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1. Introduction

The integro-differential systems of equations: nonlocal consumption of

resources, intra-specific competition. Nonlocal interaction of neurons.

∂um

∂t
= −Dm(−∆)smum +

∫

Rd

Km(x− y)gm(u(y, t))dy + fm(x), (1)

d = 4, 5, 1 ≤ m ≤ N,
3

2
−
d

4
< sm < 1

from cell population dynamics. Cell genotype is x, cell density

distributions for various groups of cells as functions of their genotype and

time are um(x, t),

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))T .

The evolution of cell density is due to cell proliferation, mutations and

cell influx/efflux. The change of genotype due to small random

mutations-anomalous diffusion terms. Large mutations are via the

integral production terms. gm(u) are the rates of cell birth, depend on u
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(density dependent proliferation). Km(x− y) are the proportions of

newly born cells changing their genotype from y to x, depend on the

distance between the genotypes. fm(x) are the influxes/effluxes of cells

for different genotypes. Proved the existence of a stationary solution in

H3(Rd,RN ). The space variable corresponds to cell genotype.

Anomalous diffusion problem with (−∆)s : defined via the spectral

calculus, namely for d = 4, 5

f(x) =
1

(2π)
d

2

∫

Rd

f̂(p)eipxdp, (−∆)sf(x) =
1

(2π)
d

2

∫

Rd

|p|2sf̂(p)eipxdp.

d > 5 : higher order Sobolev spaces for the Sobolev embedding.

Standard Laplacian: V.V., V. Volpert, Disc., Nonlin., and Complex.,

(2016) in R5.

Anomalous diffusion: plasma physics and turbulence.

B.Carreras, V.Lynch, G.Zaslavsky, Phys. Plasmas (2001).
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Surface diffusion.

J.Sancho, A. Lacasta, K.Lindenberg, I.Sokolov, A.Romero, Phys. Rev.

Lett. (2004).

Semiconductors.

H.Scher, E.Montroll, Phys. Rev. B (1975).

Physical meaning: the random process occurs with longer jumps in

comparison with normal diffusion.

Normal diffusion: finite moments of jump length distribution.

Anomalous diffusion: not the case.

R. Metzler, J. Klafter, Phys. Rep. (2000).

The existence of stationary solutions, Pure and Applied
Functional Analysis. To the memory of Louis Nirenberg.
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For d = 4, 5, 1 ≤ m ≤ N,
3

2
−
d

4
< sm < 1

−(−∆)smum +

∫

Rd

Km(x− y)gm(u(y))dy + fm(x) = 0. (2)

For d = 4 :
1

2
< sm < 1 and for d = 5 :

1

4
< sm < 1.

Set Dm = 1, Km(x) = εmKm(x), εm ≥ 0 small parameter and

ε = max1≤m≤Nεm.

In one dimension, V.V., V.Volpert, Springer (2017), 0 < sm = s <
1

4
.

In two dimensions, V.V., Pure Appl. Funct. Anal. (2020), 0 < sm <
1

2
.

In R3, V.V., V.Volpert, Disc., Nonlin.. and Complex., (2016),
1

4
< sm = s <

3

4
. In d = 3, 4, 5 Sobolev inequality for the fractional

negative Laplacian.
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E.H. Lieb, Ann. of Math., (1983). For d = 4, 5, 1 ≤ m ≤ N

‖fm(x)‖
L

2d
d−6+4sm

(Rd) ≤ csob‖(−∆)
3
2
−smfm(x)‖L2(Rd),

3

2
−
d

4
< sm < 1.

Hence

fm(x) ∈ L1(Rd) ∩ L
2d

d−6+4sm (Rd).

For

d = 4 : fm(x) ∈ L1(R4) ∩ L
4

2sm−1 (R4),

for

d = 5 : f(x) ∈ L1(R5) ∩ L
10

4sm−1 (R5).

Standard interpolation argument:

fm(x) ∈ L2(Rd), d = 4, 5, 1 ≤ m ≤ N .

Fractional Sobolev norm

‖φ‖2H2s(Rd) := ‖φ‖2L2(Rd) + ‖(−∆)sφ‖2L2(Rd), 0 < s ≤ 1.
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Standard Sobolev embedding

‖φ‖L∞(Rd) ≤ ce‖φ‖H3(Rd), ce > 0, d = 4, 5.

Here ce is the constant of the embedding. The vector function’s norm

‖u‖2H3(Rd,RN ) :=
N∑

m=1

‖um‖2H3(Rd) =
N∑

m=1

{‖um‖2L2(Rd)+‖(−∆)
3
2um‖2L2(Rd)}.

When all the parameters εm vanish, we obtain the generalized
Poisson type equations

(−∆)smum(x) = fm(x), x ∈ Rd, d = 4, 5, 1 ≤ m ≤ N. (3)

The standard Fourier transform

φ̂(p) =
1

(2π)
d

2

∫

Rd

φ(x)e−ipxdx, d = 4, 5. (4)
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Upper bound

‖φ̂(p)‖L∞(Rd) ≤
1

(2π)
d

2

‖φ(x)‖L1(Rd), d = 4, 5. (5)

2. Solvability conditions for the generalized Poisson equation.

(−∆)su = f(x), x ∈ Rd, d = 4, 5, 0 < s < 1. (6)

Let u(x) ∈ L2(Rd), assume f(x) ∈ L2(Rd). Then u(x) ∈ H2s(Rd) as well.

Uniqueness.

Let u1(x), u2(x) ∈ H2s(Rd) solve (6). w(x) = u1(x)− u2(x) ∈ H2s(Rd).

(−∆)su1 = f(x), (−∆)su2 = f(x).

Hence

(−∆)sw = 0.

(−∆)s : H2s(Rd) → L2(Rd) no nontrivial zero modes. Then w vanishes in
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Rd. Apply Fourier transform (4) to (6).

û(p) =
f̂(p)

|p|2s
=
f̂(p)

|p|2s
χ{|p|≤1} +

f̂(p)

|p|2s
χ{|p|>1}.

Second term ∣∣∣∣∣
f̂(p)

|p|2s
χ{|p|>1}

∣∣∣∣∣ ≤ |f̂(p)| ∈ L2(Rd).

First term via (5)

∥∥∥∥∥
f̂(p)

|p|2s
χ{|p|≤1}

∥∥∥∥∥

2

L2(Rd)

≤
‖f‖2

L1(Rd)

(2π)d
|Sd|

d− 4s
<∞.

No orthogonality conditions are required for right side f(x).

In R3 when
3

4
≤ s < 1 and additionally |x|f(x) ∈ L1(R3), equation (6)
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has a unique solution u(x) ∈ H2s(R3) if and only if
∫

R3

f(x)dx = (f(x), 1)L2(R3) = 0. (7)

Note that f̂(0) =
1

(2π)
3
2

∫

R3

f(x)dx = 0.

Unique solution of each equation (3) with 1 ≤ m ≤ N

u0,m(x) ∈ H2sm(Rd),
3

2
−
d

4
< sm < 1, d = 4, 5.

The space variable corresponds to cell genotype, not the usual physical

space. The space dimension is not limited to d = 4, 5.

(−∆)smu0,m = fm(x).

Then

(−∆)
3
2u0,m(x) = (−∆)

3
2
−smfm(x) ∈ L2(Rd), 1 ≤ m ≤ N
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as assumed. Hence

u0,m(x) ∈ H3(Rd).

and

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))T ∈ H3(Rd,RN ).

3. Fixed point argument

Seek the resulting solution of the stationary nonlinear problem (2) as

u(x) = u0(x) + up(x), (8)

up(x) := (up,1(x), up,2(x), ..., up,N(x))T .

Perturbative system of equations, with
3

2
−
d

4
< sm < 1, 1 ≤ m ≤ N, d = 4, 5

(−∆)smup,m(x) = εm

∫

Rd

Km(x− y)gm(u0(y) + up(y))dy. (9)
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The Fixed Point argument in a closed ball in the Sobolev space:

Bρ = {u(x) ∈ H3(Rd,RN ) | ‖u‖H3(Rd,RN ) ≤ ρ}, 0 < ρ ≤ 1. (10)

Seek the solution of (9) as the fixed point of the auxiliary nonlinear

problem with
3

2
−
d

4
< sm < 1, 1 ≤ m ≤ N, d = 4, 5

(−∆)smum(x) = εm

∫

Rd

Km(x− y)gm(u0(y) + v(y))dy (11)

in ball (10). Non Fredholm operators

(−∆)sm : H2sm(Rd) → L2(Rd).

The essential spectrum σess((−∆)sm) = [0,+∞), no bounded inverse.

V.V., V.Volpert, Doc. Math. (2011),

V.V., V.Volpert, Anal. Math. Phys. (2012)

relied on the orthogonality relations.
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V.V., Math. Model. Nat. Phenom., (2010).

The fixed point technique to estimate the perturbation to the standing

solitary wave

ψ(x, t) = φ(x)eiωt

of the Nonlinear Schrödinger equation

i
∂ψ

∂t
= −∆ψ + V (x)ψ + F (|ψ|2)ψ

when small perturbation is applied either to the potential or to the

nonlinear term. The Schrödinger operator involved had the Fredholm

property.

When Km(x) = δ(x), 1 ≤ m ≤ N is Dirac’s delta measure, the system of

standard nonlinear heat equations.

The existence of stationary solutions in the case of the standard

Laplacians in H3(R5).

V.V., V. Volpert, Disc., Nonlin., and Complex. (2016).
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The operator Tg via the auxiliary nonlinear problem (11), such that

u = Tgv, u is a solution. Our main result is as follows.

Theorem 1. Under our technical assumptions problem (11) defines the

map Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε ≤ ε∗ for a

certain ε∗ > 0. The unique fixed point up(x) of the map Tg is the only

solution of problem (9) in Bρ.

The resulting stationary solution of (2) is nontrivial: the source terms

fm(x) are nontrivial for some 1 ≤ m ≤ N and all gm(0) = 0 as assumed.

Proof. Choose arbitrarily v(x) ∈ Bρ, denote Gm(x) := gm(u0(x) + v(x)).

Apply the standard Fourier transform (4) to (11). Thus

ûm(p) = εm(2π)
d

2
K̂m(p)Ĝm(p)

|p|2sm
, 1 ≤ m ≤ N, d = 4, 5.

The norm with d=4,5
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‖um‖2L2(Rd) = (2π)dε2m

∫

Rd

|K̂m(p)|2|Ĝm(p)|2

|p|4sm
dp, 1 ≤ m ≤ N.

Express

∫

Rd

dp =

∫

|p|≤R

dp+

∫

|p|>R

dp with R ∈ (0,+∞) and minimize

over R. We derive

‖u‖H3(Rd,RN ) ≤ εC ≤ ρ

for all ε > 0 small enough, such that u(x) ∈ Bρ as well.

Uniqueness.

If for some v(x) ∈ Bρ there are two solutions u1,2(x) ∈ Bρ of (11), their

difference w(x) := u1(x)− u2(x) ∈ L2(Rd,RN ) solves

(−∆)smwm(x) = 0,
3

2
−
d

4
< sm < 1, 1 ≤ m ≤ N.

Each (−∆)sm in Rd: no nontrivial square integrable zero modes, w(x)

vanishes in Rd.

Then (11) defines a map Tg : Bρ → Bρ for all ε > 0 small enough.
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To show that this map is a strict contraction.

Choose arbitrarily v1,2(x) ∈ Bρ. Then u1,2 := Tgv1,2 ∈ Bρ as well, ε small

enough. For
3

2
−
d

4
< sm < 1, 1 ≤ m ≤ N, d = 4, 5

(−∆)smu1,m(x) = εm

∫

Rd

Km(x− y)gm(u0(y) + v1(y))dy,

(−∆)smu2,m(x) = εm

∫

Rd

Km(x− y)gm(u0(y) + v2(y))dy.

Introduce G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)).

Apply the standard Fourier transform (4). Arrive at

û1,m(p) = εm(2π)
d

2
K̂m(p)Ĝ1,m(p)

|p|2sm
, û2,m(p) = εm(2π)

d

2
K̂m(p)Ĝ2,m(p)

|p|2sm
.

Write the norm

‖u1,m − u2,m‖2L2(Rd) = ε2m(2π)
d

∫

Rd

|K̂m(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4sm
dp.
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Express ∫

Rd

dp =

∫

|p|≤R

dp+

∫

|p|>R

dp,

minimize over R ∈ (0,+∞). Estimate the norm

‖u1 − u2‖H3(Rd,RN ) ≤ εC‖v1 − v2‖H3(Rd,RN ).

The map Tg : Bρ → Bρ defined by (11) is a strict contraction for all ε > 0

small enough. Unique fixed point up(x), the only solution of the

perturbative system of equations (9) in Bρ.

The resulting solution of the stationary problem (2):

u(x) = u0(x) + up(x) ∈ H3(Rd,RN ),

where u0,m(x), 1 ≤ m ≤ N solves the generalized Poisson equation (3).

Also proved: cumulative u(x) is continuous in H3(Rd,RN ) with respect

to the nonlinear, twice continuously differentiable vector function g(z).
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4. Discussion of the future work.

1. To study the convergence of the solutions u(x, t) of problem (1) to the

equilibrium.

2. To generalize the results above to the case when the normal diffusion

is combined with the anomalous diffusion in a single integro-differential

equation or a system of coupled integro-differential equations.

M.Efendiev, V.V., J.Differential Equations (2021).

3. To perform the iterations of the kernels of an integro-differential

equation and to show the existence of its stationary solution in the sense

of sequences.

4. To work on the preservation of the nonnegativity of solutions of the

systems of parabolic equations. M.Efendiev, V.V., Springer chapters

(2021).
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