Time-frequency transforms in Euclidean spaces

Gent ISAAC, August 2–6, 2021

Ville Turunen (Aalto University), joint with Vesa Vuojamo and Heikki Orelma, to appear in Journal of Fourier Analysis and Applications.

Abstract: Time-frequency analysis can be described as Fourier analysis simultaneously both in time and in frequency. A time-frequency transform is a sesquilinear mapping from a family of test functions in a Euclidean space to functions in the time-frequency plane. The class of time-frequency transforms is further restricted by imposing conditions stemming from basic transformations of signals and those which an idealized energy density could satisfy. We characterize time-frequency transforms in terms of the corresponding pseudo-differential operator quantizations and integral kernel conditions. $1/20$

Waveform of speech...

 $2/20$

Wigner for speech...

3 / 20

... Born–Jordan for speech...

... a spectrogram with a Gaussian window...

... a spectrogram with wide Gaussian window...

6 / 20

... a spectrogram with narrow Gaussian window

<u>Time-frequency</u> transforms $Q = \psi * W$ [Cohen 1966]

Informal idea:

$$
Q[u](x,\eta) := Q(u,u)(x,\eta)
$$

is the "energy density" ("time-frequency distribution") of signal $u:\mathbb{R}^n\to\mathbb{C}$ at time-frequency $(x,\eta)\in\mathbb{R}^n\times\widehat{\mathbb{R}}^n$, where $\widehat{\mathbb{R}}\cong\mathbb{R}.$

For signals $u, v : \mathbb{R}^n \to \mathbb{C}$, a time-frequency transform $Q(u, v) : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ is a time-frequency shift-invariant family of sesquilinear forms:

$$
Q(M_{\xi}T_{y}u, M_{\xi}T_{y}v)(x, \eta) = Q(u, v)(x - y, \eta - \xi),
$$

for all the translation-modulations

$$
M_{\xi}T_{y}u(x):=\mathrm{e}^{\mathrm{i}2\pi x\cdot\xi}u(x-y)
$$

(*time-lag* $y \in \mathbb{R}^n$, *frequency-lag* $\xi \in \widehat{\mathbb{R}}^n$). In practice, then

$$
Q(u,v)=\psi*W(u,v),
$$

where $W(u, v) : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ is the Wigner transform.

Q-quantization (Q-pseudo-differential operators)

Fix a time-frequency transform $\mathcal{Q} = \psi * W$ with smooth $\widehat{\psi} \in L^{\infty}$ having polynomially bounded derivatives. The corresponding Q-quantization is the mapping

$$
a \mapsto a^Q = \text{Op}_Q(a) \tag{1}
$$

defined by the L^2 -inner products

$$
\langle u, a^{Q}v \rangle = \langle Q(u, v), a \rangle, \text{ or equivalently}
$$
\n
$$
\langle v, a^{Q}v \rangle = \langle Q(v, v), a \rangle.
$$
\n(3)

Idea: Operator a^Q sees only the energy density $Q[v] = Q(v, v)$. $u: \mathbb{R}^n \to \mathbb{C}$ is a test signal, $v: \mathbb{R}^n \to \mathbb{C}$ is an input signal, $a^Q v : \mathbb{R}^n \to \mathbb{C}$ the corresponding output signal, $a: \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ a symbol (or weight) of the pseudo-differential operator a^Q (time-varying filter). Distributional symbols are ok: important case $Q_0 = a^Q$ for the Dirac delta symbol $a = \delta = \delta_{(0,0)}.$ The properties of time-frequency transform Q and the Q-quantization $a \mapsto a^Q$ are naturally related. \mathbb{R}^2

Wigner transform (1931), Weyl quantization (1927)

Signals $u, v : \mathbb{R}^n \to \mathbb{C}$ have the Wigner transform $W(u, v): \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C},$

$$
W(u, v)(x, \eta) := \int e^{-i2\pi y \cdot \eta} u(x + y/2) v(x - y/2)^{*} dy.
$$
 (4)

W is a symmetric time-frequency transform.

The Wigner distribution $[v] \mapsto W[v] = W(v, v)$ is invertible, has correct marginal energy densities, is scale-invariant, is time-local, and is frequency-local. But: Wigner transform is very sensitive to noise, and thus it is not useful in practise.

The corresponding (Wigner-)Weyl quantization $a \mapsto a^W$, where

$$
a^W v(x) = \iint e^{i2\pi(x-y)\cdot\eta} a(\frac{x+y}{2}, \eta) v(y) dy d\eta.
$$
 (5)

Warning! When trying to generalize the times \mathbb{R}^n to groups G : typically non-invertible mapping $(y \mapsto y + y) : G \to G$ (in the multiplicative notation, non-invertible $(y \mapsto y^2) : G \to G$). Then there is no reasonable analogy to Wigner/Weyl on such G! (But then just exploit the Kohn–Nirenberg quantization...;) $_{10/20}$

Points of view: "
$$
Q \iff Q_0 \iff \phi_Q \iff \text{Op}_Q
$$
"

Q time-frequency transform, $Q_0 = \delta^Q$ its "evaluation at the origin", ϕ ^O the ambiguity kernel, $\operatorname{Op}_{\mathcal{Q}} = (\mathsf{a} \mapsto \mathsf{a}^\mathcal{Q})$ corresponding pseudo-differential quantization. Symplectic transform $T_A a(x, \eta) := a(A(x, \eta))$ for $A \in \text{Sp}(2n)$.

Theorem 3. (Symplectic covariance)

Let Q be a time-frequency transform, $A \in Sp(2n)$. Let $\mu(A)$ be a metaplectic operator such that $\Pi \circ \mu(\mathcal{A}) = \mathcal{A}$. Then the following are equivalent:

- (a) Q is covariant under A .
- (b) Q_0 commutes with $\mu(A)$.

$$
(c) \quad \phi_Q = T_{A^{-1}} \phi_Q.
$$

(d) $\text{Op}_Q(\mathcal{T}_{\mathcal{A}}a) = \mu(\mathcal{A})^{-1} \circ \text{Op}_Q(a) \circ \mu(\mathcal{A}).$

Symmetry

Time-frequency transform Q is symmetric if $Q[u] = Q(u, u)$ is real-valued for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\mathit{Op}_Q = (a \mapsto a^Q)$ is *symmetric* if

$$
(a^*)^Q=(a^Q)^*
$$

for all $a \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$, i.e.

$$
\langle a^Q u, v \rangle = \langle u, a^Q v \rangle
$$

for all $u, v \in \mathscr{S}(\mathbb{R}^n)$.

Theorem 5.

The following conditions are equivalent:

- (a) Q is symmetric.
- (b) Q_0 is symmetric.
- (c) ϕ_Q satisfies $\phi_Q(y,\xi)^* = \phi_Q(-y,-\xi)$.
- (d) Op_O is symmetric.

Time-frequency transform Q is *positive* if $Q[u] \geq 0$ for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\operatorname{Op}_Q = (a \mapsto a^Q)$ is *positive* if

 $\langle u, a^Q u \rangle \geq 0$

for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $a \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$.

Theorem 6.

The following conditions are equivalent:

- (a) Q is positive.
- (b) Q_0 is positive.
- (c) Op_O is positive.

Spectrograms are positive

Normalization: correct traces

Time-frequency transform Q is normalized if

$$
\iint Q[u](x,\eta) dx d\eta = ||u||^2
$$

for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\operatorname{Op}_Q = (\mathsf{a} \mapsto \mathsf{a}^\mathsf{Q})$ has *correct traces* if

$$
\mathrm{tr}\big(\mathsf{a}^\mathsf{Q}\big) = \iint \mathsf{a}(x,\eta) \,\mathrm{d} x\,\mathrm{d}\eta
$$

for all $a \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$, where tr is the trace functional.

Theorem 7 (Normalization)

The following conditions are equivalent:

- (a) Q is normalized.
- (b) $\phi_{\mathcal{Q}}(0,0) = 1$.
- (c) Op_O has correct traces.

Correct margins

Time-frequency transform Q has correct frequency margins if Z $Q[u](x, \eta) dx = |\widehat{u}(\eta)|^2$ for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $\eta \in \widehat{\mathbb{R}}^n$.

Theorem 8 (Frequency margins)

The following conditions are equivalent:

(a) Q has correct frequency margins.

$$
(b) \quad \phi_Q(y,0)=1.
$$

(c) If
$$
a(x, \eta) = \hat{f}(\eta)
$$
 then $(Op_{Q}a)v = f * v$ (i.e. convolution).

Time-frequency transform Q has correct time margins if $\int Q[u](x,\eta) d\eta = |u(x)|^2$ for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$.

Theorem 9 (Time margins)

The following conditions are equivalent:

(a) Q has correct time margins.

(b)
$$
\phi_Q(0,\xi) = 1
$$
.

(c) If $a(x, \eta) = g(x)$ then $(\text{Op}_{Q}a)v = g v$ (i.e. multiplication). $16/20$

Born–Jordan has correct margins

Unitarity (Moyal property)

Time-frequency transform Q is unitary if it has the Moyal property $\langle Q(u, v), Q(f, g) \rangle = \langle u, f \rangle \langle v, g \rangle^*$ (6) for all $u, v, f, g \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\operatorname{Op}_Q = (\mathsf{a} \mapsto \mathsf{a}^\mathsf{Q})$ is *unitary* if

$$
\langle a, b \rangle = \langle a^Q, b^Q \rangle \tag{7}
$$

for all $a, b \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$.

Theorem 10 (Unitarity)

The following conditions are equivalent: (a) Q is unitary. (b) $|\phi_{\Omega}(\xi, y)| \equiv 1$. (c) Op_O is unitary.

Unitary transforms are sensitive to noise. Examples: Wigner and Kohn-Nirenberg are unitary.

Wigner is unitary

Born–Jordan is not unitary

