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Abstract: Time-frequency analysis can be described as Fourier
analysis simultaneously both in time and in frequency. A
time-frequency transform is a sesquilinear mapping from a

family of test functions in a Euclidean space to functions in the

time-frequency plane. The class of time-frequency transforms is

further restricted by imposing conditions stemming from basic

transformations of signals and those which an idealized energy

density could satisfy. We characterize time-frequency transforms
in terms of the corresponding pseudo-differential operator

quantizations and integral kernel conditions. 1/20



Waveform of speech...

Signal (word 'Why’), sampling rate 4000 Hz
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Wigner for speech...




. Born—Jordan for speech...

"Why?": Discrete—time Born—Jordan distribution
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a spectrogram with a Gaussian window...

Spectrogram with a medium-wide Gaussian window




a spectrogram with wide Gaussian window...

Spectrogram with a wide Gaussian window




a spectrogram with narrow Gaussian window

Spectrogram with a narrow Gaussian window




Time-frequency transforms Q = ¢« W  [Cohen 1966]

Informal idea:

Q[u](x,n) := Q(u, u)(x,n)
is the “energy density” (“time-frequency distribution”) of signal
u:R"™ — C at time-frequency (x,7n) € R” x R", where R = R.

For signals u, v : R"” — C, a time-frequency transform
Q(u,v) : R" x R" — C is a time-frequency shift-invariant family of
sesquilinear forms:

Q(Mf Ty”a Mf TyV)(X» 77) = Q(U, V)(X —y,n—- g)?
for all the translation-modulations
Me Tyu(x) = 2™ y(x — y)
(time-lag y € R", frequency-lag £ € I@”) In practice, then
Q(“: V) = * W(u7 V)?

where W(u,v) : R" x R™ — C is the Wigner transform.
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Q-quantization (Q-pseudo-differential operators)

Fix a time-frequency transform Q = v * W with smooth 12 €L
having polynomially bounded derivatives. The corresponding
Q-quantization is the mapping

ar—a® = Opg(a) (1)

defined by the L2-inner products
(u;a%v) = (Q(u,v),a), or equivalently (2)
(v,a®) = (Q(v,v),a). (3)

Idea: Operator a® sees only the energy density Q[v] = Q(v, v).
u:R" — Cis a test signal,

v :R" — C is an input signal,

aQv : R" — C the corresponding output signal,

a:R"xR" - C a symbol (or weight) of the pseudo-differential
operator a® (time-varying filter). Distributional symbols are ok:
important case Qy = a? for the Dirac delta symbol a = § = (0,0)-
The properties of time-frequency transform Q and the

B . . Q
Q-quantization a — a¥ are naturally related. 0/20



Wigner transform (1931), Weyl quantization (1927)

Signals u,v : R" — C have the Wigner transform
W(u,v):R"xR" — C,

W (u, v)(x, ) = / TR (x4 y/2) v(x — y/2) dy.  (4)

W is a symmetric time-frequency transform.

The Wigner distribution [v] — W][v] = W(v, v) is invertible, has
correct marginal energy densities, is scale-invariant, is time-local,

and is frequency-local. But: Wigner transform is very sensitive to
noise, and thus it is not useful in practise.

The corresponding (Wigner-)Weyl quantization a +— a"V, where

2"u() = [T vy dyan. (9)

Warning! When trying to generalize the times R"” to groups G:
typically non-invertible mapping (y — y+y): G — G

(in the multiplicative notation, non-invertible (y — y?): G — G).

Then there is no reasonable analogy to Wigner/Weyl on such G!

(But then just exploit the Kohn—Nirenberg quantization... ;) 10/20



Points of view: “Q <= @y < ¢g — Opg”

Q time-frequency transform,

Qo = 69 its “evaluation at the origin”,

¢@ the ambiguity kernel,

Opg = (ar a®) corresponding pseudo-differential quantization.
Symplectic transform T 4a(x,n) := a(A(x,n)) for A € Sp(2n).

Theorem 3. (Symplectic covariance)

Let Q be a time-frequency transform, A € Sp(2n). Let u(A) be a
metaplectic operator such that Mo pu(A) = A.

Then the following are equivalent:

(a) Q is covariant under A.

(b) Qo commutes with p(A).

(c) ¢q=Ta1¢q

(d)  Opq(Taa) = u(A)~' o Opg(a) o u(A).

11/20



Symmetry

Time-frequency transform Q is symmetric if Q[u] = Q(u, u) is
real-valued for all u € .7(R").
Quantization Opg = (a + a®) is symmetric if
(a")? = (a9)
for all a € .Z(R" x R"), ie.
<aQu, v) = (u, an>

for all u,v € Z(R").

Theorem 5.

The following conditions are equivalent:
(a) Q is symmetric.
(b) Qo is symmetric.

(c) ¢q satisties pg(y, )" = ¢o(—y, =)
(d) Opg is symmetric.
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Positivity
Time-frequency transform Q is positive if Q[u] > 0 for all
ue S (R").
Quantization Opg = (a+ a?) is positive if
(u,a%u) >0

for all u € .#(R") and a € .Z(R" x R").

Theorem 6.

The following conditions are equivalent:
(a) Q is positive.

(b) Qo is positive.

(c) Opg is positive.
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Spectrograms are positive

Spectrogram with a medium-wide Gaussian window




Normalization: correct traces

Time-frequency transform Q is normalized if

/ QLul(x, 7) dx dy = [[u]]

for all v € Z(R").

Quantization Opg = (a— aQ has correct traces if

//a(x n)dxdn

for all a € Z(R" x R"), where tr is the trace functional.

Theorem 7 (Normalization)

The following conditions are equivalent:
(a) Q@ is normalized.
(b) $¢(0,0) =1.

(c) Opg has correct traces.
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Correct margins

Time-frequency transform Q has correct frequency margins if
/ Qul(x, 1) dx = [d(n)[2 for all u € #(R") and 5 € B™.

Theorem 8 (Frequency margins)

The following conditions are equivalent:
(a) Q@ has correct frequency margins.

(b) ¢aly,0)=1.

o~

(c) Ifa(x,n) = f(n) then (Opga)v = f * v (i.e. convolution).

Time-frequency transform @ has correct time margins if
/ Q[u](x,n) dn = |u(x)|? for all u € #(R") and x € R".

Theorem 9 (Time margins)

The following conditions are equivalent:
(a) Q@ has correct time margins.

(b) #q(0,€) = 1.
(c) If a(x,n) = g(x) then (Opga)v = g v (i.e. multiplication). 16,20



Born—Jordan has correct margins

"Why?": Discrete—time Born—Jordan distribution
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Unitarity (Moyal property)

Time-frequency transform Q is unitary if it has the Moyal property

(Q(u,v), Q(f,g)) = (u, ) {v,g)" (6)
forall u,v,f, g € /(R").

Quantization Opg = (a + a®) is unitary if

(a,b) = (a9, b9) (7)
for all a,b € #(R" x R").
Theorem 10 (Unitarity)

The following conditions are equivalent:
(a) Q@ is unitary.

(b) 19q(&;¥) =1,
(c) Opg is unitary.

Unitary transforms are sensitive to noise. Examples: Wigner and

Kohn-Nirenberg are unitary.
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Wigner is unitary




Born—Jordan is not unitary

"Why?": Discrete—time Born—Jordan distribution
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