Time-frequency transforms in Euclidean spaces

Gent ISAAC, August 2-6, 2021

Ville Turunen (Aalto University), joint with Vesa Vuojamo and Heikki Orelma, to appear in *Journal of Fourier Analysis and Applications*.

Abstract: Time-frequency analysis can be described as Fourier analysis simultaneously both in time and in frequency. A time-frequency transform is a sesquilinear mapping from a family of test functions in a Euclidean space to functions in the time-frequency plane. The class of time-frequency transforms is further restricted by imposing conditions stemming from basic transformations of signals and those which an idealized energy density could satisfy. We characterize time-frequency transforms in terms of the corresponding pseudo-differential operator quantizations and integral kernel conditions.

Waveform of speech...

Wigner for speech...

3 / 20

... Born–Jordan for speech....

... a spectrogram with a Gaussian window...

... a spectrogram with wide Gaussian window...

... a spectrogram with narrow Gaussian window

Time-frequency transforms $Q = \psi * W$ [Cohen 1966]

Informal idea:

$$Q[u](x,\eta) := Q(u,u)(x,\eta)$$

is the "energy density" ("time-frequency distribution") of signal $u: \mathbb{R}^n \to \mathbb{C}$ at time-frequency $(x, \eta) \in \mathbb{R}^n \times \widehat{\mathbb{R}}^n$, where $\widehat{\mathbb{R}} \cong \mathbb{R}$.

For signals $u, v : \mathbb{R}^n \to \mathbb{C}$, a time-frequency transform $Q(u, v) : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ is a time-frequency shift-invariant family of sesquilinear forms:

$$Q(M_{\xi}T_{y}u, M_{\xi}T_{y}v)(x, \eta) = Q(u, v)(x - y, \eta - \xi),$$

for all the translation-modulations

$$M_{\xi}T_{y}u(x):=\mathrm{e}^{\mathrm{i}2\pi x\cdot\xi}u(x-y)$$

(time-lag $y \in \mathbb{R}^n$, frequency-lag $\xi \in \widehat{\mathbb{R}}^n$). In practice, then

$$Q(u,v) = \psi * W(u,v),$$

where $W(u, v) : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ is the Wigner transform.

Q-quantization (Q-pseudo-differential operators)

Fix a time-frequency transform $Q = \psi * W$ with smooth $\widehat{\psi} \in L^{\infty}$ having polynomially bounded derivatives. The corresponding Q-quantization is the mapping

$$a \mapsto a^Q = \operatorname{Op}_Q(a)$$
 (1)

defined by the L^2 -inner products

$$\langle u, a^{Q}v \rangle = \langle Q(u, v), a \rangle$$
, or equivalently (2)
 $\langle v, a^{Q}v \rangle = \langle Q(v, v), a \rangle$. (3)

Idea: Operator a^Q sees only the energy density Q[v] = Q(v, v). $u : \mathbb{R}^n \to \mathbb{C}$ is a test signal, $v : \mathbb{R}^n \to \mathbb{C}$ is an input signal, $a^Q v : \mathbb{R}^n \to \mathbb{C}$ the corresponding output signal, $a : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$ a symbol (or weight) of the pseudo-differential operator a^Q (time-varying filter). Distributional symbols are ok: important case $Q_0 = a^Q$ for the Dirac delta symbol $a = \delta = \delta_{(0,0)}$. The properties of time-frequency transform Q and the Q-quantization $a \mapsto a^Q$ are naturally related.

Wigner transform (1931), Weyl quantization (1927)

Signals $u, v : \mathbb{R}^n \to \mathbb{C}$ have the Wigner transform $W(u, v) : \mathbb{R}^n \times \widehat{\mathbb{R}}^n \to \mathbb{C}$,

$$W(u, v)(x, \eta) := \int e^{-i2\pi y \cdot \eta} u(x + y/2) v(x - y/2)^* dy.$$
 (4)

W is a symmetric time-frequency transform.

The Wigner distribution $[v] \mapsto W[v] = W(v, v)$ is invertible, has correct marginal energy densities, is scale-invariant, is time-local, and is frequency-local. **But:** Wigner transform is very sensitive to noise, and thus it is not useful in practise.

The corresponding (Wigner-)Weyl quantization $a \mapsto a^W$, where

$$\mathsf{a}^{W}\mathsf{v}(x) = \iint \mathrm{e}^{\mathrm{i}2\pi(x-y)\cdot\eta} \,\mathsf{a}(\frac{x+y}{2},\eta)\,\mathsf{v}(y)\,\mathrm{d}y\,\mathrm{d}\eta. \tag{5}$$

Warning! When trying to generalize the times \mathbb{R}^n to groups G: typically non-invertible mapping $(y \mapsto y + y) : G \to G$ (in the multiplicative notation, non-invertible $(y \mapsto y^2) : G \to G$). Then there is no reasonable analogy to Wigner/Weyl on such G! (But then just exploit the Kohn–Nirenberg quantization...;) 10/20

Points of view: "
$$Q \iff Q_0 \iff \phi_Q \iff \operatorname{Op}_Q$$
"

Q time-frequency transform, $Q_0 = \delta^Q$ its "evaluation at the origin", ϕ_Q the ambiguity kernel, $\operatorname{Op}_Q = (a \mapsto a^Q)$ corresponding pseudo-differential quantization. Symplectic transform $T_{\mathcal{A}}a(x,\eta) := a(\mathcal{A}(x,\eta))$ for $\mathcal{A} \in \operatorname{Sp}(2n)$.

Theorem 3. (Symplectic covariance)

Let Q be a time-frequency transform, $A \in \text{Sp}(2n)$. Let $\mu(A)$ be a metaplectic operator such that $\Pi \circ \mu(A) = A$. Then the following are equivalent:

- (a) Q is covariant under A.
- (b) Q_0 commutes with $\mu(\mathcal{A})$.

$$(c) \quad \phi_Q = T_{\mathcal{A}^{-1}} \phi_Q.$$

(d) $\operatorname{Op}_{Q}(T_{\mathcal{A}}a) = \mu(\mathcal{A})^{-1} \circ \operatorname{Op}_{Q}(a) \circ \mu(\mathcal{A}).$

Symmetry

Time-frequency transform Q is symmetric if Q[u] = Q(u, u) is real-valued for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $Op_Q = (a \mapsto a^Q)$ is symmetric if

$$(a^*)^Q = (a^Q)^*$$

for all $a \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$, i.e.

$$\langle a^Q u, v \rangle = \langle u, a^Q v \rangle$$

for all $u, v \in \mathscr{S}(\mathbb{R}^n)$.

Theorem 5.

The following conditions are equivalent:

- (a) Q is symmetric.
- (b) Q_0 is symmetric.
- (c) ϕ_Q satisfies $\phi_Q(y,\xi)^* = \phi_Q(-y,-\xi)$.
- (d) Op_Q is symmetric.

Time-frequency transform Q is *positive* if $Q[u] \ge 0$ for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $Op_Q = (a \mapsto a^Q)$ is *positive* if

 $\langle u, a^Q u \rangle \geq 0$

for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $a \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$.

Theorem 6.

The following conditions are equivalent:

- (a) Q is positive.
- (b) Q_0 is positive.
- (c) Op_Q is positive.

Spectrograms are positive

Time-frequency transform Q is *normalized* if

$$\iint Q[u](x,\eta) \,\mathrm{d}x \,\mathrm{d}\eta = \|u\|^2$$

for all $u \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\operatorname{Op}_Q = (a \mapsto a^Q)$ has correct traces if

$$\operatorname{tr}(\boldsymbol{a}^{Q}) = \iint \boldsymbol{a}(\boldsymbol{x}, \eta) \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}\eta$$

for all $a \in \mathscr{S}(\mathbb{R}^n \times \mathbb{R}^n)$, where tr is the trace functional.

Theorem 7 (Normalization)

The following conditions are equivalent:

- (a) Q is normalized.
- (b) $\phi_Q(0,0) = 1.$
- (c) Op_Q has correct traces.

Correct margins

Time-frequency transform Q has correct frequency margins if $\int Q[u](x,\eta) \, \mathrm{d}x = |\widehat{u}(\eta)|^2$ for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $\eta \in \widehat{\mathbb{R}}^n$.

Theorem 8 (Frequency margins)

The following conditions are equivalent:

(a) Q has correct frequency margins.

$$(b) \quad \phi_Q(y,0) = 1.$$

(c) If
$$\mathsf{a}(x,\eta)=\widehat{f}(\eta)$$
 then $(\operatorname{Op}_{Q}\mathsf{a})\mathsf{v}=\mathsf{f}*\mathsf{v}$ (i.e. convolution).

Time-frequency transform Q has correct time margins if $\int Q[u](x,\eta) d\eta = |u(x)|^2$ for all $u \in \mathscr{S}(\mathbb{R}^n)$ and $x \in \mathbb{R}^n$.

Theorem 9 (Time margins)

The following conditions are equivalent:

(a) Q has correct time margins.

(b)
$$\phi_Q(0,\xi) = 1.$$

(c) If $a(x,\eta) = g(x)$ then $(Op_Q a)v = g v$ (i.e. multiplication). $_{16/20}$

Born–Jordan has correct margins

Unitarity (Moyal property)

Time-frequency transform Q is *unitary* if it has the *Moyal property* $\langle Q(u, v), Q(f, g) \rangle = \langle u, f \rangle \langle v, g \rangle^*$ (6) for all $u, v, f, g \in \mathscr{S}(\mathbb{R}^n)$.

Quantization $\operatorname{Op}_Q = (a \mapsto a^Q)$ is *unitary* if

$$\langle a, b \rangle = \langle a^Q, b^Q \rangle$$
 (7)

for all $a, b \in \mathscr{S}(\mathbb{R}^n \times \widehat{\mathbb{R}}^n)$.

Theorem 10 (Unitarity)

The following conditions are equivalent:

(a) Q is unitary. (b) $|\phi_Q(\xi, y)| \equiv 1$. (c) Op_Q is unitary.

Unitary transforms are sensitive to noise. Examples: Wigner and Kohn-Nirenberg are unitary.

Wigner is unitary

19 / 20

Born-Jordan is not unitary

20 / 20