
Reconstruction of a solely time-dependent source in a
time-fractional diffusion equation with non-smooth solutions

K. Van Bockstala and A. S. Hendyb

a Research Group NaM2, Department of Electronics and Information Systems, Ghent University,
e-mail: karel.vanbockstal@ugent.be

b Department of Computational Mathematics and Computer Science, Ural Federal University

13th ISAAC Congress, August 2–6, 2021, Ghent, Belgium



Introduction Uniqueness Existence Experiments Further research

Outline

Introduction

Uniqueness of a solution to the ISP

Existence of a solution to the ISP (for exact data)

Numerical experiments

Further research

2 / 44



Introduction Uniqueness Existence Experiments Further research

Problem setting I
I Ω ⊂ Rd , d ∈N: bounded Lipschitz domain with boundary ∂Ω
I T : final time
I QT := Ω × (0,T ] and ΣT := ∂Ω × (0,T ]
I Consider a general second-order linear differential operator given by

L (x, t)u(x, t) = −∇ · (A (x, t)∇u(x, t)) + c(t)u(x, t),

where ((x, t) ∈ QT )

A (x, t) =
(
ai,j(x, t)

)
i,j=1,...,d

, AT = A

I ∂βt u denotes the Caputo derivative of order β ∈ (0,1) defined by

(
∂βt u

)
(x, t) = ∂t

∫ t

0

(t − s)−β

Γ(1 − β)
[u(x, s) − u(x,0)] ds, (x, t) ∈ QT ,

where Γ denotes the Gamma function
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Problem setting II

I Goal: determine the couple {h(t),u} such that

(
∂βt u

)
(x, t) + (Lu) (x, t)

= h(t)f (x) +
∫ t

0
F(x, s,u(x, s)) ds (x, t) ∈ QT ,

(−A (x, t)∇u(x, t)) · ν(x) = g(x, t) (x, t) ∈ ΣT ,
u(x,0) = ũ0(x) x ∈ Ω,

and the following integral measurement are satisfied∫
Ω

u(x, t) dx = m(t)
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Literature overview: classical heat equation I
I Finding the evolution parameter h(t) from the condition of overdetermination

∂t u − ∆u = h(t)f (x) in QT ,
u = 0 or −∇u · ν = g on ΣT ,
u(x,0) = ũ0(x) for x ∈ Ω,∫
Ω
ω(x)u(x, t) dx = E(t) for t ∈ [0,T ]

I Idea: measure equation, assume that
∫
Ω

f (x)ω(x) dx , 0
I [Cannon and Lin, 1988] for −∇u · ν = g on ΣT :

h(t) =
E′(t) +

∫
Ω
∇u · ∇ω dx +

∫
∂Ω

gωdΩ∫
Ω

fω dx
, ω ∈ H1(Ω)

I [Prilepko et al., 2000] for u = 0 on ΣT :

h(t) =


E′(t)+

∫
Ω ∇u·∇ω dx∫
Ω fω dx

ω ∈ H1
0(Ω)

E′(t)−
∫
Ω u∆ω dx∫

Ω fω dx
ω ∈ H2(Ω) ∩ H1

0(Ω)
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Literature overview: classical heat equation II
I Uniqueness via variational/energy estimate approach (u = 0 on ΣT ):

I linear problem: E = 0 and ũ0 = 0 ⇒ u = 0 and h = 0
I |h(t)| 6 C ‖∇u‖ or |h(t)| 6 C ‖u‖ depending on condition on ω
I Using the solution as a test function gives∫ η

0
(∂t u(t),u(t)) dt +

∫ η

0
‖∇u(t)‖2 dt =

∫ η

0
h(t) (f ,u(t)) dt

I Hence (assume f ∈ L2(Ω))∥∥∥u(η)
∥∥∥2

2
+

∫ η

0
‖∇u(t)‖2 dt 6 ε

∫ η

0
|h(t)|2 dt + Cε

∫ η

0
‖u(t)‖2 dt

I Grönwall lemma implies that u = 0 a.e. in QT
I Therefore, h = 0
I Also valid in case of NBC (g = 0 on ΣT )

I Global (in time) solvability of the problem including numerical scheme for
computations is studied in [Grimmonprez and Slodička, 2015] for ω = 1 and
DBC
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Literature overview: classical heat equation III
I Uniqueness for an autonomous heat equation ∂t u + Lu = h(t)f (x)

I Let L be a linear elliptic operator:
Lu = −∇ · (A(x)∇u(x, t)) + c(x)u(x, t), dom(L ) = H2(Ω) ∩ H1

0(Ω) ⊂ L2(Ω)
I Assume that AT = A such that L = L ∗
I Semigroup theory [Pazy, 1983] gives on closed formula for the solution:

u(t) = e−Lt u(0) +
∫ t
0 e−L (t−s)h(s)f ds

I We have that

f (x)h(t) − ∂t u(x, t) = Lu(x, t) = Le−Lt u(0) +
∫ t

0
h(s)Le−L (t−s)f ds

I Multiply the equation with ω(x) and integrate over the domain

h(t)
∫
Ω

f (x)ω(x) dx = E′(t) +
(
e−Lt u(0),Lω

)
+

∫ t

0
h(s)

(
e−L (t−s)f ,Lω

)
ds

I If
∫
Ω

f (x)ω(x) dx , 0, then we have a Volterra integral equation of the second kind
I There exists a unique h if E ∈ C1 ([0,T ]), u0, f ∈ L2(Ω), ω ∈ H2(Ω) ∩ H1

0(Ω)
I E = 0 and ũ0 = 0⇒ h = 0⇒ u = 0
I [Slodička, 2013]: h(t) can also be recovered from the measurement u(y, t) for

t ∈ [0,T ] at a single interior point y if f (y) , 0
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Literature overview: fractional diffusion equation I
I [Sakamoto and Yamamoto, 2011]:

I Lu = −∇ · (A(x)∇u(x, t)) + c(x)u(x, t), dom(L ) = H2(Ω) ∩ H1
0(Ω) ⊂ L2(Ω)

I Stability estimate (and thus uniqueness) for inverse source problem of determining
h(t) by observation u(y, t) at one point y over t ∈ [0,T ] with f (y) , 0

I [Wei and Zhang, 2013]:
I Lu = −uxx with Ω = (0,1), u(0) = u(1) = 0
I Determine h(t) from u(y , t), t ∈ [0,T ] with y ∈ (0,1)
I Analysis is based on the separation of variables and Duhamel’s principle
I Inverse source problem is transformed into a first kind Volterra integral equation
I Boundary element method combined with Tikhonov regularizations is used to solve

this equation
I [Wei et al., 2016]:

I Lu = −∆u, ∇u · ν = 0 on ∂Ω
I Additional data: u(x, t) = g(x, t) with x ∈ ∂Ω′ ⊂ ∂Ω for t ∈ (0,T ]
I Uniqueness and stability estimate is provided
I Tikhonov regularization method for solving ISP
I Conjugate gradient method combined with Morozov’s discrepancy principle
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Literature overview: fractional diffusion equation II

I [Šišková and Slodička, 2017]:
I Same problem setting
I Existence and uniqueness of a weak solution for exact data was proved
I Numerical algorithm based on Rothe’s method was established
I Convergence of approximations towards the exact solution was demonstrated
I However, the analysis in this paper gives that the solution is continuously

differentiable on the closed time interval
I An essential feature of the time Caputo fractional subdiffusion problem is that the

solution lacks the smoothness near the initial time although it would be smooth away
from t = 0
I See e.g. [Brunner et al., , MCLEAN, 2010, Jin et al., 2016,

Sakamoto and Yamamoto, 2011, Luchko, 2012]
I [Stynes et al., 2017] showed that under proper regularity and compatibility assumptions,

the one-dimensional subdiffusion problem ∂
β
t u − puxx + c(x)u = f (x , t) with homogeneous

DBC has a unique classical solution, and there exists a constant Cu such that

|u′′(t)| 6 Cu(1 + tβ−2), 0 < t 6 T

I [Kopteva, 2019, Section 6.1] generalized this result to the case Ω ⊂ Rd for d ∈ {2,3} and
more general autonomous operator L
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Main results

I We will design two numerical algorithms based on Rothe’s method over uniform
and graded grids (using graded L1-approximation)

I We will derive a priori estimates and prove convergence of iterates towards the
exact solution

I Rothe’s method on a uniform grid will address the existence of a unique solution
for exact data under low regularity assumptions
I It will include non-smooth solution with tγ term where 1 > γ > β

I Rothe’s method over graded grids will have the advantage to cope better with
the behaviour at t = 0 (∂t u possibly blows up as t → 0+)
I Here tβ will be included in the class of admissible solutions

I The theoretical obtained results will be supported by numerical experiments
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Properties convolution kernel

I We rewrite the Caputo fractional derivative as follows(
∂βt u

)
(x, t) = ∂t (k ∗ (u − ũ0)) (x, t), (x, t) ∈ QT ,

with

k (t) =
t−β

Γ(1 − β)
, t > 0

I The symbol ‘∗’ stands for the convolution product defined by

(k ∗ z) (t) =
∫ t

0
k (t − s)z(s) ds

I The singular kernel k ∈ L1(0,T ) satisfies k (t) > 0 for t > 0
I ∂t k ∈ L1

loc (0,T ) with ∂t k (t) 6 0 for all t > 0
I k is strongly positive definite as also ∂tt k (t) > 0 for all t > 0, see

[Nohel and Shea, 1976, Corollary 2.2] or [Cannarsa and Sforza, 2011]
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Reformulation as coupled direct problem
I Integrate the PDE over the domain Ω and apply the Divergence Theorem to obtain that

h(t) =
(k ∗m′)(t) +

∫
Γ

g(x, t) dx + c(t)m(t) −
∫
Ω

(∫ t

0
F(x, s,u(x, s)) ds

)
dx∫

Ω
f (x) dx

, (MP)

where we have assumed that ∫
Ω

f (x) dx , 0

and that the measurement m is absolutely continuous
I Variational formulation:

search {h,u} ∈ L2(0,T ) × L2
(
(0,T ),H1(Ω)

)
with ∂t (k ∗ (u − ũ0)) ∈ L2

(
(0,T ),H1

0(Ω)
∗
)

such that for a.a. t ∈ (0,T ) it holds that

〈∂t (k ∗ (u − ũ0))(t), ϕ〉H1(Ω)
∗
×H1(Ω) +L(t)

(
u(t), ϕ

)
= h(t)

(
f , ϕ

)
+

(∫ t

0
F(s,u(s)) ds, ϕ

)
−

(
g(t), ϕ

)
Γ , ∀ϕ ∈ H1(Ω), (P)

with h(t) given by (MP)
I Note: L(t)

(
u(t), ϕ

)
:=

(
Lu, ϕ

)
=

(
A (t)∇u(t),∇ϕ

)
+ c(t)

(
u(t), ϕ

)
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),H1(Ω)

∗
)
: sketch of proof I

I Consider L = −∆u + u
I Assume that F is linear in u, i.e. F(x, t ,u) = G(x, t)u with ∂tG ∈ L∞(QT )
I Suppose that two solutions {h1,u1} and {h2,u2} exist
I Then, the differences h := h1 − h2 and u := u1 − u2 are satisfying

〈∂t (k ∗ u) (t), ϕ〉H1(Ω)
∗
×H1(Ω) +

(
∇u(t),∇ϕ

)
+

(
u(t), ϕ

)
= h(t)

(
f , ϕ

)
+

(∫ t

0
G(s)u(s) ds, ϕ

)
, ∀ϕ ∈ H1(Ω),

and

h(t) =

(∫ t

0
G(s)u(s) ds,1

)
(f ,1)

as u(0) = 0, m = 0 and g = 0
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),H1(Ω)

∗
)
: sketch of proof II

I Integrate the variational formulation with respect to time over t ∈ (0, η) ⊂ (0,T ),
taking ϕ = u(η) and integrate again over t ∈ (0, ξ) ⊂ (0,T )

∫ ξ

0

(
(k ∗ u)(η),u(η)

)
dη +

1
2

∥∥∥∥∥∥
∫ ξ

0
∇u(t) dt

∥∥∥∥∥∥
2

+
1
2

∥∥∥∥∥∥
∫ ξ

0
u(t) dt

∥∥∥∥∥∥
2

=
∫ ξ

0

(∫ η

0
h(t) dt

) (
f ,u(η)

)
dη +

∫ ξ

0

(∫ η

0

∫ t

0
G(s)u(s) ds dt ,u(η)

)
dη

I k is strongly positive definite:
∫ ξ

0

(
(k ∗ u)(η),u(η)

)
dη > 0

I Using partial integration, it follows that

|h(t)| =

∣∣∣∣∣∣ 1
(f ,1)

[(
−

∫ t

0
∂sG(s)

(∫ s

0
u(t) dt

)
ds +G(t)

∫ t

0
u(s) ds,1

)]∣∣∣∣∣∣
6 C

∥∥∥∥∥∥
∫ t

0
u(s) ds

∥∥∥∥∥∥ , for t ∈ [0,T ]
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),H1(Ω)

∗
)
: sketch of proof III

I Again using partial integration, we have that∣∣∣∣∣∣
∫ ξ

0

(∫ η

0
h(t) dt

) (
f ,u(η)

)
dη

∣∣∣∣∣∣ 6 Cε

∫ ξ

0

∥∥∥∥∥∥
∫ t

0
u(s) ds

∥∥∥∥∥∥
2

dt + ε

∥∥∥∥∥∥
∫ ξ

0
u(t) dt

∥∥∥∥∥∥
2

I Similarly∣∣∣∣∣∣
∫ ξ

0

(∫ η

0

∫ t

0
G(s)u(s) ds dt ,u(η)

)
dη

∣∣∣∣∣∣ 6 Cε

∫ ξ

0

∥∥∥∥∥∥
∫ t

0
u(s) ds

∥∥∥∥∥∥
2

dt + ε

∥∥∥∥∥∥
∫ ξ

0
u(t) dt

∥∥∥∥∥∥
2

I Therefore(1
2
− ε

) ∥∥∥∥∥∥
∫ ξ

0
u(t) dt

∥∥∥∥∥∥
2

+
1
2

∥∥∥∥∥∥
∫ ξ

0
∇u(t) dt

∥∥∥∥∥∥
2

6 Cε

∫ ξ

0

∥∥∥∥∥∥
∫ t

0
u(s) ds

∥∥∥∥∥∥
2

dt

I Grönwall lemma:
∫ ξ

0
u(t) dt = 0 a.e. in Ω for all ξ ∈ (0,T )

I Differentiating with respect to ξ gives that u = 0 a.e. in QT

I It follows that h = 0 in (0,T )
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),H1(Ω)

∗
)
: sketch of proof IV

I For the general operator L , we need to assume that

I A ∈ L∞(QT ) :=
(
L∞(QT )

)d×d
is symmetric (AT = A ) and uniformly elliptic, i.e. there

exists a constant α > 0 such that
d∑

i,j=1

aij (x, t)ξiξj > α |ξ|
2 , for a.a. (x, t) ∈ QT and for all ξ ∈ Rd

I c ∈ L∞([0,T ]) such that
c(t) > c0 > 0, t ∈ [0,T ]

I ∂t A ∈ (L∞(QT ))d×d , ∂t c ∈ L∞(0,T )

I The proof seems not valid if c is also space-dependent
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),L2(Ω)

)
: sketch of proof I

I Consider L = −∆u
I F be globally Lipschitz continuous it all its variables
I The differences h := h1 − h2 and u := u1 − u2 are satisfying(

(k ∗ ∂t u) (t), ϕ
)

+
(
∇u(t),∇ϕ

)
= h(t)

(
f , ϕ

)
+

(∫ t

0
[F(s,u1(s)) − F(s,u2(s))] ds, ϕ

)
, ∀ϕ ∈ H1(Ω),

and

h(t) =

(∫ t

0
[F(s,u2(s)) − F(s,u1(s))] ds,1

)
(f ,1)

I We have that

|h(t)| 6 C
∫ t

0
‖u(s)‖ ds, for t ∈ [0,T ]
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),L2(Ω)

)
: sketch of proof II

I Take ϕ = u(t) in and integrate with respect to time over (0, η) ⊂ (0,T )∫ η

0
(∂t (k ∗ u) (t),u(t)) dt +

∫ η

0
‖∇u(t)‖2 dt

=
∫ η

0
h(t) (f ,u(t)) dt +

∫ η

0

(∫ t

0
[F(s,u1(s)) − F(s,u2(s))] ds,u(t)

)
dt ,

where we used Leibniz’s rule for differentiation under the integral sign, i.e.

∂t (k ∗ u) = k ∗ ∂t u + k ũ0 = k ∗ ∂t u, a.e. in QT

I [Kubica and Yamamoto, 2018, Corollary 2] gives that∫ η

0
(∂t (k ∗ u) (t),u(t)) dt >

k (T )
2

∫ η

0
‖u(t)‖2 dt
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),L2(Ω)

)
: sketch of proof III

I We have that∣∣∣∣∣∫ η

0
h(t) (f ,u(t)) dt

∣∣∣∣∣ 6 Cε

∫ η

0
|h(t)|2 dt + ε

∫ η

0
‖u(t)‖2 dt

6 Cε

∫ η

0

(∫ t

0
‖u(s)‖2 ds

)
dt + ε

∫ η

0
‖u(t)‖2 dt

∫ η

0

(∫ t

0
[F(s,u1(s)) − F(s,u2(s))] ds,u(t)

)
dt

6 Cε

∫ η

0

(∫ t

0
‖u(s)‖2 ds

)
dt + ε

∫ η

0
‖u(t)‖2 dt

I Therefore(
k (T )

2
− ε

) ∫ η

0
‖u(t)‖2 dt +

∫ η

0
‖∇u(t)‖2 dt 6 Cε

∫ η

0

(∫ t

0
‖u(s)‖2 ds

)
dt

I Grönwall argument: u = 0 a.e. in QT and thus h = 0 a.e. in (0,T )
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Uniqueness if ∂t (k ∗ (u − ũ0)) ∈ L2
(
(0,T ),L2(Ω)

)
: sketch of proof IV

I For the general operator L , we need to assume that

I A ∈ L∞(QT ) :=
(
L∞(QT )

)d×d
is symmetric (AT = A ) and uniformly elliptic, i.e. there

exists a constant α > 0 such that
d∑

i,j=1

aij (x, t)ξiξj > α |ξ|
2 , for a.a. (x, t) ∈ QT and for all ξ ∈ Rd

I c ∈ L∞([0,T ]) such that
c(t) > 0, t ∈ [0,T ]
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Uniform mesh

Existence of a solution for exact data: uniform mesh

I Rothe’s method [Kačur, 1985]: divide [0,T ] into n ∈N equidistant subintervals
(ti−1, ti ] for ti = iτ, where τ = T/n < 1 and for any function z

zi ≈ z(ti), ∂t z(ti) ≈ δzi := zi−zi−1
τ

I The time discrete convolution is defined as follows

(k ∗ z)(ti) ≈ (k ∗ z)i :=
i∑

l=1

ki+1−lzlτ,

where we define
(k ∗ z)0 := 0
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Uniform mesh

Time-discrete problem: uniform mesh

I Based on (P) and (MP), the following decoupled system for approximating the
unknowns (h,u) at time ti , 1 6 i 6 n, is proposed: Find ui ∈ H1(Ω) and hi ∈ R
such that for all ϕ ∈ H1(Ω) it holds that

〈(k ∗ δu)i , ϕ〉H1(Ω)
∗
×H1(Ω) +Li(ui , ϕ)

= hi
(
f , ϕ

)
+

 i∑
l=1

F(tl ,ul−1)τ, ϕ

 − (
gi , ϕ

)
Γ , (DPui)

with

hi =

(k ∗m′)i +
∫
Γ

gi(x) dx + cimi −

∫
Ω

 i∑
l=1

F(x, tl ,ul−1(x))τ

 dx∫
Ω

f (x) dx
(DMPui)

I For given i ∈ {1, . . . ,n}, first (DMPui) is solved and then (DPui)
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Uniform mesh

I In the next lemmas, we put conditions on m such that (k ∗m′)i is uniformly
bounded and (k ∗m′)(0) = 0

I Note that (k ∗m′)(0) is not necessarily equal to zero or well-defined for
m ∈ C1((0,T ]) as the following example shows:
m(t) = tγ with γ ∈ (0,∞), then

(k ∗m)(t) =


t1−β+γΓ(1+γ)
Γ(2−β+γ) γ , β,

tΓ
(
β + 1

)
γ = β,

(k ∗m′)(t) =


t−β+γΓ(γ+1)
Γ(−β+γ+1) γ , β,

Γ(β + 1) γ = β,

and

(k ∗m′)(0) = lim
t↘0

(k ∗m′)(t) =


0 γ > β,

Γ(β + 1) γ = β,
∞ γ < β

I See also [Stynes, 2016]
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Uniform mesh

I Existence of a unique solution on every time step follows from the Lax-Milgram lemma
and it is stated in the following lemma

Lemma
Assume that ũ0 ∈ L2(Ω), f ∈ L2(Ω) with

∫
Ω

f (x) dx , 0, F be globally Lipschitz continuous in all

variables and g ∈ L2
(
(0,T ),L2(Γ)

)
. Moreover, assume m ∈ C1((0,T ]) satisfying∣∣∣∣∣∣∂lm

∂t l
(t)

∣∣∣∣∣∣ 6 C(1 + tγ−l ) for l = 0,1, and for 0 < t 6 T ;

with γ ∈ (β,1) fixed. Then, for any i = 1,2, . . . ,n, there exists a unique couple
{ui ,hi } ∈ H1(Ω) ×R solving (DPui)-(DMPui)

I Next: derivation a priori estimates

Lemma (See Lemma 3.3 in [Šišková and Slodička, 2017])
Positive constants C and τ0 exist such that for and τ < τ0 and every j = 1,2, . . . ,n, the following
relations hold (

k ∗ ‖u‖2
)
j
+

j∑
i=1

ki ‖ui‖
2 τ +

j∑
i=1

‖ui‖
2
H1(Ω)

τ 6 C ,
∣∣∣hj

∣∣∣ 6 C
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Uniform mesh

Lemma
Assume additionally that ũ0 ∈ H1(Ω). Moreover, assume that (MP) is well-defined at t = 0 with (k ∗m′)(0) = 0, i.e.
m ∈ C1((0,T ]) and g ∈ C1

(
(0,T ],L2(Γ)

)
satisfying

∣∣∣∣∣∣ ∂l m
∂t l

(t)

∣∣∣∣∣∣ 6 C(1 + tγ−l ) for l = 0,1 and for 0 < t 6 T ;∣∣∣(k ∗m′)′(t)
∣∣∣ 6 C(1 + tγ−β−1) for 0 < t 6 T ;∥∥∥∥∥∥ ∂l g

∂t l
(t)

∥∥∥∥∥∥L2(Γ)
6 C(1 + tγ−l ) for l = 0,1 and for 0 < t 6 T ;

with γ ∈ (β,1) fixed. Then, there exist positive constants C and τ0 such that for every j = 1,2, . . . ,n and τ < τ0, the followings
relations hold true ∥∥∥uj

∥∥∥2
H1(Ω) +

j∑
i=1

∥∥∥ui − ui−1
∥∥∥2
H1(Ω) 6 C and

j∑
i=1

∣∣∣δhi
∣∣∣ τ 6 C

Corollary
There exist positive constants C and τ0 such that for every j = 1,2, . . . ,n and τ < τ0, the following relation hold∥∥∥(k ∗ δu)j

∥∥∥
H1(Ω)

∗ 6 C
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Uniform mesh

Rothe functions
I Piecewise constant and linear in time spline of the solutions ui , i = 1, . . . ,n

I 1 2 3 n−2 n−1 n0 step

u
n

(a)
1 2 3 n−2 n−1 n0 step

u
n

(b)

Figure: Rothe’s piecewise constant function un (a) and Rothe’s piecewise linear in time
function un (b).

I Similarly, we define kn, Ln, Fn, gn, mn, m′n and hn
I Moreover, we define [Van Bockstal, 2020]

(k ∗ u)n : [0,T ]→ L2(Ω) : t 7→
{

0 t = 0
(k ∗ u)i−1 + (t − ti−1)δ(k ∗ u)i t ∈ (ti−1, ti ]
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Uniform mesh

I Using the a priori estimates and the Riesz-Frechét-Kolmogorov theorem
[Kufner et al., 1977, Theorem 2.13.1], we obtain the following result

Theorem (Existence)

Let F be linear in u. There exists a unique couple {u,h} to the problem (MP)-(P) with

u ∈ C
(
[0,T ],H1(Ω)

∗
)
∩ L∞

(
(0,T ),H1(Ω)

)
, h ∈ L∞(0,T )

and
∂t (k ∗ (u − ũ0)) ∈ L∞

(
(0,T ),H1(Ω)

∗
)
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Graded mesh

Existence of a solution for exact data: graded mesh
I Now, we consider a graded time-partitioning of the time frame [0,T ]
I Set tj = T (j/n)r for j = 0,1, . . . ,n, where the constant mesh grading r > 1 is

chosen by the user
I If r = 1, then the mesh is uniform
I We put τj := tj − tj−1 for j = 1, . . . ,n
I The L1-approximation on the graded meshes to the Caputo fractional derivative

of order β ∈ (0,1) at the node ti is given by [Brunner, 1985]

∂βu
∂tβ

∣∣∣∣∣
t=ti

=
∫ ti

0

∂u(s)
∂s

g1−β(ti − s) ds ≈
i∑

l=1

ul − ul−1

τl

∫ tl

tl−1

g1−β(ti − s) ds + Q i

=
i∑

l=1

ãi,l (ul − ul−1) + Q i =: Dβ
nui + Q i ,

where Q i is the truncation error, the kernel gβ(t) = tβ−1

Γ(β) , and the coefficients ãi,l

can be evaluated by

ãi,l =
g2−β(ti − tl−1) − g2−β(ti − tl)

τl
, 1 6 l 6 i
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Graded mesh

I A bound on the truncation error Q i for the graded mesh can be found in the lemma below
[Stynes et al., 2017, Lemma 5.1]

Lemma
Assume that u ∈ C2((0,T ]) and there exists positive constants C such that∣∣∣∣∣∣∂lu

∂t l
(t)

∣∣∣∣∣∣ 6 C(1 + tβ−l ) for l = 0,1,2, and for 0 < t 6 T .

If the nonuniform grid fulfills
τj−1 6 τj , 2 6 j 6 n,

then the following inequality is achieved for j > 1,∣∣∣Q j
∣∣∣ =

∣∣∣∣∣∣ ∂β∂tβ
u(tj ) − Dβ

nu(tj )

∣∣∣∣∣∣ 6 Cj−min{rβ,2−β}

I The optimal graded mesh is obtained when ropt := (2 − β)/β, and this gives the most
possible high rate of convergence O

(
n−{2−β}

)
I Additionally, if we choose r > ropt, this will increase the temporal mesh near t = T and so

the constant multiplier C will be increased
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Graded mesh

Time-discrete problem: graded mesh

Using the graded mesh, we approximate problem (MP)-(P) at time t = ti as follows:
Find ui ∈ H1(Ω) and hi ∈ R such that for all ϕ ∈ H1(Ω) it holds that(

Dβ
nui , ϕ

)
H1(Ω)

∗
×H1(Ω)

+Li
(
ui , ϕ

)
= hi

(
f , ϕ

)
+

 i∑
l=1

F(tl ,ul−1)τl , ϕ

 − (
gi , ϕ

)
Γ , (DMPgi)

and

hi =

Dβ
nmi + (gi ,1)Γ + cimi −

 i∑
l=1

F(tl ,ul−1)τl ,1


(f ,1)

(DPgi)
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Graded mesh

I Following fractional Grönwall lemma [Liao et al., 2018, Lemma 2.2] related to
graded meshes is used when establishing a priori estimates for uj and hj

Lemma (Nonuniform discrete fractional Grönwall inequality)

For any finite time tn = T > 0, and a given nonnegative sequence (λl)n−1
l=0 , assume

that there exists a constant λ, independent of time-steps, such that λ >
∑n−1

l=0 λl and
let {ui}

n
i=1 and {ζi ,gi}

n
i=1 be sequences of non-negative numbers that satisfy

Dβ
n(ui)2 6

i∑
l=1

λi−l(ul)2 +ui(ζi +gi), or Dβ
n(ui)2 6

i∑
l=1

λi−l(ul)2 +ζi +gi , ∀ i = 1, . . . ,n.

If the time grids satisfy τj−1 6 τj ,2 6 j 6 n, with the maximum time grid

τn 6 τ4 = β

√
1

2Γ(2−β)λ , the following inequality holds

ui 6 2
(
u0 + g1+β(ti) max

16j6i

(
ζj + gj

))
Eβ(2λtβi ), 1 6 i 6 n,

where Eβ denotes the Mittag–Leffler function with parameter β
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Graded mesh

I A priori estimate

Lemma
Assume that ũ0 ∈ L2(Ω), f ∈ L2(Ω) with

∫
Ω f (x) dx , 0, c(t) > c̃0 > 0 for t ∈ [0,T ], F be globally Lipschitz continuous in all

variables and g ∈ L∞
(
(0,T ),L2(Γ)

)
. Moreover, suppose that m ∈ C1((0,T ]) is satisfying

∣∣∣∣∣∣ ∂l m
∂t l

(t)

∣∣∣∣∣∣ 6 C(1 + tβ−l ) for l = 0,1,2 and for 0 < t 6 T ;

Then, for any i = 1,2, . . . ,n, there exists a unique couple {ui ,hi } ∈ H1(Ω) ×R solving (DMPgi)-(DPgi) and there exist positive
constants C such that

max
16i6n

{
Dβn‖ui ‖

2 + ‖ui ‖
2
H1(Ω)

}
6 C , max

16i6n
|hi | 6 C

Theorem (Existence and uniqueness: graded mesh)
Assume that rβ > 1 and that the solution u of (MP)-(P) and the measurement m satisfy the bounds∣∣∣∣∣∣ ∂l u

∂t l
(x, t)

∣∣∣∣∣∣ 6 C(1 + tβ−l ) for l = 0,1,2, and for a.a. x ∈ Ω and 0 < t 6 T ;

∣∣∣∣∣∣ ∂l m
∂t l

(t)

∣∣∣∣∣∣ 6 C(1 + tβ−l ) for l = 0,1,2, and for 0 < t 6 T .

Then there exists a unique couple {u,h} to the problem (MP)-(P) with

u ∈ C
(
[0,T ],L2(Ω)

)
∩ L∞

(
(0,T ),H1(Ω)

)
, h ∈ L∞(0,T ) and k ∗ ∂t u ∈ L∞

(
(0,T ),L2(Ω)

)
I
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Numerical experiment: setting
I T = 0.5 and Ω = (0,1)
I A = I and c = 1
I Number of time discretization intervals n = 200 and r = ropt = (2 − β)/β for the

graded grid parameter
I F(t ,u) = −tu
I We consider as exact solution the non-smooth function (∂t u blows up as t → 0+)

prescribed by
uex(x , t) =

(
t3 + tγ

)
sin(x), γ ∈ (0,1)

I Overview of experiments
I Experiment 1: γ = 0.9 and β = 0.5;
I Experiment 2: γ = β = 0.5;
I Experiment 3: γ = β = 0.2;
I Experiment 4: γ = β = 0.8

I For Experiments 2-4, only the conditions for the convergence of the graded
L1-scheme are satisfied. However, we show also the results obtained via the
convolution quadrature
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Numerical experiment: setting

I At each time-step, the resulting elliptic forward problems are solved numerically
by the finite element method (FEM) using first order (P1-FEM) Lagrange
polynomials for the space discretization. A fixed uniform mesh consisting of 100
intervals is used

I A randomly generated uncorrelated noise is added to the additional condition in
order to simulate the inherent errors present in real measurements
(noise ×N(0,1))

I The noisy data is regularized by using the nonlinear least-squares method to
obtain a function approximating the noisy datao the form

mε,reg(t) = α5tα4 + α3t3 + α2t2 + α1t + α0, αi ∈ R

I
The finite element library DOLFIN [Logg and Wells, 2010,
Logg et al., 2012b] from the FEniCS project [Logg et al., 2012a]
is used

34 / 44



Introduction Uniqueness Existence Experiments Further research

0.0 0.1 0.2 0.3 0.4 0.5
t

0.0

0.5

1.0

1.5

2.0

2.5

h(
t)

exact solution
numerical solution =0.01
numerical solution =0.03
numerical solution =0.05
numerical solution =0.1

(a)

0.0 0.1 0.2 0.3 0.4 0.5
t

0.0

0.5

1.0

1.5

2.0

2.5

h(
t)

exact solution
numerical solution =0.01
numerical solution =0.03
numerical solution =0.05
numerical solution =0.1

(b)
Figure: Experiment 1 (γ = 0.9, β = 0.5): The exact source and its numerical approximations
using (a) uniform mesh and (b) graded mesh, obtained for various levels of noise.

I Both approximations are accurate but the absolute error is the smallest for the
graded L1-scheme
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(b)
Figure: Experiment 2 (γ = β = 0.5): The exact source and its numerical approximations using
(a) uniform mesh and (b) graded mesh, obtained for various levels of noise.
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Figure: Experiment 3 (γ = β = 0.2): The exact source and its numerical approximations using
(a) uniform mesh and (b) graded mesh, obtained for various levels of noise.
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Figure: Experiment 4 (γ = β = 0.8): The exact source and its numerical approximations using
(a) uniform mesh and (b) graded mesh, obtained for various levels of noise.

I It is clear from these experiments that Rothe’s method over graded meshes
copes better with the behaviour at t = 0 of the solution

I In Experiment 4 the approximation obtained via the graded L1-scheme is less
accurate than in the previous experiments as the graded grid parameter ropt

becomes closer to 1 for increasing β
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Future research

I Results are submitted to Journal of Scientific Computing
I Performing the same experiments with c = 0 gives similar results, which

suggests that the condition c > c0 > 0 made in the analysis can be relaxed
I Consider (k ∗m′)(0) ∈ R instead of (k ∗m′)(0) = 0
I Improve the approximation of h1

I Consider the measurement
∫
Ω
ω(x)u(x, t) dx, eventually with

∫
Ω

f (x)ω(x) dx = 0,
i.e. when there is no access to the source

I Extend the results to multiterm fractional diffusion equations
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