let $\underline{x}_0 \in \Omega$, $\underline{v}(\underline{x}_0) \neq \underline{0}$, and let $\underline{e}_1 = [1, 0, \dots, 0]^T \in \mathbb{R}^n$. Then there exists an open set \mathcal{U} with $\underline{x}_0 \in \mathcal{U} \subset \mathbb{R}^n$ and a diffeomorphism $F: \mathcal{U} \to \mathcal{U}$ such that

$$\forall \underline{x} \in \mathcal{U} : \underline{e}_1 = \nabla F(\underline{x})\underline{v}(\underline{x}) . \tag{4}$$

Proof. For n = 3. Let $\underline{x}_0 = [x_0^1, x_0^2, x_0^3]^T$ and $\underline{v}(\underline{x}) = (v^1(\underline{x}), v^2(\underline{x}), v^3(\underline{x}))^T$. Without loss of generality, let $v^1(x_0) \neq 0$. Further, let $x_0^1 = 0$, else consider the rotated vector field $A^T \underline{v}(A\underline{x})$ with a suitable rotation matrix A. Besides, let

 $\underline{X} = [X^1, X^2, X^3]^T \in \mathbb{R}^3$ arbitrary, $\underline{X^*} = [0, X^2, X^3]^T$, and let $\Phi(t, \underline{X})$ be the flux of the vector field \underline{v} . We insert $t = X^1 - x_0^1$ and $\underline{X} = \underline{X^*}$ and consider the mapping

$$G: \underline{X} \mapsto \Phi(X^1 - x_0^1, \underline{X}^*) = G(\underline{X}) =: \underline{x} \in \mathbb{R}^3,$$

then

$$G(\underline{x}_0) = \Phi(0, [0, x_0^2, x_0^3]^T) = [0, x_0^2, x_0^3]^T = \underline{x}_0$$

because $x_0^1 = 0$ and

$$\frac{\partial}{\partial X^1} G(\underline{X}) = \underline{v}(G(\underline{X})) \quad \text{f"ur } X^1 = x_0^1 \,.$$

Then, for $X^1 = x_0^1$ because $\Phi(0, \underline{X}^*) = [0, X^2, X^3]^T$,

$$\nabla G(\underline{X}) = \begin{bmatrix} v^1(G(\underline{X})) & 0 & 0\\ v^2(G(\underline{X})) & 1 & 0\\ v^3(G(\underline{X})) & 0 & 1 \end{bmatrix}$$
(5)

where $G(\underline{x}_0) = \underline{x}_0$, and the matrix $\nabla G(\underline{x}_0)$ is regular since $v^1(\underline{x}_0) \neq 0$ by assumption. Since \underline{v} is continuously differentiable, there exists an open neighborhood \mathcal{U}_0 where $\underline{x}_0 \in \mathcal{U}_0 \subset \Omega$ such that $\nabla G(\underline{X})$ is regular for all $\underline{X} \in \mathcal{U}_0$. By the inverse mapping theorem there exists an open neighborhood \mathcal{U} where $\underline{x}_0 \in \mathcal{U} \subset \mathcal{U}_0$ such that G is a diffeomorphism in \mathcal{U} . By (5) we have

$$\nabla G(\underline{X})\underline{e}_1 = \underline{v}(G(\underline{X}))$$

Choose $F = G^{-1}$ then $\nabla F(\underline{x}) = (\nabla G(\underline{X}(\underline{x})))^{-1}$ and

$$\forall \underline{x} \in G(\mathcal{U}) : \nabla F(\underline{x})\underline{v}(\underline{x}) = \underline{e}_1.$$
(6)

Inserting now $\underline{x} = G(\underline{X})$ in $\underline{\dot{x}} = \underline{v}(\underline{x})$ we obtain ($\dot{} = d/dt$)

$$\forall \underline{X} \in \mathcal{U} : \nabla G(\underline{X}) \underline{X} = \underline{v}(G(\underline{X})) = \nabla G(\underline{X})\underline{e}_1.$$

hence

$$\forall \underline{X} \in \mathcal{U} : \underline{\dot{X}} = \underline{e}_1$$

Example 1.10 and 1.11

(a) Find the flux integral of the differential equation $y' = e^y \sin x$. For which $y_0 \in \mathbb{R}$ does the solution of the initial value problem

$$y' = e^y \sin x, \ y(0) = y_0$$

"globally" exist, i.e. on the entire line \mathbb{R} ?

(b) Find the flux integral of the differential equation

$$y' = (x - y + 3)^2$$

and sketch the general solution (by means of isoklines). Hint: Use the substitution z = x - y + 3 and consider the subdomains |z| < 1, |z| = 1, |z| > 1.

Solution: (a) Separation of variables yields

$$\int_{y_0}^y e^{-y} \, dy = \int_{x_0}^x \sin x \, dx \, ,$$

hence

$$e^{-y} - e^{-y_0} = \cos x - \cos x_0 \Longrightarrow \Phi(x; x_0, y_0) = -\ln(\cos x + \exp(-y_0) - \cos x_0)$$

Since the argument of the logarithmus must be positiv there exists a global solution for

$$e^{-y_0} - \cos x_0 > 1 \iff e^{-y_0} > \cos x_0 + 1$$
.

Because of the monotony of the logarithmus then

$$-y_0 > \ln(\cos x_0 + 1) \iff y_0 < -\ln(\cos x_0 + 1) \Longrightarrow y(0) < -\ln 2$$

(b) For x - y + 3 = z and $z = \pm 1$ we obtain the solutions

$$y = x + 2, \qquad y = x + 4,$$

resp. $\Phi(x, x_0, y_0) = y_0 + x - 2 - (x_0 - 2)$ etc..

Solutions cannot intersect because y' is given explicitly. They must therefore remain for $|z| \neq 1$ entirely in one of the following domains:

 $G_1 = \{(x,y), |x-y+3| < 1\}, \quad G_2 = \{(x,y), |x-y+3| < -1\}, \quad G_3 = \{(x,y), |x-y+3| > 1\}.$

For z we obtain the differential equation

$$z' = 1 - y' = 1 - (x - y + 3)^2 = 1 - z^2$$
.

Separation of variables yields

$$\frac{z}{1-z^2} = 1$$

By partial decomposition

$$\frac{z'}{1-z} + \frac{z'}{1+z} = 2$$

Integration yields

$$-\ln|z-1| + \ln|z+1| = 2x + c_1 \implies \frac{|z+1|}{|z-1|} = ce^{2x}$$

Fallunterscheidung:

$$z > 1: \quad \frac{z+1}{z-1} = ce^{2x} \implies z = \frac{ce^{2x}+1}{ce^{2x}-1}$$
$$|z| < 1: \quad \frac{z+1}{-(z-1)} = ce^{2x} \implies z = \frac{ce^{2x}-1}{ce^{2x}-1}$$
$$z < -1: \quad \frac{-(z+1)}{-(z-1)} = ce^{2x} \implies z = \frac{ce^{2x}+1}{ce^{2x}-1}$$

Result:

$$y = x + 3 - \frac{ce^{2x} + 1}{ce^{2x} - 1}, \quad (x, y) \in G_2 \cup G_3, \qquad y = x + 3 - \frac{ce^{2x} - 1}{ce^{2x} + 1}, \quad (x, y) \in G_1$$

$$y' = (x - y + 3)^2, \quad y(x_0) = y_0,$$

we obtain in $G_1 \cup G_2 \cup G_3$

$$y = x + 3 - \frac{(x_0 - y_0 + 4)e^{2x} + (x_0 - y_0 + 2)e^{2x_0}}{(x_0 - y_0 + 4)e^{2x} - (x_0 - y_0 + 2)e^{2x_0}}, \quad (x_0, y_0) \in G_2 \cup G_3$$

$$y = x + 3 - \frac{(x_0 - y_0 + 4)e^{2x} - (x_0 - y_0 + 2)e^{2x_0}}{(x_0 - y_0 + 4)e^{2x} + (x_0 - y_0 + 2)e^{2x_0}}, \quad (x_0, y_0) \in G_1.$$

To Section 1.7

Lemma 2 (Lemma 1.12) (1°) $\mathcal{H} \subset \mathcal{X}$ is a hyperplane if and only if

 $\exists 0 \neq f : \mathcal{X} \to \mathbb{R} \ linear \ \exists c \in \mathbb{R} : \mathcal{H} = \{x \in \mathcal{X}, \ f(x) = c\}.$

(2°) If $0 \notin \mathcal{H} \subset \mathcal{X}$ is a hyperplane then there exists uniquely a linear functional $f : \mathcal{X} \to \mathbb{R}$ with $\mathcal{H} = \{x \in \mathcal{X}, f(x) = 1\}$.

(3°) If $0 \neq f : X \to \mathbb{R}$ is linear and $\mathcal{H} = \{x \in \mathcal{X}, f(x) = c\}$ is a hyperplane then $\mathcal{H} = \overline{\mathcal{H}}$ closed if and only if the mapping f is continuous.

Proof. Proof. Cf. [Luenberger69], p. 129.

(a) A hyperplane \mathcal{H} is an affin subspace hence $\mathcal{H} = v + \mathcal{U}$ where \mathcal{U} is a linear subspace and $v \in \mathcal{H}$.

Case 1. $v \notin \mathcal{U}$ then $2v \notin \mathcal{H}$ otherwise

$$\mathcal{H} \ni x = 2v \Longrightarrow x - v = v \in \mathcal{U}.$$

Hence $\mathcal{X} = \operatorname{span}\{v, \mathcal{H}\} = \operatorname{span}\{v, \mathcal{U}\}$ because \mathcal{H} is maximum. Let $\mathcal{X} \ni x = \alpha v + u, \ u \in \mathcal{U}$, and $f(x) := \alpha$. Then f is linear and

$$\mathcal{H} = \{ x \in X, \ f(x) = 1 \}.$$

Case 2. $v \in \mathcal{U}$, then choose $w \notin \mathcal{U} \neq \mathcal{X}$. Then $\mathcal{X} = \operatorname{span}\{w, \mathcal{U}\}, \mathcal{H} = \mathcal{U}$. Let $\mathcal{X} \ni x = \alpha w + u, u \in \mathcal{U}$ and $f(x) = \alpha$. Then f is linear and

$$\mathcal{H} = \{ x \in \mathcal{X}, \ f(x) = 0 \}.$$

(b) Let $0 \neq f : \mathcal{X} \to \mathbb{R}$ be linear and $\mathcal{U} = \{x \in \mathcal{X}, f(x) = 0\}$. Then \mathcal{U} is a subspace. Let $v \in \mathcal{X}$ with f(v) = 1 which exists because we obtain f = 0 from f(x) = 0 for all $x \in \mathcal{X}$. Then $v \notin \mathcal{U}$ and it follows that

$$\forall x \in \mathcal{X} : f(x - f(x)v) = f(x) - f(x)f(v) = f(x) - f(x) = 0.$$

By this way it follows that $x - f(x)v \in \mathcal{U}$ hence $\mathcal{X} = \operatorname{span}\{v, \mathcal{U}\}$. Because $v \notin \mathcal{U}$ we find that $\mathcal{U} \subset \mathcal{X}$ and $\mathcal{U} \neq \mathcal{X}$ hence \mathcal{U} must be a hyperplane.

For arbitrary $c \in \mathbb{R}$ let $w \in \mathcal{X}$ with f(w) = c. Then $w \notin \mathcal{U}$ and

$$\{x \in X, f(x) = c\} = \{x \in X, f(x - w) = 0\}$$

= $\{x \in X, x - w \in U\} = w + U$

is a hyperplane.

(2°) The existence follows from (1°). Let $f, g : \mathcal{X} \to \mathbb{R}$ be linear with

$$\mathcal{H} = \{ x \in \mathcal{X}, \ f(x) = 1 \} = \{ x \in X, \ g(x) = 1 \}$$

then $\mathcal{H} \subset \mathcal{W} := \{x \in \mathcal{X}, f(x) - g(x) = 0\}$. Choose $x \in \mathcal{H}$ then $-x \notin \mathcal{H}$ because else $0 \in \mathcal{H}$. But $-x \in \mathcal{W}$ hence

$$\mathcal{W} = \operatorname{span}\{x, \mathcal{H}\} = \mathcal{X}$$

By this way we obtain f(x) = g(x) for all $x \in \mathcal{X}$ hence f = g.

(3°) Cf. [Luenberger 69], p. 130. \Box

If \mathcal{H} is a hyperplane then either \mathcal{H} is closed, i.e., $\mathcal{H} = \overline{\mathcal{H}}$ or \mathcal{H} is dense in \mathcal{X} , i.e. $\overline{\mathcal{H}} = \mathcal{X}$; cf. [Taylor] p. 139. For example, $\mathcal{C}[0,1]$ is dense in $\mathcal{L}^2[0,1]$ hence a hyperplane; cf. [Pflaumann-Unger], p. 187.