To Section 1.1

Lemma 1 (Lemma 1.4) Letting $\|\underline{x}\|^{2}=\underline{x}^{T} \underline{x}$, the vector $\underline{x}^{*}=A^{+} \underline{b}$ satisfies
$\left(1^{\circ}\right) \forall \underline{x} \in \mathbb{R}^{n}:\left\|A \underline{x}^{*}-\underline{b}\right\| \leq\|A \underline{x}-\underline{b}\|$,
$\left(2^{\circ}\right)\left\|A \underline{x}^{*}-\underline{b}\right\|=\|A \underline{x}-\underline{b}\| \Longrightarrow\left\|\underline{x}^{*}\right\| \leq\|\underline{x}\|$.
Proff. Every unitary matrix Q satisfies $\|Q x\|=\|x\|$ where $\|\cdot\|:=\|\cdot\|_{2}$. Therefore

$$
\|A x-b\|=\left\|U S V^{H} x-b\right\|=\left\|S V^{H} x-U^{H} b\right\|=\|S y-c\|
$$

where $V^{H} x=y$ and $U^{H} b=c$. Let r be the rank of A, then $\arg \min _{y}\|S y-c\|$ is given by

$$
y_{j}= \begin{cases}c_{j} / \sigma_{j} & j=1, \ldots, r \\ \text { arbitrary } & j>r\end{cases}
$$

Let $u_{j}=U e_{j}$ and $v_{j}=V e_{j}$ be the j-th column resp. row U resp. V. Because $x=V y$ and $c=U^{H} b$, i.e. $c_{j}=e_{j}^{T} U^{H} b$ we then obtain

$$
\begin{aligned}
x & =\sum_{j=1}^{r} V e_{j} e_{j}^{T} U^{H} b / \sigma_{j}+\sum_{j=r+1}^{n} v_{j} y_{j}=V S^{+} U^{H} b+\sum_{j=r+1}^{n} v_{j} y_{j} \\
& =A^{+} b+\sum_{j=r+1}^{n} v_{j} y_{j} .
\end{aligned}
$$

Since the vectors v_{j} are orthogonal, $x=A^{+} b$ is the solution with minimum norm.

To Section 1.2

Proof of formulas (1.17) and (1.18)

$$
\begin{aligned}
\int_{V}(\operatorname{grad} \varphi)^{T} d V & =\oint_{\partial V} \varphi d \underline{O}=\oint_{\partial V} \varphi \underline{n} d O \in \mathbb{R}^{3} \\
\int_{V} \operatorname{rot} \underline{v} d V & =\oint_{\partial V} d \underline{O} \times \underline{v}=-\oint_{\partial V} \underline{v} \times \underline{n} d O \in \mathbb{R}^{3} .
\end{aligned}
$$

and

$$
\int_{F} d \underline{O} \times(\operatorname{grad} \varphi)^{T}=\oint_{\partial F} \varphi d \underline{x} \in \mathbb{R}^{3}
$$

Proof. Let $\underline{a}^{T} \underline{x}=0$ for all $\underline{a} \in \mathbb{R}^{3}$ then $\underline{x}=\underline{0}$.
$\left(1^{\circ}\right)$ Let $\underline{a} \in \mathbb{R}^{3}$ arbitrary constant then $\operatorname{div} \underline{a}=0$ and $\operatorname{div}(\varphi \underline{a})=\operatorname{grad}(\varphi) \cdot \underline{a}$. The theorem of GAUSS yields for $\underline{v}=\varphi \underline{a}$

$$
\int_{\partial V}(\varphi \underline{a}) \cdot \underline{n} d O=\int_{V} \operatorname{div}(\varphi \underline{a}) d V=\int_{V} \operatorname{grad} \varphi \cdot \underline{a} d V=\left[\int_{V} \operatorname{grad} \varphi d V\right] \cdot \underline{a},
$$

hence

$$
\underline{a} \cdot \int_{\partial V} \varphi \underline{n} d O=\underline{a} \cdot \int_{V}(\operatorname{grad} \varphi)^{T} d V .
$$

Noe the assertion follows because \underline{a} is arbitrary.
(2 2° Recall that

$$
\operatorname{div}(\underline{v} \times \underline{w})=\underline{w} \cdot \operatorname{rot} \underline{v}-\underline{v} \cdot \operatorname{rot} \underline{w} .
$$

and $\operatorname{rot} \underline{a}=0$ for constant $\underline{w}=\underline{a}$ therefore $\operatorname{div}(\underline{v} \times \underline{a})=\underline{a} \cdot \operatorname{rot} \underline{v}$. With the same argumentation as in $\left(1^{\circ}\right)$ we now obtain the result by the theorem of GAUSS for $\underline{w}=\underline{v} \times \underline{a}$:

$$
\begin{aligned}
\int_{V} \operatorname{div} \underline{w} d V & =\int_{V} \operatorname{div}(\underline{v} \times \underline{a}) d V=\int_{V} \underline{a} \cdot \operatorname{rot} \underline{v} d V=\int_{\partial V} \underline{w} \cdot \underline{n} d O \\
& =\int_{\partial V}(\underline{v} \times \underline{a}) \cdot \underline{n} d O=-\underline{a} \cdot \int_{\partial V}(\underline{v} \times \underline{n} d O .
\end{aligned}
$$

(3) Recall

$$
\operatorname{rot}(\varphi \underline{v})=(\operatorname{grad} \varphi)^{T} \times \underline{v}+\varphi \operatorname{rot} \underline{v}
$$

and $\operatorname{rot} \underline{v}=\underline{0}$ for constant $\underline{v}=\underline{a}$ hence $\operatorname{rot}(\varphi \underline{a})=(\operatorname{grad} \varphi)^{T} \times \underline{a}$. The theorem of Stokes then yields for $\underline{w}=\varphi \underline{a}$
$\int_{F} \operatorname{rot}(\varphi \underline{a}) \cdot \underline{n} d O=\int_{F}\left((\operatorname{grad} \varphi)^{T} \times \underline{a}\right) \cdot \underline{n} d O=\underline{a} \cdot \int_{F}\left(\underline{n} \times(\operatorname{grad} \varphi)^{T}\right) d O=\int_{\partial F} \varphi \underline{a} \cdot \underline{d x}=\underline{a} \cdot \int \varphi \underline{d x}$.

Theorem 1 (Theorem 1.4, Potential Criterium) Let $\Omega \subset \mathbb{R}^{n}$ be a simply connected domain and $\underline{v}: \Omega \rightarrow \mathbb{R}^{n}$ a continuously differentiable vector field. Then there exists a potential $\varphi: \Omega \rightarrow \mathbb{R}$ with $\underline{v}=\operatorname{grad} \varphi$ if and only if $\operatorname{grad} \underline{v}(\underline{x})$ is symmetric,

$$
\forall \underline{x} \in \Omega: \operatorname{grad} \underline{v}(\underline{x})=[\operatorname{grad} \underline{v}(\underline{x})]^{T} ;
$$

this condition is equivalent to $\operatorname{rot} \underline{v}(\underline{x})=0$ for $n=2,3$.
Proof. The right side is necessary by the theorem of H.A.Schwarz. We choose $\underline{a} \in G$ fixed, $\underline{x} \in G$ near \underline{a} and for C the straight line from \underline{a} to \underline{x} :

$$
\underline{w}(t ; x)=\underline{a}+t(\underline{x}-\underline{a}), \quad 0 \leq t \leq 1 .
$$

Then by the chain rule (E identity matrix)

$$
\begin{aligned}
& \operatorname{grad}_{x} \underline{v}(\underline{w}(t ; \underline{x}))=[\operatorname{grad} \underline{v}](\underline{w}(t ; \underline{x})) \operatorname{grad}_{x} \underline{w}(t ; \underline{x}) \\
& =[\operatorname{grad} \underline{v}](\underline{w}(t ; \underline{x})) t E=t[\operatorname{grad} \underline{v}](\underline{w}(t ; \underline{x}))
\end{aligned}
$$

As possible antiderivative we define

$$
f(\underline{x}):=\int_{0}^{1} \underline{v}(\underline{w}(t, \underline{x}))^{T} \underline{\dot{w}}(t ; x) d t=\int_{0}^{1} \underline{v}(\underline{a}+t(\underline{x}-\underline{a}))^{T}(\underline{x}-\underline{a}) d t
$$

Then, by $\operatorname{grad}\left(\underline{v}^{T} \underline{u}\right)=\underline{v}^{T} \operatorname{grad} \underline{u}+\underline{u}^{T} \operatorname{grad} \underline{v} \in \mathbb{R}_{n}$ we obtain for $\underline{u}(\underline{x})=\underline{x}$ that

$$
\operatorname{grad} f(\underline{x})=\int_{0}^{1} \operatorname{grad}_{x}\left[\underline{v}(\underline{w}(t ; \underline{x}))^{T}(\underline{x}-\underline{a})\right] d t=\int_{0}^{1}\left[\underline{v}^{T} E+(\underline{x}-\underline{a})^{T} \nabla_{x} \underline{v}(\underline{w}(t ; \underline{x})) t\right] d t
$$

If the right side is true then $(\underline{x}-\underline{a})^{T} \nabla_{x} \underline{v}=(\underline{x}-\underline{a})^{T}\left[\nabla_{x}\right]^{T}$ and thus

$$
\begin{aligned}
\operatorname{grad} f(\underline{x}) & =\int_{0}^{1} \frac{d}{d t}\left[t \underline{v}(\underline{w}(t ; \underline{x}))^{T}\right] d t=\left.t \underline{v}(\underline{w}(t ; \underline{x}))^{T}\right|_{0} ^{1} \\
& =1 \cdot \underline{v}(\underline{w}(1 ; \underline{x}))^{T}-0 \cdot \underline{v}(\underline{w}(0 ; \underline{x}))^{T}=\underline{v}(\underline{w}(1 ; \underline{x}))^{T}=\underline{v}(\underline{x})^{T} \in \mathbb{R}_{n}
\end{aligned}
$$

Theorem 2 (Theorem 1.5) Let $\Omega \subset \mathbb{R}^{3}$ be a star-shaped domain and $\underline{v}: \Omega \rightarrow \mathbb{R}^{3}$ continuously differentiable. Then the vector field \underline{v} has a vector potential \underline{w} with $\underline{v}=\operatorname{rot} \underline{w}$ if and only if $\operatorname{div} \underline{v}=0$ in Ω.

Proof. If $\underline{v}=\operatorname{rot} \underline{w}$ then $\operatorname{div} \operatorname{rot} \underline{w}=\operatorname{div} \underline{v}=0$. Conversely, let without loss of generality

$$
\underline{w}(x)=\int_{0}^{1} t(\underline{v}(z+t(x-z)) \times(x-z)) d t
$$

and also without loss of generality $z=0$. Because

$$
\operatorname{rot}(\underline{v} \times \underline{u})=(\operatorname{div} \underline{u}) \underline{v}-(\operatorname{div} \underline{v}) \underline{u}+(\operatorname{grad} \underline{v}) \underline{u}-(\operatorname{grad} \underline{u}) \underline{v}
$$

and $\operatorname{div} \underline{v}=0$, we obtain for $\underline{u}(x)=x$ and $\operatorname{div} x=3$

$$
\begin{aligned}
& \operatorname{rot}_{x} \int_{0}^{1} t(\underline{v}(t x) \times x) d t=\int_{0}^{1} t \operatorname{rot}_{x}(\underline{v}(t x) \times x) d t \\
& =\int_{0}^{1} t[\underline{v}(t x) \operatorname{div} x+t \operatorname{grad} \underline{v}(t x)-E \underline{v}(t x)] d t \quad(E \text { identity matrix }) \\
& =\int_{0}^{1}\left[2 t \underline{v}(t x)+t^{2} \frac{d}{d t} \underline{v}(t x)\right) d t=\int_{0}^{1} \frac{d}{d t}\left(t^{2} \underline{v}(t x)\right] d t=\left[t^{2} \underline{v}(t x)\right]_{0}^{1}=\underline{v}(x) .
\end{aligned}
$$

Theorem 3 (Theorem 1.6) Let Ω be "regular" and let $\underline{v}: \Omega \rightarrow \mathbb{R}^{3}$ be a divergece-free vector field then \underline{v} has a divergence-free vector potential.

Proof. Let there be given a vector potential \underline{w}_{0} of \underline{v} by Theorem 1.5 then we write $\underline{w}=$ $\underline{w}_{0}+\operatorname{grad} \varphi$ and require that $0=\operatorname{div} \underline{w}=\operatorname{div} \underline{w}_{0}+\Delta \varphi$, i.e.

$$
\Delta \varphi=-\operatorname{div} \underline{w}_{0}
$$

in Ω. This differantial equation has at least one solution φ. Then \underline{w} is divergence-free and $\underline{v}=\operatorname{rot} \underline{w}$.

Theorem 4 (Helmholiz' Decomposition Theorem) Let $\Omega \subset \mathbb{R}^{3}$ be "regular" and let $\underline{v}: \Omega \rightarrow$ \mathbb{R}^{3} be continuously differentiable then there exists a scalar field φ and a vector field \underline{w} such that

$$
\underline{v}=\operatorname{grad} \varphi+\operatorname{rot} \underline{w}
$$

Proof. If there exists a partition of the announced form then applying divergence yields

$$
\operatorname{div} \underline{v}=\Delta \varphi,
$$

and thus a differential equation for φ. Suppose that φ is a solution of this equation then

$$
\operatorname{div}(\underline{v}-\operatorname{grad} \varphi)=0
$$

By Theorem 1.6 there exists a vector potential \underline{w} such that

$$
\underline{v}-\operatorname{grad} \varphi=\operatorname{rot} \underline{w} .
$$

To Section 1.3

Deriving of formula (1.24) for the torsion

$$
\tau(t)=\frac{\operatorname{det}(\underline{\underline{x}}, \underline{\ddot{x}}, \underline{\underline{x}})(t)}{|\underline{\dot{x}}(t) \times \underline{\ddot{x}}(t)|^{2}} .
$$

Proof. Since \underline{t} parallel to \underline{n} we have $\underline{t} \times \underline{n}=0$. Then it follows that

$$
\begin{array}{r}
|\underline{b}|^{2}=\underline{b}^{T} \underline{b}=1 \quad \Longrightarrow \quad \underline{b}^{T} \underline{b}+\underline{b}^{T} \underline{\dot{b}}=0 \quad \Longrightarrow \underline{\dot{b}} \perp \underline{b}, \\
\underline{\dot{b}}=\underline{\dot{t}} \times \underline{n}+\underline{t} \times \underline{\dot{n}}=\underline{t} \times \underline{\dot{n}} \quad \Longrightarrow \underline{\dot{b}} \perp \underline{t},
\end{array}
$$

therefore $\underline{\dot{b}}$ must be parallel to \underline{n}. Write

$$
\begin{equation*}
\left.\frac{\dot{b}}{\dot{\dot{s}}}=-\tau \underline{n}(\text { manchmal auch }) \frac{\dot{b}}{\dot{\dot{s}}}=\tau \underline{n}\right) \tag{1}
\end{equation*}
$$

From $\underline{b}^{T} \underline{n}=0, \underline{\dot{b}}^{T} \underline{n}+\underline{b}^{T} \underline{\dot{n}}=0$, and (1) we obtain

$$
\begin{equation*}
\tau \equiv \tau \underline{n} \cdot \underline{n}=-\frac{\dot{b} \cdot \underline{n}}{\dot{s}}=\frac{\dot{\underline{n}} \cdot \underline{b}}{\dot{s}}=\frac{\dot{\underline{n}} \cdot(\underline{\dot{x}} \times \underline{\ddot{\ddot{x}}})}{\dot{s}|\underline{\dot{x}} \times \underline{\ddot{x}}|} . \tag{2}
\end{equation*}
$$

But $\underline{\ddot{x}}=\ddot{s} \underline{t}+\dot{s}^{2} \kappa \underline{n}$ hence

$$
\underline{\dddot{x}}=\dddot{s} \underline{t}+\ddot{s} \underline{\underline{t}}+2 \ddot{s} \ddot{s} \kappa \underline{n}+\dot{s}^{2} \dot{\kappa} \underline{n}+\dot{s}^{2} \kappa \underline{\dot{n}} .
$$

Resolution of this equation w.r.t. $\underline{\dot{n}}$ and inserting in (2) yields

$$
\begin{equation*}
\tau=\frac{(\underline{\dot{x}} \times \underline{\ddot{x}})^{T}\left[\underline{\ddot{x}}-\dddot{s} \underline{t}-\ddot{s} \underline{\dot{t}}-2 \dot{s} \ddot{s} \kappa \underline{n}-\dot{s}^{2} \kappa \underline{n}\right]}{\dot{s}^{2} \kappa \dot{s}|\underline{\dot{x}} \times \underline{\ddot{x}}|} . \tag{3}
\end{equation*}
$$

Note that \underline{b} is parallel to $\underline{\dot{x}} \times \underline{\ddot{x}}, \underline{b} \perp \underline{t}, \underline{b} \perp \underline{n}$, hence also $\underline{b} \perp \underline{\underline{t}}$. Therefore

$$
(\underline{\dot{x}} \times \underline{\ddot{x}})^{T}\left[\dddot{s} \underline{t}+\ddot{s} \underline{\dot{\underline{t}}}+2 \dot{s} \ddot{s} \kappa \underline{n}+\dot{s}^{2} \kappa \underline{n}\right]=0 .
$$

Now, inserting $\kappa=|\underline{\dot{x}} \times \underline{\ddot{\ddot{x}}}| / \dot{s}^{3}$ in the denominator, the result for τ is obtained.

To Section 1.6

Theorem 5 (Straightening Theorem) Let $\underline{v}: \Omega \rightarrow \mathbb{R}^{n}$ be a conservative vector field, let $\underline{x}_{0} \in \Omega$, $\underline{v}\left(\underline{x}_{0}\right) \neq \underline{0}$, and let $\underline{e}_{1}=[1,0, \ldots, 0]^{T} \in \mathbb{R}^{n}$. Then there exists an open set \mathcal{U} with $\underline{x}_{0} \in \mathcal{U} \subset \mathbb{R}^{n}$ and a diffeomorphism $F: \mathcal{U} \rightarrow \mathcal{U}$ such that

$$
\begin{equation*}
\forall \underline{x} \in \mathcal{U}: \underline{e}_{1}=\nabla F(\underline{x}) \underline{v}(\underline{x}) . \tag{4}
\end{equation*}
$$

Proof. For $n=3$. Let $\underline{x}_{0}=\left[x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right]^{T}$ and $\underline{v}(\underline{x})=\left(v^{1}(\underline{x}), v^{2}(\underline{x}), v^{3}(\underline{x})\right)^{T}$. Without loss of generality, let $v^{1}\left(x_{0}\right) \neq 0$. Further, let $x_{0}^{1}=0$, else consider the rotated vector field $A^{T} \underline{v}(A \underline{x})$ with a suitable rotation matrix A. Besides, let
$\underline{X}=\left[X^{1}, X^{2}, X^{3}\right]^{T} \in \mathbb{R}^{3}$ arbitrary, $\underline{X^{*}}=\left[0, X^{2}, X^{3}\right]^{T}$, and let $\Phi(t, \underline{X})$ be the flux of the vector field \underline{v}. We insert $t=X^{1}-x_{0}^{1}$ and $\underline{X}=\underline{X^{*}}$ and consider the mapping

$$
G: \underline{X} \mapsto \Phi\left(X^{1}-x_{0}^{1}, \underline{X}^{*}\right)=G(\underline{X})=: \underline{x} \in \mathbb{R}^{3},
$$

then

$$
G\left(\underline{x}_{0}\right)=\Phi\left(0,\left[0, x_{0}^{2}, x_{0}^{3}\right]^{T}\right)=\left[0, x_{0}^{2}, x_{0}^{3}\right]^{T}=\underline{x}_{0}
$$

because $x_{0}^{1}=0$ and

$$
\frac{\partial}{\partial X^{1}} G(\underline{X})=\underline{v}(G(\underline{X})) \quad \text { f'ur } X^{1}=x_{0}^{1} .
$$

Then, for $X^{1}=x_{0}^{1}$ because $\Phi\left(0, \underline{X}^{*}\right)=\left[0, X^{2}, X^{3}\right]^{T}$,

$$
\nabla G(\underline{X})=\left[\begin{array}{ccc}
v^{1}(G(\underline{X})) & 0 & 0 \tag{5}\\
v^{2}(G(\underline{X})) & 1 & 0 \\
v^{3}(G(\underline{X})) & 0 & 1
\end{array}\right]
$$

where $G\left(\underline{x}_{0}\right)=\underline{x}_{0}$, and the matrix $\nabla G\left(\underline{x}_{0}\right)$ is regular since $v^{1}\left(\underline{x}_{0}\right) \neq 0$ by assumption. Since \underline{v} is continuously differentiable, there exists an open neighborhood \mathcal{U}_{0} where $\underline{x}_{0} \in \mathcal{U}_{0} \subset \Omega$ such that $\nabla G(\underline{X})$ is regular for all $\underline{X} \in \mathcal{U}_{0}$. By the inverse mapping theorem there exists an open neighborhood \mathcal{U} where $\underline{x}_{0} \in \mathcal{U} \subset \mathcal{U}_{0}$ such that G is a diffeomorphism in \mathcal{U}. By (5) we have

$$
\nabla G(\underline{X}) \underline{e}_{1}=\underline{v}(G(\underline{X})) .
$$

Choose $F=G^{-1}$ then $\nabla F(\underline{x})=(\nabla G(\underline{X}(\underline{x})))^{-1}$ and

$$
\begin{equation*}
\forall \underline{x} \in G(\mathcal{U}): \nabla F(\underline{x}) \underline{v}(\underline{x})=\underline{e}_{1} . \tag{6}
\end{equation*}
$$

Inserting now $\underline{x}=G(\underline{X})$ in $\underline{\dot{x}}=\underline{v}(\underline{x})$ we obtain $(\cdot=d / d t)$

$$
\forall \underline{X} \in \mathcal{U}: \nabla G(\underline{X}) \underline{X}=\underline{v}(G(\underline{X}))=\nabla G(\underline{X}) \underline{e}_{1} .
$$

hence

$$
\forall \underline{X} \in \mathcal{U}: \underline{\dot{X}}=\underline{e}_{1}
$$

Example 1.10 and 1.11

(a) Find the flux integral of the differential equation $y^{\prime}=e^{y} \sin x$. For which $y_{0} \in \mathbb{R}$ does the solution of the initial value problem

$$
y^{\prime}=e^{y} \sin x, \quad y(0)=y_{0}
$$

"globally" exist, i.e. on the entire line \mathbb{R} ?
(b) Find the flux integral of the differential equation

$$
y^{\prime}=(x-y+3)^{2}
$$

and sketch the general solution (by means of isoklines).
Hint: Use the substitution $z=x-y+3$ and consider the subdomains $|z|<1,|z|=1,|z|>1$.

Solution: (a) Separation of variables yields

$$
\int_{y_{0}}^{y} e^{-y} d y=\int_{x_{0}}^{x} \sin x d x
$$

hence

$$
e^{-y}-e^{-y_{0}}=\cos x-\cos x_{0} \Longrightarrow \Phi\left(x ; x_{0}, y_{0}\right)=-\ln \left(\cos x+\exp \left(-y_{0}\right)-\cos x_{0}\right)
$$

Since the argument of the logarithmus must be positiv there exists a global solution for

$$
e^{-y_{0}}-\cos x_{0}>1 \Longleftrightarrow e^{-y_{0}}>\cos x_{0}+1
$$

Because of the monotony of the logarithmus then

$$
-y_{0}>\ln \left(\cos x_{0}+1\right) \Longleftrightarrow y_{0}<-\ln \left(\cos x_{0}+1\right) \Longrightarrow y(0)<-\ln 2
$$

(b) For $x-y+3=z$ and $z= \pm 1$ we obtain the solutions

$$
y=x+2, \quad y=x+4,
$$

resp. $\Phi\left(x, x_{0}, y_{0}\right)=y_{0}+x-2-\left(x_{0}-2\right)$ etc..
Solutions cannot intersect because y^{\prime} is given explicitely. They must therefore remain for $|z| \neq 1$ entirely in one of the following domains:
$G_{1}=\{(x, y),|x-y+3|<1\}, \quad G_{2}=\{(x, y), x-y+3<-1\}, \quad G_{3}=\{(x, y), x-y+3>1\}$.
For z we obtain the differential equation

$$
z^{\prime}=1-y^{\prime}=1-(x-y+3)^{2}=1-z^{2}
$$

Separation of variables yields

$$
\frac{z^{\prime}}{1-z^{2}}=1
$$

By partial decomposition

$$
\frac{z^{\prime}}{1-z}+\frac{z^{\prime}}{1+z}=2
$$

Integration yields

$$
-\ln |z-1|+\ln |z+1|=2 x+c_{1} \quad \Longrightarrow \quad \frac{|z+1|}{|z-1|}=c e^{2 x}
$$

Fallunterscheidung:

$$
\begin{aligned}
z>1: & \frac{z+1}{z-1}=c e^{2 x} \quad \Longrightarrow z=\frac{c e^{2 x}+1}{c e^{2 x}-1} \\
|z|<1: & \frac{z+1}{-(z-1)}=c e^{2 x} \Longrightarrow z=\frac{c e^{2 x}-1}{c e^{2 x}+1} \\
z<-1: & \frac{-(z+1)}{-(z-1)}=c e^{2 x} \Longrightarrow z=\frac{c e^{2 x}+1}{c e^{2 x}-1}
\end{aligned}
$$

Result:

$$
y=x+3-\frac{c e^{2 x}+1}{c e^{2 x}-1}, \quad(x, y) \in G_{2} \cup G_{3}, \quad y=x+3-\frac{c e^{2 x}-1}{c e^{2 x}+1}, \quad(x, y) \in G_{1}
$$

For the calculation of the flux integral, we insert $x=x_{0}$ and $y=y_{0}$ and solve w.r.t. the constant c, then the result for c is inserted. For the general initial value problem

$$
y^{\prime}=(x-y+3)^{2}, \quad y\left(x_{0}\right)=y_{0}
$$

we obtain in $G_{1} \cup G_{2} \cup G_{3}$

$$
\begin{array}{ll}
y=x+3-\frac{\left(x_{0}-y_{0}+4\right) e^{2 x}+\left(x_{0}-y_{0}+2\right) e^{2 x_{0}}}{\left(x_{0}-y_{0}+4\right) e^{2 x}-\left(x_{0}-y_{0}+2\right) e^{2 x_{0}}}, & \left(x_{0}, y_{0}\right) \in G_{2} \cup G_{3}, \\
y=x+3-\frac{\left(x_{0}-y_{0}+4\right) e^{2 x}-\left(x_{0}-y_{0}+2\right) e^{2 x_{0}}}{\left(x_{0}-y_{0}+4\right) e^{2 x}+\left(x_{0}-y_{0}+2\right) e^{2 x_{0}}}, & \left(x_{0}, y_{0}\right) \in G_{1} .
\end{array}
$$

To Section 1.7

Lemma 2 (Lemma 1.12)
(1°) $\mathcal{H} \subset \mathcal{X}$ is a hyperplane if and only if

$$
\exists 0 \neq f: \mathcal{X} \rightarrow \mathbb{R} \text { linear } \exists c \in \mathbb{R}: \mathcal{H}=\{x \in \mathcal{X}, f(x)=c\} .
$$

$\left(2^{\circ}\right)$ If $0 \notin \mathcal{H} \subset \mathcal{X}$ is a hyperplane then there exists uniquely a linear functional $f: \mathcal{X} \rightarrow \mathbb{R}$ with $\mathcal{H}=\{x \in \mathcal{X}, f(x)=1\}$.
(3°) If $0 \neq f: X \rightarrow \mathbb{R}$ is linear and $\mathcal{H}=\{x \in \mathcal{X}, f(x)=c\}$ is a hyperplane then $\mathcal{H}=\overline{\mathcal{H}}$ closed if and only if the mapping f is continuous.

Proof. Proof. Cf. [Luenberger69], p. 129.
(a) A hyperplane \mathcal{H} is an affin subspace hence $\mathcal{H}=v+\mathcal{U}$ where \mathcal{U} is a linear subspace and $v \in \mathcal{H}$.
Case 1. $v \notin \mathcal{U}$ then $2 v \notin \mathcal{H}$ otherwise

$$
\mathcal{H} \ni x=2 v \Longrightarrow x-v=v \in \mathcal{U}
$$

Hence $\mathcal{X}=\operatorname{span}\{v, \mathcal{H}\}=\operatorname{span}\{v, \mathcal{U}\}$ because \mathcal{H} is maximum. Let $\mathcal{X} \ni x=\alpha v+u, u \in \mathcal{U}$, and $f(x):=\alpha$. Then f is linear and

$$
\mathcal{H}=\{x \in X, f(x)=1\} .
$$

Case 2. $v \in \mathcal{U}$, then choose $w \notin \mathcal{U} \neq \mathcal{X}$. Then $\mathcal{X}=\operatorname{span}\{w, \mathcal{U}\}, \mathcal{H}=\mathcal{U}$. Let $\mathcal{X} \ni x=$ $\alpha w+u, u \in \mathcal{U}$ and $f(x)=\alpha$. Then f is linear and

$$
\mathcal{H}=\{x \in \mathcal{X}, f(x)=0\} .
$$

(b) Let $0 \neq f: \mathcal{X} \rightarrow \mathbb{R}$ be linear and $\mathcal{U}=\{x \in \mathcal{X}, f(x)=0\}$. Then \mathcal{U} is a subspace. Let $v \in \mathcal{X}$ with $f(v)=1$ which exists because we obtain $f=0$ from $f(x)=0$ for all $x \in \mathcal{X}$. Then $v \notin \mathcal{U}$ and it follows that

$$
\forall x \in \mathcal{X}: f(x-f(x) v)=f(x)-f(x) f(v)=f(x)-f(x)=0 .
$$

By this way it follows that $x-f(x) v \in \mathcal{U}$ hence $\mathcal{X}=\operatorname{span}\{v, \mathcal{U}\}$. Because $v \notin \mathcal{U}$ we find that $\mathcal{U} \subset \mathcal{X}$ and $\mathcal{U} \neq \mathcal{X}$ hence \mathcal{U} must be a hyperplane.
For arbitrary $c \in \mathbb{R}$ let $w \in \mathcal{X}$ with $f(w)=c$. Then $w \notin \mathcal{U}$ and

$$
\begin{aligned}
& \{x \in X, f(x)=c\}=\{x \in X, f(x-w)=0\} \\
& =\{x \in X, x-w \in U\}=w+U
\end{aligned}
$$

is a hyperplane.
$\left(2^{\circ}\right)$ The existence follows from $\left(1^{\circ}\right)$. Let $f, g: \mathcal{X} \rightarrow \mathbb{R}$ be linear with

$$
\mathcal{H}=\{x \in \mathcal{X}, f(x)=1\}=\{x \in X, g(x)=1\}
$$

then $\mathcal{H} \subset \mathcal{W}:=\{x \in \mathcal{X}, f(x)-g(x)=0\}$. Choose $x \in \mathcal{H}$ then $-x \notin \mathcal{H}$ because else $0 \in \mathcal{H}$.
But $-x \in \mathcal{W}$ hence

$$
\mathcal{W}=\operatorname{span}\{x, \mathcal{H}\}=\mathcal{X}
$$

By this way we obtain $f(x)=g(x)$ for all $x \in \mathcal{X}$ hence $f=g$.
(3) Cf. [Luenberger 69], p. 130.

If \mathcal{H} is a hyperplane then either \mathcal{H} is closed, i.e., $\mathcal{H}=\overline{\mathcal{H}}$ or \mathcal{H} is dense in \mathcal{X}, i.e. $\overline{\mathcal{H}}=\mathcal{X}$; cf. [Taylor] p. 139. For example, $\mathcal{C}[0,1]$ is dense in $\mathcal{L}^{2}[0,1]$ hence a hyperplane; cf. [PflaumannUnger], p. 187.

