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Abstract: Time-frequency analysis can be described as Fourier
analysis simultaneously both in time and in frequency. A
time-frequency transform is a sesquilinear mapping from a

family of test functions in a Euclidean space to functions in the
time-frequency plane. The class of time-frequency transforms is
further restricted by imposing conditions stemming from basic
transformations of signals and those which an idealized energy
density could satisfy. We characterize time-frequency transforms

in terms of the corresponding pseudo-differential operator
quantizations and integral kernel conditions. 1 / 20



Waveform of speech...
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Wigner for speech...
"Why?": Discrete−time Wigner distribution
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... Born–Jordan for speech...
"Why?": Discrete−time Born−Jordan distribution
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... a spectrogram with a Gaussian window...
Spectrogram with a medium−wide Gaussian window
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... a spectrogram with wide Gaussian window...
Spectrogram with a wide Gaussian window
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... a spectrogram with narrow Gaussian window
Spectrogram with a narrow Gaussian window
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Time-frequency transforms Q = ψ ∗W [Cohen 1966]

Informal idea:
Q[u](x , η) := Q(u, u)(x , η)

is the “energy density” (“time-frequency distribution”) of signal
u : Rn → C at time-frequency (x , η) ∈ Rn × R̂n, where R̂ ∼= R.

For signals u, v : Rn → C, a time-frequency transform
Q(u, v) : Rn × R̂n → C is a time-frequency shift-invariant family of
sesquilinear forms:

Q(MξTyu,MξTyv)(x , η) = Q(u, v)(x − y , η − ξ),

for all the translation-modulations

MξTyu(x) := ei2πx ·ξ u(x − y)

(time-lag y ∈ Rn, frequency-lag ξ ∈ R̂n). In practice, then

Q(u, v) = ψ ∗W (u, v),

where W (u, v) : Rn × R̂n → C is the Wigner transform.
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Q-quantization (Q-pseudo-differential operators)

Fix a time-frequency transform Q = ψ ∗W with smooth ψ̂ ∈ L∞

having polynomially bounded derivatives. The corresponding
Q-quantization is the mapping

a 7→ aQ = OpQ(a) (1)

defined by the L2-inner products

〈u, aQv〉 = 〈Q(u, v), a〉, or equivalently (2)
〈v , aQv〉 = 〈Q(v , v), a〉. (3)

Idea: Operator aQ sees only the energy density Q[v ] = Q(v , v).
u : Rn → C is a test signal,
v : Rn → C is an input signal,
aQv : Rn → C the corresponding output signal,
a : Rn × R̂n → C a symbol (or weight) of the pseudo-differential
operator aQ (time-varying filter). Distributional symbols are ok:
important case Q0 = aQ for the Dirac delta symbol a = δ = δ(0,0).
The properties of time-frequency transform Q and the
Q-quantization a 7→ aQ are naturally related.
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Wigner transform (1931), Weyl quantization (1927)

Signals u, v : Rn → C have the Wigner transform
W (u, v) : Rn × R̂n → C,

W (u, v)(x , η) :=

∫
e−i2πy ·η u(x + y/2) v(x − y/2)∗ dy . (4)

W is a symmetric time-frequency transform.
The Wigner distribution [v ] 7→W [v ] = W (v , v) is invertible, has
correct marginal energy densities, is scale-invariant, is time-local,
and is frequency-local. But: Wigner transform is very sensitive to
noise, and thus it is not useful in practise.
The corresponding (Wigner-)Weyl quantization a 7→ aW , where

aW v(x) =

∫∫
ei2π(x−y)·η a(

x + y

2
, η) v(y) dy dη. (5)

Warning! When trying to generalize the times Rn to groups G :
typically non-invertible mapping (y 7→ y + y) : G → G
(in the multiplicative notation, non-invertible (y 7→ y2) : G → G ).
Then there is no reasonable analogy to Wigner/Weyl on such G !
(But then just exploit the Kohn–Nirenberg quantization... ;) 10 / 20



Points of view: “Q ⇐⇒ Q0 ⇐⇒ φQ ⇐⇒ OpQ”

Q time-frequency transform,
Q0 = δQ its “evaluation at the origin”,
φQ the ambiguity kernel,
OpQ = (a 7→ aQ) corresponding pseudo-differential quantization.
Symplectic transform TAa(x , η) := a(A(x , η)) for A ∈ Sp(2n).

Theorem 3. (Symplectic covariance)

Let Q be a time-frequency transform, A ∈ Sp(2n). Let µ(A) be a
metaplectic operator such that Π ◦ µ(A) = A.
Then the following are equivalent:
(a) Q is covariant under A.
(b) Q0 commutes with µ(A).
(c) φQ = TA−1φQ .
(d) OpQ(TAa) = µ(A)−1 ◦OpQ(a) ◦ µ(A).
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Symmetry

Time-frequency transform Q is symmetric if Q[u] = Q(u, u) is
real-valued for all u ∈ S (Rn).

Quantization OpQ = (a 7→ aQ) is symmetric if

(a∗)Q = (aQ)∗

for all a ∈ S (Rn × R̂n), i.e.

〈aQu, v〉 = 〈u, aQv〉

for all u, v ∈ S (Rn).

Theorem 5.
The following conditions are equivalent:
(a) Q is symmetric.
(b) Q0 is symmetric.
(c) φQ satisfies φQ(y , ξ)∗ = φQ(−y ,−ξ).
(d) OpQ is symmetric.
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Positivity

Time-frequency transform Q is positive if Q[u] ≥ 0 for all
u ∈ S (Rn).

Quantization OpQ = (a 7→ aQ) is positive if

〈u, aQu〉 ≥ 0

for all u ∈ S (Rn) and a ∈ S (Rn × R̂n).

Theorem 6.
The following conditions are equivalent:
(a) Q is positive.
(b) Q0 is positive.
(c) OpQ is positive.
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Spectrograms are positive
Spectrogram with a medium−wide Gaussian window
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Normalization: correct traces

Time-frequency transform Q is normalized if∫∫
Q[u](x , η) dx dη = ‖u‖2

for all u ∈ S (Rn).

Quantization OpQ = (a 7→ aQ) has correct traces if

tr(aQ) =

∫∫
a(x , η) dx dη

for all a ∈ S (Rn × Rn), where tr is the trace functional.

Theorem 7 (Normalization)

The following conditions are equivalent:
(a) Q is normalized.
(b) φQ(0, 0) = 1.
(c) OpQ has correct traces.
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Correct margins

Time-frequency transform Q has correct frequency margins if∫
Q[u](x , η) dx = |û(η)|2 for all u ∈ S (Rn) and η ∈ R̂n.

Theorem 8 (Frequency margins)

The following conditions are equivalent:
(a) Q has correct frequency margins.
(b) φQ(y , 0) = 1.
(c) If a(x , η) = f̂ (η) then (OpQa)v = f ∗ v (i.e. convolution).

Time-frequency transform Q has correct time margins if∫
Q[u](x , η) dη = |u(x)|2 for all u ∈ S (Rn) and x ∈ Rn.

Theorem 9 (Time margins)

The following conditions are equivalent:
(a) Q has correct time margins.
(b) φQ(0, ξ) = 1.
(c) If a(x , η) = g(x) then (OpQa)v = g v (i.e. multiplication). 16 / 20



Born–Jordan has correct margins
"Why?": Discrete−time Born−Jordan distribution
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Unitarity (Moyal property)

Time-frequency transform Q is unitary if it has the Moyal property

〈Q(u, v),Q(f , g)〉 = 〈u, f 〉 〈v , g〉∗ (6)

for all u, v , f , g ∈ S (Rn).

Quantization OpQ = (a 7→ aQ) is unitary if

〈a, b〉 = 〈aQ , bQ〉 (7)

for all a, b ∈ S (Rn × R̂n).

Theorem 10 (Unitarity)

The following conditions are equivalent:
(a) Q is unitary.
(b) |φQ(ξ, y)| ≡ 1.
(c) OpQ is unitary.

Unitary transforms are sensitive to noise. Examples: Wigner and
Kohn-Nirenberg are unitary.
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Wigner is unitary
"Why?": Discrete−time Wigner distribution
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Born–Jordan is not unitary
"Why?": Discrete−time Born−Jordan distribution
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