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To Section 1.1

Lemma 1 (Lemma 1.4) Letting ‖x‖2 = xT x, the vector x∗ = A+b satisfies

(1◦) ∀ x ∈ Rn : ‖Ax∗ − b‖ ≤ ‖Ax− b‖ ,

(2◦) ‖Ax∗ − b‖ = ‖Ax− b‖ =⇒ ‖x∗‖ ≤ ‖x‖ .

Proff. Every unitary matrix Q satisfies ‖Qx‖ = ‖x‖ where ‖ · ‖ := ‖ · ‖2. Therefore

‖Ax− b‖ = ‖USV Hx− b‖ = ‖SV Hx− UHb‖ = ‖Sy − c‖

where V Hx = y and UHb = c. Let r be the rank of A, then arg miny ‖Sy − c‖ is given by

yj =

{
cj/σj j = 1, . . . , r,
arbitrary j > r.

Let uj = Uej and vj = V ej be the j-th column resp. row U resp. V . Because x = V y and
c = UHb, i.e. cj = eT

j UHb we then obtain

x =
∑r

j=1 V eje
T
j UHb/σj +

∑n
j=r+1 vjyj = V S+UHb +

∑n
j=r+1 vjyj

= A+b +
∑n

j=r+1 vjyj.

Since the vectors vj are orthogonal, x = A+b is the solution with minimum norm.

To Section 1.2
Proof of formulas (1.17) and (1.18)

∫

V

(grad ϕ)T dV =

∮

∂V

ϕdO =

∮

∂V

ϕndO ∈ R3 ,
∫

V

rot v dV =

∮

∂V

dO × v = −
∮

∂V

v × n dO ∈ R3 .

and ∫

F

dO × (grad ϕ)T =

∮

∂F

ϕ dx ∈ R3 .

Proof. Let aT x = 0 for all a ∈ R3 then x = 0.
(1◦) Let a ∈ R3 arbitrary constant then div a = 0 and div(ϕa) = grad(ϕ) · a. The theorem of
Gauss yields for v = ϕa

∫

∂V

(ϕa) · n dO =

∫

V

div(ϕa) dV =

∫

V

grad ϕ · a dV = [

∫

V

grad ϕdV ] · a ,

hence
a ·

∫

∂V

ϕn dO = a ·
∫

V

(grad ϕ)T dV .

Noe the assertion follows because a is arbitrary.
(2◦) Recall that

div(v × w) = w · rot v − v · rot w .
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and rot a = 0 for constant w = a therefore div(v× a) = a · rot v. With the same argumentation
as in (1◦) we now obtain the result by the theorem of Gauss for w = v × a:

∫

V

div w dV =

∫

V

div(v × a) dV =

∫

V

a · rot v dV =

∫

∂V

w · n dO

=

∫

∂V

(v × a) · n dO = −a ·
∫

∂V

(v × n dO .

(3◦) Recall
rot(ϕv) = (grad ϕ)T × v + ϕ rot v

and rot v = 0 for constant v = a hence rot(ϕa) = (grad ϕ)T × a. The theorem of Stokes then
yields for w = ϕa
∫

F

rot(ϕa)·n dO =

∫

F

((grad ϕ)T×a)·n dO = a·
∫

F

(n×(grad ϕ)T ) dO =

∫

∂F

ϕa· dx = a·
∫

ϕdx .

Theorem 1 (Theorem 1.4, Potential Criterium) Let Ω ⊂ Rn be a simply connected domain and
v : Ω → Rn a continuously differentiable vector field. Then there exists a potential ϕ : Ω → R
with v = grad ϕ if and only if grad v(x) is symmetric,

∀ x ∈ Ω : grad v(x) = [grad v(x)]T ;

this condition is equivalent to rot v(x) = 0 for n = 2, 3 .

Proof. The right side is necessary by the theorem of H.A.Schwarz. We choose a ∈ G fixed,
x ∈ G near a and for C the straight line from a to x:

w(t; x) = a + t(x− a) , 0 ≤ t ≤ 1 .

Then by the chain rule (E identity matrix)

gradx v(w(t; x)) = [grad v](w(t; x)) gradx w(t; x)

= [grad v](w(t; x))tE = t[grad v](w(t; x))

As possible antiderivative we define

f(x) :=

∫ 1

0

v(w(t, x))T ẇ(t; x) dt =

∫ 1

0

v(a + t(x− a))T (x− a) dt

Then, by grad(vT u) = vT grad u + uT grad v ∈ Rn we obtain for u(x) = x that

grad f(x) =

∫ 1

0

gradx[v(w(t; x))T (x− a)] dt =

∫ 1

0

[vT E + (x− a)T∇xv(w(t; x))t] dt

If the right side is true then (x− a)T∇xv = (x− a)T [∇xv]T and thus

grad f(x) =

∫ 1

0

d

dt
[tv(w(t; x))T ] dt = tv(w(t; x))T

∣∣∣
1

0

= 1 · v(w(1; x))T − 0 · v(w(0; x))T = v(w(1; x))T = v(x)T ∈ Rn .
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Theorem 2 (Theorem 1.5) Let Ω ⊂ R3 be a star-shaped domain and v : Ω → R3 continuously
differentiable. Then the vector field v has a vector potential w with v = rot w if and only if
div v = 0 in Ω.

Proof. If v = rot w then div rot w = div v = 0. Conversely, let without loss of generality

w(x) =

∫ 1

0

t(v(z + t(x− z))× (x− z)) dt

and also without loss of generality z = 0. Because

rot(v × u) = (div u)v − (div v)u + (grad v)u− (grad u)v

and div v = 0, we obtain for u(x) = x and div x = 3

rotx

∫ 1

0

t(v(tx)× x) dt =

∫ 1

0

t rotx

(
v(tx)× x

)
dt

=

∫ 1

0

t
[
v(tx) div x + t grad v(tx)− E v(tx)

]
dt (E identity matrix)

=

∫ 1

0

[
2tv(tx) + t2

d

dt
v(tx)

)
dt =

∫ 1

0

d

dt

(
t2v(tx)

]
dt =

[
t2v(tx)

]1

0
= v(x) .

¤

Theorem 3 (Theorem 1.6) Let Ω be “regular” and let v : Ω → R3 be a divergece-free vector
field then v has a divergence-free vector potential.

Proof. Let there be given a vector potential w0 of v by Theorem 1.5 then we write w =
w0 + grad ϕ and require that 0 = div w = div w0 + ∆ϕ, i.e.

∆ϕ = − div w0

in Ω. This differantial equation has at least one solution ϕ. Then w is divergence-free and
v = rot w. ¤

Theorem 4 (Helmholtz’ Decomposition Theorem) Let Ω ⊂ R3 be “regular” and let v : Ω →
R3 be continuously differentiable then there exists a scalar field ϕ and a vector field w such that

v = grad ϕ + rot w .

Proof. If there exists a partition of the announced form then applying divergence yields

div v = ∆ϕ,

and thus a differential equation for ϕ. Suppose that ϕ is a solution of this equation then

div(v − grad ϕ) = 0.

By Theorem 1.6 there exists a vector potential w such that

v − grad ϕ = rot w.



4

To Section 1.3
Deriving of formula (1.24) for the torsion

τ(t) =
det(ẋ, ẍ,

...
x )(t)

|ẋ(t)× ẍ(t)|2 .

Proof. Since ṫ parallel to n we have ṫ× n = 0. Then it follows that

|b|2 = bT b = 1 =⇒ ḃ
T
b + bT ḃ = 0 =⇒ ḃ ⊥ b ,

ḃ = ṫ× n + t× ṅ = t× ṅ =⇒ ḃ ⊥ t ,

therefore ḃ must be parallel to n . Write

ḃ

ṡ
= −τ n

(
manchmal auch)

ḃ

ṡ
= τ n

)
. (1)

From bT n = 0 , ḃ
T
n + bT ṅ = 0 , and (1) we obtain

τ ≡ τ n · n = − ḃ · n
ṡ

=
ṅ · b
ṡ

=
ṅ · (ẋ× ẍ)

ṡ|ẋ× ẍ| . (2)

But ẍ = s̈ t + ṡ2κn hence

...
x =

...
s t + s̈ṫ + 2ṡs̈κ n + ṡ2κ̇ n + ṡ2κ ṅ .

Resolution of this equation w.r.t. ṅ and inserting in (2) yields

τ =
(ẋ× ẍ)T [

...
x − ...

s t− s̈ ṫ− 2ṡs̈κ n− ṡ2κn]

ṡ2κṡ |ẋ× ẍ| . (3)

Note that b is parallel to ẋ× ẍ , b ⊥ t, b ⊥ n, hence also b ⊥ ṫ . Therefore

(ẋ× ẍ)T [
...
s t + s̈ ṫ + 2ṡs̈κ n + ṡ2κn] = 0 .

Now, inserting κ = |ẋ× ẍ|/ṡ3 in the denominator, the result for τ is obtained.

To Section 1.6

Theorem 5 (Straightening Theorem) Let v : Ω → Rn be a conservative vector field, let x0 ∈ Ω ,
v(x0) 6= 0 , and let e1 = [1, 0, . . . , 0]T ∈ Rn . Then there exists an open set U with x0 ∈ U ⊂ Rn

and a diffeomorphism F : U → U such that

∀ x ∈ U : e1 = ∇F (x)v(x) . (4)

Proof. For n = 3. Let x0 = [x1
0, x

2
0, x

3
0]

T and
v(x) = (v1(x), v2(x), v3(x))T . Without loss of generality, let v1(x0) 6= 0. Further, let x1

0 = 0,
else consider the rotated vector field AT v(Ax) with a suitable rotation matrix A. Besides, let
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X = [X1, X2, X3]T ∈ R3 arbitrary, X∗ = [0, X2, X3]T , and let Φ(t,X) be the flux of the vector
field v . We insert t = X1 − x1

0 and X = X∗ and consider the mapping

G : X 7→ Φ(X1 − x1
0, X

∗) = G(X) =: x ∈ R3 ,

then
G(x0) = Φ(0, [0, x2

0, x
3
0]

T ) = [0, x2
0, x

3
0]

T = x0

because x1
0 = 0 and

∂

∂X1
G(X) = v(G(X)) f”ur X1 = x1

0 .

Then, for X1 = x1
0 because Φ(0, X∗) = [0, X2, X3]T ,

∇G(X) =




v1(G(X)) 0 0
v2(G(X)) 1 0
v3(G(X)) 0 1


 (5)

where G(x0) = x0, and the matrix ∇G(x0) is regular since v1(x0) 6= 0 by assumption. Since v
is continuously differentiable, there exists an open neighborhood U0 where x0 ∈ U0 ⊂ Ω such
that ∇G(X) is regular for all X ∈ U0. By the inverse mapping theorem there exists an open
neighborhood U where x0 ∈ U ⊂ U0 such that G is a diffeomorphism in U . By (5) we have

∇G(X)e1 = v(G(X)) .

Choose F = G−1 then ∇F (x) = (∇G(X(x)))−1 and

∀ x ∈ G(U) : ∇F (x)v(x) = e1 . (6)

Inserting now x = G(X) in ẋ = v(x) we obtain ( ˙ = d/dt)

∀ X ∈ U : ∇G(X)Ẋ = v(G(X)) = ∇G(X)e1 .

hence
∀ X ∈ U : Ẋ = e1 .

¤
Example 1.10 and 1.11
(a) Find the flux integral of the differential equation y′ = ey sin x . For which y0 ∈ R does the
solution of the initial value problem

y′ = ey sin x, y(0) = y0

“globally” exist, i.e. on the entire line R ?
(b) Find the flux integral of the differential equation

y′ = (x− y + 3)2

and sketch the general solution (by means of isoklines).
Hint: Use the substitution z = x− y + 3 and consider the subdomains
|z| < 1, |z| = 1, |z| > 1.

Solution: (a) Separation of variables yields
∫ y

y0

e−y dy =

∫ x

x0

sin x dx ,
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hence

e−y − e−y0 = cos x− cos x0 =⇒ Φ(x; x0, y0) = − ln(cos x + exp(−y0)− cos x0) .

Since the argument of the logarithmus must be positiv there exists a global solution for

e−y0 − cos x0 > 1 ⇐⇒ e−y0 > cos x0 + 1 .

Because of the monotony of the logarithmus then

−y0 > ln(cos x0 + 1) ⇐⇒ y0 < − ln(cos x0 + 1) =⇒ y(0) < − ln 2 .

(b) For x− y + 3 = z and z = ±1 we obtain the solutions

y = x + 2, y = x + 4 ,

resp. Φ(x, x0, y0) = y0 + x− 2− (x0 − 2) etc..
Solutions cannot intersect because y′ is given explicitely. They must therefore remain for |z| 6= 1
entirely in one of the following domains:

G1 = {(x, y), |x− y +3| < 1}, G2 = {(x, y), x− y +3 < −1}, G3 = {(x, y), x− y +3 > 1}.

For z we obtain the differential equation

z′ = 1− y′ = 1− (x− y + 3)2 = 1− z2 .

Separation of variables yields
z′

1− z2
= 1

By partial decomposition
z′

1− z
+

z′

1 + z
= 2 .

Integration yields

− ln |z − 1|+ ln |z + 1| = 2x + c1 =⇒ |z + 1|
|z − 1| = ce2x

Fallunterscheidung:

z > 1 :
z + 1

z − 1
= ce2x =⇒ z =

ce2x + 1

ce2x − 1

|z| < 1 :
z + 1

−(z − 1)
= ce2x =⇒ z =

ce2x − 1

ce2x + 1
,

z < −1 :
−(z + 1)

−(z − 1)
= ce2x =⇒ z =

ce2x + 1

ce2x − 1

Result:

y = x + 3− ce2x + 1

ce2x − 1
, (x, y) ∈ G2 ∪G3, y = x + 3− ce2x − 1

ce2x + 1
, (x, y) ∈ G1 .
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For the calculation of the flux integral, we insert x = x0 and y = y0 and solve w.r.t. the
constant c, then the result for c is inserted. For the general initial value problem

y′ = (x− y + 3)2, y(x0) = y0,

we obtain in G1 ∪G2 ∪G3

y = x + 3− (x0 − y0 + 4)e2x + (x0 − y0 + 2)e2x0

(x0 − y0 + 4)e2x − (x0 − y0 + 2)e2x0
, (x0, y0) ∈ G2 ∪G3 ,

y = x + 3− (x0 − y0 + 4)e2x − (x0 − y0 + 2)e2x0

(x0 − y0 + 4)e2x + (x0 − y0 + 2)e2x0
, (x0, y0) ∈ G1 .

To Section 1.7

Lemma 2 (Lemma 1.12)
(1◦) H ⊂ X is a hyperplane if and only if

∃ 0 6= f : X → R linear ∃ c ∈ R : H = {x ∈ X , f(x) = c} .

(2◦) If 0 /∈ H ⊂ X is a hyperplane then there exists uniquely a linear functional f : X → R
with H = {x ∈ X , f(x) = 1} .
(3◦) If 0 6= f : X → R is linear and H = {x ∈ X , f(x) = c} is a hyperplane then H = H
closed if and only if the mapping f is continuous.

Proof. Proof. Cf. [Luenberger69], p. 129.
(a) A hyperplane H is an affin subspace hence H = v + U where U is a linear subspace and
v ∈ H.
Case 1. v /∈ U then 2v /∈ H otherwise

H 3 x = 2v =⇒ x− v = v ∈ U .

Hence X = span{v,H} = span{v,U} because H is maximum. Let X 3 x = αv + u, u ∈ U ,
and f(x) := α. Then f is linear and

H = {x ∈ X, f(x) = 1}.
Case 2. v ∈ U , then choose w /∈ U 6= X . Then X = span{w,U}, H = U . Let X 3 x =
αw + u, u ∈ U and f(x) = α. Then f is linear and

H = {x ∈ X , f(x) = 0}.
(b) Let 0 6= f : X → R be linear and U = {x ∈ X , f(x) = 0}. Then U is a subspace. Let
v ∈ X with f(v) = 1 which exists because we obtain f = 0 from f(x) = 0 for all x ∈ X . Then
v /∈ U and it follows that

∀ x ∈ X : f(x− f(x)v) = f(x)− f(x)f(v) = f(x)− f(x) = 0.

By this way it follows that x− f(x)v ∈ U hence X = span{v,U}. Because v /∈ U we find that
U ⊂ X and U 6= X hence U must be a hyperplane.
For arbitrary c ∈ R let w ∈ X with f(w) = c. Then w /∈ U and

{x ∈ X, f(x) = c} = {x ∈ X, f(x− w) = 0}
= {x ∈ X, x− w ∈ U} = w + U
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is a hyperplane.

(2◦) The existence follows from (1◦). Let f, g : X → R be linear with

H = {x ∈ X , f(x) = 1} = {x ∈ X, g(x) = 1}

then H ⊂ W := {x ∈ X , f(x) − g(x) = 0}. Choose x ∈ H then −x /∈ H because else 0 ∈ H.
But −x ∈ W hence W = span{x,H} = X .

By this way we obtain f(x) = g(x) for all x ∈ X hence f = g.

(3◦) Cf. [Luenberger 69], p. 130.¤
If H is a hyperplane then either H is closed, i.e., H = H or H is dense in X , i.e. H = X ; cf.
[Taylor] p. 139. For example, C[0, 1] is dense in L2[0, 1] hence a hyperplane; cf. [Pflaumann-
Unger], p. 187.


