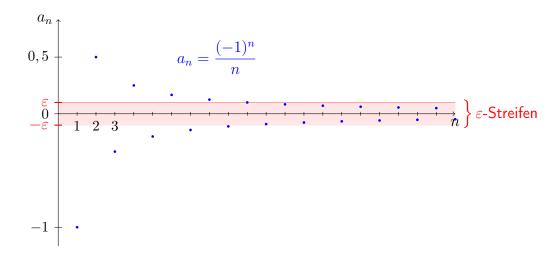
Nullfolgen



Anschaulich: Eine Folge (a_n) ist eine Nullfolge, wenn es zu jedem noch so schmalen ε -Streifen eine Zahl N gibt, so dass für alle n>N die Folgenglieder im ε -Streifen liegen.

Aufgabe 2

Gegeben ist die Folge $a_n = \frac{(-1)^n}{n}$. Behauptung: (a_n) ist eine Nullfolge.

a) Wie ist
$$N\in\mathbb{N}$$
 zu wählen, dass $|a_n|<\frac{1}{1\,000}$ für $n>N$ gilt? $\qquad \qquad N\geq$

b) Wie ist
$$N \in \mathbb{N}$$
 zu wählen, dass $|a_n| < \frac{1}{100\,000}$ für $n > N$ gilt? $\qquad N \ge$

c) Es sei ein beliebiges
$$\varepsilon>0$$
 fest vorgegeben. Bestimme eine Formel für N , so dass $|a_n|<\varepsilon$ für $n>N$ gilt:
$$N\geq$$

Aufgabe 3

Untersuche, ob die angegebene Folge eine Nullfolge ist. Begründe Deine Antwort. Das heißt, im Fall einer Nullfolge ist für beliebig vorgegebenes $\varepsilon>0$ anzugeben, wie $N\in\mathbb{N}$ zu wählen ist, dass $|a_n|<\varepsilon$ für alle n>N gilt. Im anderen Fall ist anzugeben, warum die Definition einer Nullfolge nicht erfüllt ist.

a)
$$(a_n)$$
 mit $a_1=1,\ a_2=0,\ a_3=\frac{1}{2},\ a_3=0,\ a_5=\frac{1}{3},\ldots$, oder allgemein
$$a_n\ =\ \left\{\begin{array}{cc} 0 & \text{falls } n \text{ gerade} \\ \frac{2}{n+1} & \text{falls } n \text{ ungerade} \end{array}\right.$$

- **b)** (a_n) mit $a_n = 0$ für alle $n \in \mathbb{N}$,
- c) (a_n) mit $a_n = 2 + \frac{1}{n}$ für $n \in \mathbb{N}$,
- **d)** (a_n) mit $a_n = \left\{ egin{array}{ll} 0 & {\sf falls} \ n \ {\sf gerade} \\ 2 & {\sf falls} \ n \ {\sf ungerade} \end{array} \right.$
- **e)** (a_n) mit $a_n = \frac{1}{n^2 + 1}$.

Zusatzaufgabe 1

- a) Sei (a_n) eine Nullfolge und (b_n) eine weitere Folge mit der Eigenschaft $|b_n| \leq |a_n|$ für $n \in \mathbb{N}$. Beweise, dass dann (b_n) eine Nullfolge ist.
- **b)** Sei (a_n) eine Nullfolge und (b_n) eine weitere Folge mit der Eigenschaft $|b_n| \leq 3|a_n|$ für $n \in \mathbb{N}$. Beweise, dass dann (b_n) eine Nullfolge ist.
- c) Seien (a_n) und (b_n) Nullfolgen. Beweise, dass dann auch die Summenfolge (c_n) mit $c_n = a_n + b_n$ für $n \in \mathbb{N}$ eine Nullfolge ist.