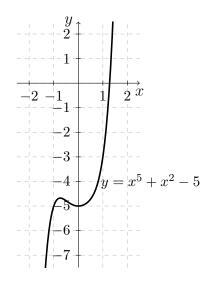
Nullstelle bestimmen

Aufgabe 1

Die Nullstelle des Polynoms p mit $p(x)=x^5+x^2-5$ soll bestimmt werden. Leider gibt es für solche Polynome keine allgemein gültigen Lösungsformeln, so wie z.B. für quadratische Polynome. An der Skizze des Graphen rechts sieht man, dass p eine Nullstelle im Intervall $[a_1,b_1]:=[1,2]$ besitzt (Das Intervall [1,2] besteht aus allen Zahlen x mit $1 \le x \le 2$). Diese Nullstelle soll nun näherungsweise berechnet werden. Dazu wird das Intervallhalbierungsverfahren mit dem Startintervall $[a_1,b_1]$ benützt. Trage die Zahlen, die Du in den Teilaufgaben erhältst, in die Tabelle ein (auf drei Nachkommastellen gerundet).





$$p(a_1) = \boxed{ \qquad p(b_1) = \boxed{ }}$$

b) Sei
$$m_1 := \frac{a_1 + b_1}{2}$$
. Berechne $p(m_1)$. Setze nun

$$a_2 := a_1 \text{ und } b_2 := m_1 \text{ falls } p(m_1) > 0$$

 $a_2 := m_1 \text{ und } b_2 := b_1 \text{ falls } p(m_1) < 0$

Dann folgt $p(a_2) < 0$ und $p(b_2) > 0$, d.h. im Intervall $[a_2, b_2]$ muss mindestens eine Nullstelle enthalten sein.

c) Sei
$$m_2 := \frac{a_2 + b_2}{2}$$
. Berechne $p(m_2)$. Setze nun

$$a_3 := a_2 \text{ und } b_3 := m_2 \text{ falls } p(m_2) > 0$$

 $a_3 := m_2 \text{ und } b_3 := b_2 \text{ falls } p(m_2) < 0$

Dann folgt $p(a_3) < 0$ und $p(b_3) > 0$, d.h. im Intervall $[a_3, b_3]$ muss mindestens eine Nullstelle enthalten sein.

d) Fahre entsprechend fort und berechne a_4, b_4, \ldots

n =	1	2	3	4	5	6	7	8
$a_n =$	1,00							
$b_n =$	2,00							
$m_n =$	1,50							
$p(m_n) =$								