Schriftliche Aufgaben

Name:

Aufgabe 4

Wahr oder falsch? Kreuze an!

	wahr	falsch
Die diophantische Gleichung $ax+by=c$ besitzt entweder keine oder unendlich		
viele ganzzahlige Lösungen $(x \mid y)$.		
Gilt $ggT(a,b) \mid c$, dann hat die Gleichung $ax + by = c$ genau eine ganzzahlige		
Lösung $(x \mid y)$.		
Gilt $ggT(a,b) \mid c$, dann hat die Gleichung $ax + by = c$ unendlich viele ganz-		
zahlige Lösungen $(x \mid y)$.		
Hat die diophantische Gleichung $ax + by = c$ mindestens eine ganzzahlige		
Lösung $(x \mid y)$, so folgt $ggT(a,b) \mid c$.		
Mit dem erweiterten euklidischen Algorithmus berechnet man eine ganzzahlige		
Lösung $(x \mid y)$ von $ax + by = ggT(a, b)$.		
Mit dem erweiterten euklidischen Algorithmus berechnet man alle ganzzahligen		
Lösungen $(x \mid y)$ von $ax + by = ggT(a, b)$.		
Ist $(x_0 \mid y_0)$ eine ganzzahlige Lösung von $ax + by = c$, so sind alle Lösungen		
durch $(x_0 + kb \mid y_0 - ka)$ mit $k \in \mathbb{Z}$ gegeben.		
Ist $(x_0 \mid y_0)$ eine ganzzahlige Lösung von $ax + by = \operatorname{ggT}(a, b)$, so ist		
$(x \mid y) = (5x_0 \mid 5y_0)$ eine Lösung von $ax + by = 5ggT(a, b)$.		

Aufgabe 5

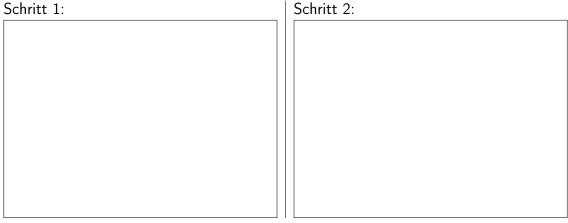
Gegeben ist die diophantische Gleichung

$$71x + 43y = 2. (*)$$

- a) Die Zahlen a=71 und b=43 sind Primzahlen. Gib den größten gemeinsamen Teiler an. ${\rm ggT}(71,43)= \boxed{ }$
- b) Warum ist $(x \mid y) = (-3 \mid 5)$ eine Lösung von (*)?
- c) Gib alle Lösungen der Gleichung (*) an.

Alle Lösungen $(x \mid y) =$

d) Gib alle Lösungen der Gleichung 71x + 43y = 8 an.


Alle Lösungen $(x \mid y) =$

Aufgabe 6

Gegeben ist die diophantische Gleichung

$$108x + 300y = 60. (*)$$

a) Führe den erweiterten euklidischen Algorithmus durch, um ggT(108,300) und eine ganzzahlige Lösung $(x\mid y)$ der Gleichung 108x+300y=ggT(108,300) zu erhalten.

$$ggT(108, 300) =$$

Eine Lösung der Gleichung 108x + 300y = ggT(108, 300): $(x \mid y) =$

- **b)** Gib eine Lösung von (*) an. Lösung: $(x \mid y) =$
- c) Vereinfache die Gleichung (*), indem Du sie durch eine möglichst große Zahl teilst.

 Vereinfachte Gleichung:

 Für die Lösungen von (*) und die Lösungen der vereinfachten Gleichung gilt:
- d) Gib alle Lösungen von (*) an. Alle Lösungen von (*): $(x \mid y) =$